七年级上册数学第六章
人教版七年级数学上册 第六章 几何图形初步(单元解读) PPT

课标解读
5.逐步认识几何图形是有效描述现实世界的重要工具,初步应用图形与几 何的知识解释生活中的现象以及解决简单的实际问题,培养学生对学习图 形和几何的兴趣,通过与其他同学的交流活动,初步形成积极参与数学活 动、主动与他人合作交流的意识.
教材内容
---地位与作用
本章是初中阶段“图形与几何”领域的起始章,介绍图形与几何的一些最基 本的概念和图形.如几何图形、立体图形、平面图形、体、面、线、点等, 要在本章中从现实具体事物中抽象、归纳出来,直线、线段、射线、角及有 关的概念在本章中得到详细的介绍,并被广泛应用于后续的教学中.
编写意图
(一)重视学生的动手操作和参与,让他们在观察、操作、想象、交流等活 动中认识图形,发展空间观念. 通过这些“探究点”,鼓励学生勤思考、勤动手、多交流.其中,动手操 作是学习开始阶段重要的一环,它可以帮助学生认识图形,丰富直观,验 证学生的空间想象.开始阶段,应鼓励学生先动手、后思考,逐步过渡到 先思考、后动手验证.
ቤተ መጻሕፍቲ ባይዱ
教学建议
(三)注重概念间的联系,在对比中加深理解 (2)研究线段的和、差、中点与研究角的和、差、角平分线,其内容方法都 很相似,从定义、数量关系、表示方法、计算中的应用,教学时都可以将 它们进行类比.
教学建议
(四)重视现代信息技术的应用 利用信息技术可以展现丰富多彩的图形世界,丰富学习资源,有助于学生 从中抽象出几何图形;图形的动态演示可以帮助学生认识立体图形与平面 图形的关系,建立空间概念;还可以帮助学生在变化的图形中,寻找不变 的位置关系和数量关系,从而发 现图形的性质.
教学建议
(一)注意与小学知识内容的衔接 了解学生现有的对图形的认知水平,教学中,引导学生站在较高的层面来 看待几何图形,并对学生原有的知识和正在学习的内容做一个信息的整合, 避免不适当的重复.
初中数学七年级上册各章介绍 第六章 数据与图表 浙教版

初中数学七年级上册各章介绍(浙教版)第六章数据与图表本章主要内容是数据的收集与整理的基本步骤与方法,调查表、统计表的结构与设计,条形统计图、折线统计图和扇形统计图的概念、绘制方法和应用,学会选择合适的统计图直观有效地表示数据。
了解利用计算机软件绘制统计图的基本步骤。
参与从现实生活的各个方面去获取数据,并对所获得的数据进行整理和分析。
本章是小学统计内容的延续和深化,也是初中学习统计与概率的起点。
本章中关于统计的数学思想对进一步学习有重要的作用。
任何统计活动都离不开数据的收集和整理。
在小学阶段已经掌握条形统计图和折线统计图的画法,所以本章的教学重点是使用适当的方法(计数、测量、实验等)收集数据,经历数据的收集、整理、描述和分析的过程,认识扇形统计图,根据需要选择合适的统计图直观有效地表示数据。
数据的收集与整理,运用统计图分析社会生活与科学领域的实际问题都需要较强的运用知识的能力和必需的生活经验,是本章的难点。
本章教学时间约需8课时,具体安排如下:6.1 数据的收集与整理 1课时6.2 统计表 1课时6.3 条形统计图和折线统计图 1课时6.4 扇形统计图 1课时课题学习 1课时复习、评估2课时,机动使用1课时,合计8课时。
一、教科书内容和课程教学目标(1)本章知识结构框图如下:直接途径:数数、观察、测量、实验并记录等生活中的数据收集数据整理(分类、排制作数据统计表序、分组、编码等)间接途径:查询、查阅文件、报刊、上网及计算等制作统计图(2)本章教学目标如下:(3)本章教学要求①了解收集数据的基本要求和步骤,掌握数据的分类、排序、分组、编码等整理方法,参与数据的收集、整理和分析的实践活动。
②了解统计表的基本结构,能根据实际问题设计调查表和统计表。
③通过实例进一步理解条形统计图、折线统计图和扇形统计图的各自特点和作用,会根据需要选择合理的统计图,直观有效地表示数据。
体会统计图在现实生活中的应用。
④能从各种媒体中,有意识地去获得一些数据信息,并能根据统计图表分析数据。
第六章+几何图形初步-综合与实践+-2025学年数学人教版七年级上册

