初中数学找规律题(有答案)
初中数学找规律

中考数学——找规律________________________座号班级________姓名一、棋牌游戏问题1)所示,那么她所2)所示放在桌子上,小敏把其中一张旋转180o后得到如图(.4张扑克牌如图(1) 旋转的牌从左数起是(D.第四张C.第三张A.第一张B.第二张帅3图.2小明背对小亮,让小亮按下列四个步骤操作:)分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第一步从左边一堆拿出两张,放入中间一堆;第二步从右边一堆拿出一张,放入中间一堆;第三步.左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆第四步.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是.4我们. 剩余的格点上没有棋子年江西南昌)(2004图(4)是跳棋盘,其中格点上的黑色点为棋子,为A.已知点约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步)已方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为(步D.5C步.4步.2 A.步B3 二、空间想象问题.1……,层,第3层,15()的形状,若从上至下依次为第层,第2把正方体摆放成如图2004(年泸州).n层有___个正方体则第.2的正方体叠成的图形。
1),都是由边长为6如图(年山东日照)2004(.个平方单位,第③个图形的表例如第①个图形的表面积为6个平方单位,第②个图形的表面积为18 个平方单位。
面积是36个平方单位。
依此规律,则第⑤个图形的表面积.3是一,7)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图(“祝”、则“程”表示下面.个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面, “你”、“前”分别表示正方体的.祝你程前锦似图(7)②①③8)图(.4的小立方体摆成的图形,寻找规律:.观察下列由棱长为1个小立80个看不见;如图(8)②中:共有如图(8)①中:共有1个小立方体,其中1个看得见,个看不8个小立方体,其中19个看得见,方体,其中7个看得见,1个看不见;如图(8)③中:共有27. 个见;……,则第⑥个图中,看不见的小立方体有...5.个图形(它)所示的第2图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2))的每个黑色的正三角形中分别重复上述的作法,得到如图(3的中间为一个白色的正三角形);在图(2 个图形中,白色的正三角形的个数是所示的第3个图形。
找规律练习题及答案

找规律练习题一.数字排列规律题1.4、10、16、22、28……,求第n位数()。
2.2、3、5、9,17增幅为1、2、4、8.第n位数()3.观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是----,第n个数是---------。
4.1,9,25,49,(),(),的第n项为(),5:2、9、28、65.....:第n位数()6:2、4、8、16......第n位数.()7:2、5、10、17、26……,第n位数.()8:4,16,36,64,?,144,196,…?第一百个数()9、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和。
10、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?11.=8=16=24……用含有N的代数式表示规律()12.12,20,30,42,()127,112,97,82,()3,4,7,12,(),2813.1,2,3,5,(),1314.0,1,1,2,4,7,13,()15.5,3,2,1,1,()16.1,4,9,16,25,(),4917.66,83,102,123,(),18.1,8,27,(),12519。
3,10,29,(),12720,0,1,2,9,()21;()。
则第n项代数式为:()22,2/31/22/51/3()。
则第n项代数式为()23,1,3,3,9,5,15,7,()24.2,6,12,20,()25.11,17,23,(),35。
26.2,3,10,15,26,()。
27.:1,8,27,64,()28.:0,7,26,63,()29.-2,-8,0,64,()30.1,32,81,64,25,()31.1,1,2,3,5,()。
32.4,5,(),14,23,3733.6,3,3,(),3,-334.1,2,2,4,8,32,()35。
数学找规律考试题

数学找规律考试题找规律练习题⼀.数字排列规律题1. 4、10、16、22、28……,求第n位数( )。
2. 2、3、5、9,17增幅为1、2、4、8. 第n位数( )3. 观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是----,第n个数是---------。
4. 1,9,25,49,(),(),的第n项为(),5: 2、9、28、65.....:第n位数()6:2、4、8、16...... 第n位数. ()7:2、5、10、17、26……,第n位数. ()8 : 4,16,36,64,?,144,196,…?第⼀百个数()9、观察下⾯两⾏数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每⾏第⼗个数,求得他们的和。
10、⽩⿊⽩⿊⿊⽩⿊⿊⿊⽩⿊⿊⿊⿊⽩⿊⿊⿊⿊⿊排列的珠⼦,前2002个中有⼏个是⿊的?11. =8 =16 =24 ……⽤含有N的代数式表⽰规律()12. 12,20,30,42,( )127,112,97,82,( )3,4,7,12,( ),2813 . 1,2,3,5,( ),1314. 0,1,1,2,4,7,13,( )15 .5,3,2,1,1,( )16. 1,4,9,16,25,( ),4917. 66,83,102,123,( ) ,18. 1,8,27,( ),12519。
3,10,29,( ),12720, 0,1,2,9,( )21; ( )。
则第n项代数式为:()22 , 2/3 1/2 2/5 1/3 ( )。
则第n项代数式为()23 , 1,3,3,9,5,15,7,( )24. 2,6,12,20,( )25. 11,17,23,( ),35。
26. 2,3,10,15,26,( )。
27. : 1,8,27,64,( )28. :0,7,26,63 ,( )29. -2,-8,0,64,( )30. 1,32,81,64,25,( )31. 1,1,2,3,5,( )。
初中数学中考“找规律”专项练习题

初中数学中考“找规律”专项练习题1.按一定观律排列的单项式:a ,–a 2,a 3,–a 4,a 5,–a 6,……,第n 个单项式是( )A .a nB .–a nC .(–1)n+1a n D .(–1) n a n2.如图,在平面直角坐标系中,函数y=x 和y=﹣x 的图象分别为直线l 1,l 2,过点A 1(1,﹣)作x 轴的垂线交11于点A 2,过点A 2作y 轴的垂线交l 2于点A 3,过点A 3作x 轴的垂线交l 1于点A 4,过点A 4作y 轴的垂线交l 2于点A 5,…依次进行下去,则点A 2018的横坐标为 .3.按一定顺序排列的一列数叫做数列,如数列:,,,,, 2011216121则这个数列的前2018个数列的和为_________________. 4.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b )n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b )8的展开式中从左起第四项的系数为( ) A .84B .56C .35D .285.下列图形都是由同样大小的黑色菱形纸片组成,其中第①个图中有3张黑色菱形纸片,第②个图中有5张黑色菱形纸片,第③个图中有7张黑色菱形纸片,..,按此规律排列下去,第⑥个图中黑色菱形纸片的张数为( )A.11B.13C.15D.17 6.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a ,b ,c 的值分别为( )A .a=1,b=6,c=15B .a=6,b=15,c=20C .a=15,b=20,c=15D .c=20,b=15,c=67.如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的A B C D8.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是 .9.已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n =;当n 为大于1的偶数时,S n =﹣S n ﹣1﹣1),按此规律,S 2018= .10.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .1811.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有 个○.12.下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为【 】.A .32B .126C .135D .144第13.观察下列一组数:32,54,76,98,1110,……,它们是按一定规律排列的,那么这一组数的第k个数是14. 填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是.15.已知2+23=22×23,3+38=32×38,4+415=42×415…,若8+ab=82×ab(a,b为正整数),则a+b= .16.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是()17.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A—B—C-D—A一…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【】A.(1,-1) B.(-1,1) C.(-1,-2) D.(1,-2)18.如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m= .19. 图中各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m=(用含n的代数式表示).20. 将连续的正整数按下图规律排列,则位于第7行,第7列的数x是 .21.22.观察等式:331=,932=,2733=,8134=,24335=,72936=,218737=……解答下列问题:202143233333+⋯⋯++++的末尾数字是 .23. 如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为.24.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为.25.如图所示:已知点)(0,0A,),(03B,)(1,0C在ABC∆内依次做等边三角形,使一边在X轴上,另一顶点在BC边上,作出的等边三角形分别是:第1个11BAA∆,第2个221BAB∆,第3个332BAB∆,则第n个等边三角形的边长等于 .。
十道初中数学找规律的题型及解题思路

十道初中数学找规律的题型及解题思路这里有10道初中数学找规律的题目,涵盖了常见的数列、图形等多种类型,希望能帮助学生更好地掌握找规律的技巧:数列找规律1.等差数列:1.1, 4, 7, 10, ... 下一个数是多少?2.100, 97, 94, ... 第10个数是多少?2.等比数列:1.2, 4, 8, 16, ... 第8个数是多少?2.81, 27, 9, ... 第6个数是多少?3.混合数列:1.1, 4, 9, 16, 25, ... 下一个数是多少?(提示:考虑每个数的平方)2.2, 5, 10, 17, ... 下一个数是多少?(提示:观察相邻两数的差)4.周期数列:1.1, 2, 3, 1, 2, 3, ... 第20个数是多少?2.A, B, C, A, B, C, ... 第100个数是多少?图形找规律图形的变化:1.一组图形,每个图形由小方块组成,观察图形的变化规律,画出下一个图形。
图形的旋转:1.一个图形不断旋转,观察旋转的规律,画出旋转后的图形。
图形的翻转:1.一个图形不断翻转,观察翻转的规律,画出翻转后的图形。
数字与图形结合数字与图形对应:1.一组图形,每个图形对应一个数字,找出数字与图形之间的对应关系。
图形中的数字规律:1.一个图形中包含多个数字,找出数字之间的规律。
综合题型1.数字和图形的综合:1.一组图形和数字交替出现,找出数字和图形之间的关系。
解题技巧:•观察:仔细观察数列或图形的变化规律,找出其中的共同点和差异点。
•比较:比较相邻的数或图形,找出它们的递增、递减或其他变化关系。
•联想:将题目与以前学过的知识联系起来,寻找解题思路。
•归纳:根据观察和比较的结果,归纳出一般性的规律。
•验证:将得到的规律代入后面的数或图形中进行验证,确保规律的正确性。
注意事项:•找规律题的答案可能不唯一,只要找到一种合理的规律即可。
•遇到困难时,可以尝试从不同的角度去观察和分析。
找规律练习题及答案

找规律练习题一.数字排列规律题1.4、10、16、22、28……,求第n位数()。
2.2、3、5、9,17增幅为1、2、4、8.第n位数()3.观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是----,第n个数是---------。
4.1,9,25,49,(),(),的第n项为(),5:2、9、28、65.....:第n位数()6:2、4、8、16......第n位数.()7:2、5、10、17、26……,第n位数.()8:4,16,36,64,?,144,196,…?第一百个数()9、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和。
10、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?11.=8=16=24……用含有N的代数式表示规律()12.12,20,30,42,()127,112,97,82,()3,4,7,12,(),2813.1,2,3,5,(),1314.0,1,1,2,4,7,13,()15.5,3,2,1,1,()16.1,4,9,16,25,(),4917.66,83,102,123,(),18.1,8,27,(),12519。
3,10,29,(),12720,0,1,2,9,()21;()。
则第n项代数式为:()22,2/31/22/51/3()。
则第n项代数式为()23,1,3,3,9,5,15,7,()24.2,6,12,20,()25.11,17,23,(),35。
26.2,3,10,15,26,()。
27.:1,8,27,64,()28.:0,7,26,63,()29.-2,-8,0,64,()30.1,32,81,64,25,()31.1,1,2,3,5,()。
32.4,5,(),14,23,3733.6,3,3,(),3,-334.1,2,2,4,8,32,()35。
初中数学找规律专题
中考找规律专题复习1.一组按一定规律排列的式子:-2a ,52a ,-83a ,114a ,…,(a ≠0)则第n 个式子是_▲_(n 为正整数). 2.观察下列等式:221.4135-=⨯; 222.5237-=⨯; 223.6339-=⨯ 224.74311-=⨯;…………则第n (n 是正整数)个等式为________. 3、观察数表1-6151-110A -4-2015653-6-5-4-3-2-11-11111111根据表中数的排列规律,则字母A 所表示的数是 . 4.下面是一个三角形数阵: 1------------------------第1行2 3 ------------------第2行 4 5 6------------------第3行 7 8 9 10------------第4行……根据该数阵的规律,第20行第5个数是 .5.将自然数按以下规律排列,则位于第六行第四十五列的数是 .6.将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数为32,则①n = ▲ ;②第i 行第j 列的数为 ▲ (用i ,j 表示).第1列第2列 第3列…第n 列第1行 123 … n第2行 1+n 2+n 3+n … n 2 第3行 12+n 22+n 32+n … n 3………………7.正整数按下图的规律排列.请写出第20行,第21列的数字 .8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数9.观察图中每一个大三角形中白色三角形的排列规律,则第6个大三角形中白色三角形有 个.10.图10是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.第一个 (第9题) 第二个 …第三个第一行第二行 第三行 第四行第五行 第一列 第二列 第三列 第四列 第五列1 2 5 10 17 … 4 3 6 11 18 … 9 8 7 12 19 … 16 15 14 13 20 … 25 24 23 2221………11.王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n 个“中”字形图案需 根火柴棒.12.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .13.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有 个★.14.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是______________.15.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比(1) (2) (3)…………(第12题) yxOC 1B 2A 2 C 3B 1 A 3B 3A 1C 2图10(1)(2)(3)……上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为 (用含n 的代数式表示).16.a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2009a = .17.点A 1、 A 2、 A 3、 …、 A n (n 为正整数)都在数轴上.点A 1在原点O 的左边,且A 1O=1;点A 2在点A 1的右边,且A 2A 1=2;点A 3在点A 2的左边,且A 3A 2=3;点A 4在点A 3的右边,且A 4A 3=4;……,依照上述规律,点A 2008 、 A 2009所表示的数分别为( ). A.2008、-2009 B.-2008、 2009 C.1004、-1005 D.1004、 -100418、如图,在△ABC 中,∠A =α,∠ABC 的平分线与∠ACD 的平分线交于点A 1 得∠A 1 ,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2 , 得∠A 2 , ……,∠A 2008BC 的平分线与∠A 2008CD 的平分线交于点A 2009 ,得∠A 2009 ,则∠A 2009= 。
初中数学找规律习题大全
1找规律专项训练一:数式问题1.(湛江)已知 22 222,3 3 323,4 4 424,⋯⋯,若 8a82a( a 、 b 为正整数)则 a b33 88 1515bb.2.(贵阳)有一列数 a 1, a 2, a 3,a 4, a 5,⋯, a n ,其中 a 1= 5× 2+ 1, a 2=5× 3+ 2,a 3= 5× 4+ 3, a 4= 5× 5+ 4, a 5= 5× 6+ 5,⋯,当 a n = 2009 时, n 的值等于()A . 2010B .2009C .401D . 3343.(沈阳)有一组单项式:a2,- a 3 , a 4 ,- a 5,⋯.观察它们构成规律,用你发现的规律写出第 10 个单2 34项式为.4.(牡丹江)有一列数1 2 3 47 个数是.2 ,,, ,⋯,那么第510 175.(南充)一组按规律排列的多项式:a b , a 2b 3 , a 3 b 5 , a 4b 7 ,⋯⋯,其中第 10 个式子是 ()A . a 10b 19B . a 10b 19C . a 10b 17D . a 10b 216.(安徽)观察下列等式:1 1 12 22 3 331, 23, 34,⋯⋯2234( 1)猜想并写出第 n 个等式;( 2)证明你写出的等式的正确性.7.(绵阳)将正整数依次按下表规律排成四列,则根据表中的排列规律,数 2009 应排的位置是第行第列.第 1 列第 2 列 第 3 列 第 4 列第 1 行 12 3第 2 行65 4第 3 行 7 8 9 第 4 行 121110⋯⋯8.(台州)将正整数 1,2,3,⋯从小到大按下面规律排列.若第 4 行第 2 列的数为 32,则① n▲ ;②第 i 行第 j 列的数为▲ (用 i , j 表示).第 1列第 2 列第 3 列⋯第 n 列1123⋯n第 行2第 2 行n 1n 2n 3⋯2n第 3 行2n 12n 22n 3⋯3n⋯⋯⋯⋯⋯⋯二:定义运算问题1.(定西)在实数范围内定义运算“”,其法则为: a b a2b2,求方程( 43)x24 的解.2.有一列数,,,,,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a12,a1 a2a3a n 则 a2007为()A. 2007B. 2C.1D. 1 2三:剪纸问题1.(2004年河南)如图( 9),把一个正方形三次对折后沿虚线剪下则得到的图形是()2.(2004年浙江湖州)小强拿了一张正方形的纸如图(10)①,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()3.(2004年浙江衢州)如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,⋯⋯,根据以上操作方法,请你填写下表:3操作次数 N 1 2 3 4 5 ⋯N ⋯正方形的个数47 10⋯⋯3. (莆田) 如图, 在 x 轴的正半轴上依次截取 OA 1 A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 5 ,过点 A 1、A 2、A 3、 A 4、A 5分别作 x 轴的垂线与反比例函数 y2 x 0 的图象相交于点P 1、 P 2、 P 3、 P 4、 P 5 ,得直角三角形xOP 1 A 1、 A 1P 2 A 2、 A 2 P 3 A 3、A 3P 4 A 4、 A 4 P 5 A 5,并设其面积分别为2yxS 、S 、S 、S 、S , .y12345则S 5的值为P 1P 2P 3P 4 P 5O12 A 345xA A A A (第 10 题图)4.(长春)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个 图案多一个正六边形和两个正三角形,则第 n 个图案中正三角形的个数为 (用含 n 的代数式表示) .(第 4题)5.(丹东)如图 6,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第 1004个图案需棋子枚.⋯⋯图案 1图案 2图案 3图 6的三角形都是全等的),请写出第 n 个图中最小的三角形的个数有6.(抚顺)观察下列图形(每幅图中最小....个.第1个图第2个图第3个图第4个图(第 16 题图)7.(哈尔滨)观察下列图形:它们是按一定规律排列的,依照此规律,第16 个图形共有个★.五:对称问题1.(伊春)在平面直角坐标系中,已知 3 个点的坐标分别为 A1 (1,1) 、 A2 (0 ,2) 、 A3 ( 1 ,1). 一只电子蛙位于坐标原点处,第 1 次电子蛙由原点跳到以1A1为对称中心的对称点 P1,第 2 次电子蛙由 P 点跳到以 A2为对称中心的对称点P2,第 3 次电子蛙由 P2点跳到以 A3为对称中心的对称点 P3,⋯,按此规律,电子蛙分别以 A1、 A2、 A3为对称中心继续跳下去.问当电子蛙跳了 2009 次后,电子蛙落点的坐标是P2009( _______,_______ ) .2. ( 2004 年宁波)仔细观察下列图案,如图(12),并按规律在横线上画出合适的图形。
找规律练习题及答案
找规律练习题之迟辟智美创作一.数字排列规律题1. 4、10、16、22、28……,求第n位数( ).2. 2、3、5、9,17增幅为1、2、4、8. 第n位数( )3. 观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是----,第n个数是---------.4. 1,9,25,49,(),(),的第n项为(),5:2、9、28、65.....:第n位数()6:2、4、8、16...... 第n位数.()7:2、5、10、17、26……,第n位数.()8 : 4,16,36,64,?,144,196,…?第一百个数()9、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.10、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?11. =8=16=24……用含有N的代数式暗示规律()12. 12,20,30,42,() 127,112,97,82,( ) 3,4,7,12,( ),2813 . 1,2,3,5,(),1314. 0,1,1,2,4,7,13,( )15 .5,3,2,1,1,( )16. 1,4,9,16,25,( ),4917. 66,83,102,123,( ) ,18. 1,8,27,( ),12519. 3,10,29,( ),12720, 0,1,2,9,()21;().则第n项代数式为:()22 , 2/31/22/51/3( ).则第n项代数式为()23 , 1,3,3,9,5,15,7,( )24. 2,6,12,20,( )25. 11,17,23,( ),35.26. 2,3,10,15,26,( ).27. : 1,8,27,64,( )28. :0,7,26,63 ,( )29. -2,-8,0,64,( )30. 1,32,81,64,25,( )31. 1,1,2,3,5,( ).32. 4,5,( ),14,23,3733. 6,3,3,( ),3,-334.1,2,2,4,8,32,( )35 .2,12,36,80,()36. 3/2, 2/3, 3/4,1/3,3/8 ( )37.观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是几多?38、下面数列后两位应该填上什么数字呢? 23581217____39.请填出下面横线上的数字.112358____ 2140、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪慧的你猜猜第100个数是什么?41、有一串数字 3610 1521 ___ 第6个是什么数?42、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.443、100个数排成一行,其中任意三个相邻数中,中间一个数都即是它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.二.几何图形变动规律题44、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.45、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).46. (2005年年夜连市中考题)在数学活动中,小明为了求的值(结果用n暗示),设计如图a所示的图形.(1)请你利用这个几何图形求的值为.(2)请你利用图b,再设计一个能求的值的几何图形.47.2005年河北省中考题)观察下面的图形(每一个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式.48. 右图是一回形图,其回形通道的宽与OB的长均为1,回形线与射线OA交于点A1,A2,A3,….若从O点到A1点的回形线为第1圈(长为7),从A1点到A2点的回形线为第2圈,……,依此类推.则第10圈的长为.49.瑞士中学教师巴尔末胜利地从光谱数据,,,,……,中获得巴尔末公式,从而翻开了光谱奇妙的年夜门.请你按这种规律写出第七个数据是.50、计算类(2005年陕西省中考题)观察下列等式:,……则第n个等式可以暗示为. 51.(2005年哈尔滨市中考题)观察下列各式:,,,……根据前面的规律,得:.(其中n为正整数)52. (2005年耒阳市中考题)观察下列等式:观察下列等式:4-1=3,9-4=5,16-9=7,25-16=9,36-25=11,……这些等式反映了自然数间的某种规律,设n(n≥1)暗示了自然数,用关于n的等式暗示这个规律为.53、图形类(2005年淄博市中考题)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜想由里向外第10个正方形(实线)四条边上的整点共有个.54、 (2005年宁夏回自治区中考题) “”代表甲种植物,“”代表乙种植物,为美化环境,采纳如图所示方案种植.按此规律,第六个图案中应种植乙种植物株.55.(2005年呼和浩特市中考题)如图,是用积木摆放的一组图案,观察图形并探索:第五个图案中共有块积木,第n个图案中共有块积木.56.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面-层有一个圆圈,以下各层均比上-层多一个圆圈,一共堆了n层.将图1颠倒后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n= .如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串联续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是( );(2)我们自上往下,在每个圆圈中都按图4的方式填上一串联续的整数-23,-22,-21,…,求图4中所有圆圈中各数的绝对值之和( ).57.例如、观察下列数表:根据数列所反映的规律,第行第列交叉点上的数应为______ .58; 要抓题目里的变量例如,用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖块,第个图形中需要黑色瓷砖块(用含的代数式暗示).(海南省2006年初中结业升考试数学科试题(课改区))这一题的关键是求第个图形中需要几块黑色瓷砖?59.云南省2006年课改实验区高中(中专)招生统一考试也出有类似的题目:“观察图(l)至(4)中小圆圈的摆放规律,并按这样的规律继续摆放,记第n个图中小圆圈的个数为m,则,m=(用含n 的代数式暗示).”60.譬如,日照市2005年中等学校招生考试数学试题“已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102;…………由此规律知,第⑤个等式是.”61、要善于寻找事物的循环节有譬如,玉林市2005年中考数学试题:“观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.”62、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第次后可拉出64根细面条.63.小明写作业时失慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部份的整数的和是.–4 –3 –2 -1 0 1 2 4 564.现有黑色三角形“▲”和“△”共200个,依照一定例律排列如下:▲▲△△▲△▲▲△△▲△▲▲……则黑色三角形有个,白色三角形有个.三、数、式计算规律题65、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102;由此规律知,第⑤个等式是.66、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.67. 观察下列算式:,,,,请你在察规律之后并用你获得的规律填空:,第n个式子呢?___________________68. 一张长方形桌子可坐6人,按下列方式讲桌子拼在一起.①2张桌子拼在一起可坐______人.3张桌子拼在一起可坐____人,n 张桌子拼在一起可坐______人.②一家餐厅有40张这样的长方形桌子,依照上图方式每5张桌子拼成1张年夜桌子,则40张桌子可拼成8张年夜桌子,共可坐______人.③若在②中,改成每8张桌子拼成1张年夜桌子,则共可坐_________人.69 观察下列数据,按某种规律在横线上填上适当的数:1,,,,,,…70. 平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n=.71. 观察图1-27中有几个三角形?由此你发现三角形的个数有什么规律呢?一个三角形 3个三角形 ______个三角形 ______个三角形_________个三角形(n个点)归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变动规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步伐是(1)通过对几个特例的分析,寻找规律而且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(2)试猜想:1+3+5+7+…+2005+2007的值?(3)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是几多?2、下面数列后两位应该填上什么数字呢? 23581217____3、请填出下面横线上的数字.112358____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪慧的你猜猜第100个数是什么?5、有一串数字 3610 1521 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都即是它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.二、几何图形变动规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 .2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ?观察下面三个特殊的等式将这三个等式的两边相加,可以获得1×2+2×3+3×4=2054331=⨯⨯⨯ 读完这段资料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n⑶()()=++++⨯⨯+⨯⨯21432321n n n4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ 参考谜底:一、1、(1)1004的平方(2)n+1的平方2、2330.数列中每两个相邻数字间的差分别是1,2,3,4,5,6,7.3、13.这一数列后面一个数是前面相邻两个数的和.4、34 .考虑时,可以从第一个数开始,每3个数加一个括号(1,2,3),(2,3,4),(3,4,5),……一共加了33个括号,剩下的一个必是第100个.每个括号的第一个数分别是1,2,3,……因此第100个数肯定是34.5、28.3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第6个是28.其实一般这类的规律题无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加1或减1.6、A7、33二、 1、602 2、圆三、1、2333331554321=++++2、100003、 ⑴343400 或10210110031⨯⨯⨯⑵()()2131++n n n ⑶()()()32141+++n n n n4、109.。
【找规律——循环数列与数表问题】(教师版)--初中数学《四维三难》
【找规律——循环数列与数表问题】一、课堂目标通过观察猜测发现数或图形的规律,经历规律探究过程,发展观察推理能力、初步体会类比思想.二、知识讲解1. 循环数列思考:观察下列数的特征、写出下列数列的第n项①,,,,,,…,______,…② ,,,,,,, ,…,______,…例题1【解析】【标注】已知一列数,,,…满足,,,,…,依次类推,则,,…,,这个数的积为 .【答案】略.【知识点】数列找规律-具有周期规律的数列练习1A.B.C.D.1.【解析】观察下列各式:,,,,.根据你所发现的规律可知的末位数字为( ).【答案】A【标注】的(为正整数)次方的个位数字依次为,,,,,,每个数字一循环,又,∴的末位数字为,故选.【知识点】数列找规律-具有周期规律的数列A. B. C.D.2.【解析】【标注】如图所示的运算程序中,若开始输入的值为,则第次输出的结果为,第次输出的结果为,,第次输出的结果为( ).输入输出为奇数为偶数【答案】D 当,,当,,当,,当,,当,,当,,当,,当,,依次类推:∵,∴第次结果为.故选.【知识点】程序框图例题2将一列有理数,,,,,,如图所示有序排列,根据图中的排列规律可知,“峰”中峰顶的位置(的位置)是有理数,那么,“峰”中的位置是有理数 ,应排在,,,,中的位置 ,其中两个填空依次为( ).峰峰峰A. B. C. D.【解析】【标注】【答案】B∵每个峰需要个数,∴,,∴“峰”中的位置是.∵,∴排在的位置.【知识点】数列找规律-具有周期规律的数列练习2(1)(2)(1)(2)【解析】如图所示,按下列方法将数轴的正半轴绕 在一个圆(该圆周长为个单位长,且在圆周的三等分点处分别标上了数字、、)上:先让原点与圆周上数字所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上、、、、所对应的点分别与圆周上、、、、所对应的点重合.这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.圆周上的数字与数轴上的数对应,则 .数轴上的一个整数点刚刚绕过圆周圈(为正整数)后,并落在圆周上数字所对应的位置,这个整数是 (用含的代数式表示).【答案】(1)(2)经观察可知.数轴绕在圆圈上会产生下面的对应关系.【标注】是绕圈后对应的数字,是绕圈后对应的数字是绕圈后对应的数字,是绕圈后对应的数字……∴是绕几圈后对应的数字.【知识点】数轴上的规律探究2. 数表问题例题3【解析】【标注】填在下面各正方形中的四个数之间都有一定的规律,按此规律得出 .【答案】由所给规律可知,左上角的数字依次为,,,;右上角的数字依次为,,,,即;左下角的数字为,,,,即;右下角的数字为,,,.故.【知识点】数列找规律-其他数列规律练习3A. B. C. D.下面每个表格中的四个数都是按相同的规律填写的:第个第个第个第个根据此规律确定的值为( ).【答案】C【解析】【标注】∵,∴,∵,∴,∴.【知识点】填数字问题(幻方)例题4【解析】表是从表中截取的一部分,则.表表【答案】∵,∴的位置有一下几种:①第一行第列;②第行,第列;③第行,第列;④第行,第列.因为上边至少有行,故①错误.根据左边至少有一列,故②错误.当是第行,第列时,一定在第行,第列,不满足条件.当是第行,第列,则一定在第行,第列,满足条件,则一定在第行,第列,则.总之,.故答案是:.【标注】【知识点】排列与组合练习4【解析】【标注】观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则 ,= ,.………………………表一表二表三表四【答案】 ; ; 或观察表一,寻找规律发现每一列都是等差数列,第一列公差为,第二列公差为,……,依此类推.表二、表三分别是从表一中选取的一部分,可得表二为表一的第三列公差为则;表三的左列公差为,则右列公差为,故,;观察表一,发现第行第列的数为,设在第行第列,有,得或,故或.【题型】数字找规律例题5【解析】【标注】正整数按如图的规律排列.请写出第行第列的数字 .第一列第二列第三列第四列第五列第一行第二行第三行第四行第五行【答案】观察可得规律:第一行第二列的数:;第二行第三列的数:;第三行第四列的数:;……第行第列的数:故可得第行第列的数为:.【知识点】数列找规律-其他数列规律练习5将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第列第行的数为 ,再根据第行的偶数列的规律,写出第行第列的数为 ,判断所在的位置是第 行,第 列.第列第列第列第列第列第行第行 第行【解析】【标注】第行第行第行【答案】 ; ; ;根据第一列的奇数行的数的规律可知,第一列的奇数行的数为该行数的平方,故第一列第九行的数为.根据第一行的偶数列的数的规律壳子,第一行的偶数列的数为该列数的平方,故第一行第六列的数为,,即第三行第六列的数为,,即第一列第行的数为,,即所在的位置是第行,第列.【知识点】数列找规律-其他数列规律三、出门测1.【解析】【标注】一列数:,,,,,…按照这样的规律,第个数是 第个数是 (是正整数).【答案】 ;,【知识点】数列找规律-其他数列规律2.【解析】已知整数,,,满足下列条件:,,,,以此类推, .【答案】根据题意得,【标注】,,,,∴为奇数时,,为偶数时,,∴.【知识点】算式找规律3.【解析】【标注】最早把自然数和几何图形联系在一起的是毕达哥拉斯,毕达哥拉斯把数描绘成沙滩上的小石子,又按小石子所能排列的形状,把自然数与正三角形,正方形,正五边形等图形联系起来,将数分为三角数,正方形数,五角数等毕达哥拉斯学派还发明了一种“馨折形”的数,填数法如图所示,则“?”处应填 .【答案】.【能力】运算能力【知识点】含乘方的有理数混合运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学找规律题(有答案)“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是 10021- ,第n 个数是 n 12-。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。
我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。
序列号: 1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。
因此,第n 项是2n -1,第100项是2100—1(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n 、3n 有关。
例如:1,9,25,49,(81),(121),的第n 项为( 2)12(-n ),1,2,3,4,5.。
,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。
(三)看例题:A : 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18答案与3有关且是n 的3次幂,即:n 3+1B :2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:n 2(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。
再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列: 0、3、8、15、24……, 序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到第n 个数为12-n 。
再看原数列是同时减2得到的新数列,则在12-n 的基础上加2,得到原数列第n 项12+n(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例 : 4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方,得到新数列第n 项即n 2,原数列是同除以4得到的新数列,所以求出新数列n 的公式后再乘以4即,4 n 2,则求出第一百个数为4*1002=40000(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。
当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
三、基本步骤1、 先看增幅是否相等,如相等,用基本方法(一)解题。
2、 如不相等,综合运用技巧(一)、(二)、(三)找规律3、 如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、 最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······ 2,5,10,17,26,····· 0,6,16,30,48······(1)第一组有什么规律?答:从前面的分析可以看出是位置数的平方减一。
(2)第二、三组分别跟第一组有什么关系?答:第一组是位置数平方减一,那么第二组每项对应减去第一组每项,从中可以看出都等于2,说明第二组的每项都比第一组的每项多2,则第二组第n 项是:位置数平方减1加2,得位置数平方加1即12+n 。
第三组可以看出正好是第一组每项数的2倍,则第三组第n 项是:()122-⨯n(3)取每组的第7个数,求这三个数的和?答:用上述三组数的第n 项公式可以求出,第一组第七个数是7的平方减一得48,第二组第七个数是7的平方加一得50,第三组第七个数是2乘以括号7的平方减一得96,48+50+96=1942、观察下面两行数2,4,8,16,32,64, ...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和。
(要求写出最后的计算结果和详细解题过程。
)解:第一组可以看出是2n ,第二组可以看出是第一组的每项都加3,即2n +3, 则第一组第十个数是210=1024,第二组第十个数是210+3得1027,两项相加得2051。
3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002个中有几个是黑的?解:从数列中可以看出规律即:1,1,1,2,1,3,1,4,1,5,…….,每二项中后项减前项为0,1,2,3,4,5……,正好是等差数列,并且数列中偶项位置全部为黑色珠子,因此得出2002除以2得1001,即前2002个中有1001个是黑色的。
4、2213-=8 2235-=16 2257-=24 ……用含有N 的代数式表示规律 解:被减数是不包含1的奇数的平方,减数是包括1的奇数的平方,差是8的倍数,奇数项第n 个项为2n-1,而被减数正是比减数多2,则被减数为2n-1+2,得2n+1,则用含有n 的代数式表示为:()()221212--+n n =8n 。
写出两个连续自然数的平方差为888的等式解:通过上述代数式得出,平方差为888即8n=8X111,得出n=111,代入公式: (222+1)2-(222-1)2=888五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差六、数字推理基本类型按数字之间的关系,可将数字推理题分为以下几种类型:1.和差关系。
又分为等差、移动求和或差两种。
(1)等差关系。
12,20,30,42,( 56 )127,112,97,82,( 67 )3,4,7,12,( 19 ),28(2)移动求和或差。
从第三项起,每一项都是前两项之和或差。
1,2,3,5,( 8 ),13A.9B.11C.8D.7选C。
1 +2=3,2+ 3=5,3+ 5=8,5+ 8=130,1,1,2,4,7,13,( 24)A.22B.23C.24D.25选C。
注意此题为前三项之和等于下一项。
一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。
5,3,2,1,1,(0 )A.-3B.-2C.0D.2选C。
前两项相减得到第三项。
2.乘除关系。
又分为等比、移动求积或商两种(1)等比,从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。
8,12,18,27,(40.5)后项与前项之比为1.5。
6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3(2)移动求积或商关系。
从第三项起,每一项都是前两项之积或商。
2,5,10,50,(500)100,50,2,25,(2/25)3,4,6,12,36,(216) 从第三项起,第三项为前两项之积除以21,7,8,57,(457)第三项为前两项之积加 13.平方关系1,4,9,16,25,(36),49 为位置数的平方。
66,83,102,123,(146) ,看数很大,其实是不难的,66可以看作64+2,83可以看作81+2,102可以看作100+2,123可以看作121+2,以此类推,可以看出是8,9,10,11,12的平方加24.立方关系1,8,27,(81),125 位置数的立方。
3,10,29,(83),127 位置数的立方加 20,1,2,9,(730) 后项为前项的立方加15.分数数列。
关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案21 34 49 516 625 (736)分子为等比即位置数的平方,分母为等差数列,则第n 项代数式为:21+n n 2/3 1/2 2/5 1/3 (1/4) 将1/2化为2/4,1/3化为2/6,可得到如下数列:2/3, 2/4, 2/5, 2/6, 2/7, 2/8 …….可知下一个为2/9,如果求第n 项代数式即:22+n ,分解后得:21+-n n 6.、质数数列2,3,5,(7),11 质数数列4,6,10,14,22,(26) 每项除以2得到质数数列20,22,25,30,37,(48) 后项与前项相减得质数数列。
7.、双重数列。
又分为三种:(1)每两项为一组,如1,3,3,9,5,15,7,(21) 第一与第二,第三与第四等每两项后项与前项之比为32,5,7,10,9,12,10,(13)每两项中后项减前项之差为31/7,14,1/21,42,1/36,72,1/52,(104 ) 两项为一组,每组的后项等于前项倒数*2(2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。