2.图4是比例尺为1: 200的铅球场地的示意图,铅
球投掷圈的直径为2.135 m.体育课上,小亮推出的
铅球落在投掷区的点A处,则他的铅球成绩约为
_6_._1_m.(精确到0.1 m)
图4
提示:从题图可测量得点A到圆心的距离是
3.6
cm.
3.6
÷
1 200
=
720(cm)
=
7.2
m.因为投掷圈的直径为2.135
m,所
以他的铅球成绩约为7.2 − 2.135 ÷ 2 ≈ 6.1(m).
14
解:铺人工草皮的费用= 100 × (162 × 3.1 + 50 × 2 × 16) = 239 360(元).
答:学校一共需付铺设费用为239 360元.
11
探究二 田赛项目场地的设计
田赛项目场地上有很多几何图形,例如,跳高立柱、横杆和地面组 成长方形,铅球场地的投掷圈是圆形,跳远的沙坑是长方形,等等.画 田赛项目场地的示意图,需要同学们认真观察,识别田赛项目场地是由 哪些几何图形组成的,再通过查阅资料或询问体育老师等各种渠道获取 这些场地设施的尺寸,最后选择适当的比例尺画出场地的示意图.
相同,它应该设在什么位置? 思路点拨(1)由田径运动场的周长公式求出跑道的长度,注意第n条跑道
的半径与第1条跑道半径的关系.(2)代入d,r,n的值可求出每条跑道的
具体长度. (3)由于终点相同,外围跑道的周长比内围的长,因此分别算
出第2,3,4条跑道和第1条跑道的周长差,就可以得
到其相对第1条跑道的位置.(4)因为200,400,800
都可以被200整除,所以200 m ,400 m,800 m跑步
比赛的起跑位置相同.
七年级-人教版(2024新版)-数学-上册-[教学设计]初中数学-七年级上册-第六章--章末复习
![七年级-人教版(2024新版)-数学-上册-[教学设计]初中数学-七年级上册-第六章--章末复习](https://img.taocdn.com/s3/m/c676c75d0640be1e650e52ea551810a6f524c886.png)
章末复习教学目标1.复习立体图形与平面图形,直线、射线、线段,以及角的相关知识.2.通过复习本章知识绘制出知识结构图.教学重点应用直线、射线、线段的相关知识,借助数学语言的转化解决有关问题.教学难点体会从实际背景中抽象出数学问题,应用相关知识解决问题.教学过程复习导入请你带着下面的问题,进入本课的复习吧!1.下面是本章学到的一些数学名词,你能简短地描述这些数学名词吗?你能画出图形来表示它们吗?立体图形平面图形展开图两点的距离余角补角2.你能举出几个立体图形和平面图形的实例吗?3.找几个简单的立体图形,分别画出它们的展开图和从不同方向观察到的平面图形.你能由此说说立体图形与平面图形的联系吗?4.在本章中,关于直线和线段有哪些重要结论?5.本章学习了有关角的哪些知识?有哪些重要结论?【设计意图】以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望.要点复习考点一从不同方向观察立体图形【例1】从正三棱锥上面看到的平面图形是________.(填“A”或“B”)【答案】A【解析】从上面能看到正三棱锥的顶点及与顶点相连的三条棱.【归纳】(1)从前面观察物体看到的平面图形体现物体的长和高,从上面观察物体看到的平面图形体现物体的长和宽,从左面观察物体看到的平面图形体现物体的宽和高.(2)画从不同方向观察立体图形得到的平面图形时,看得见的部分用实线,看不见的部分用虚线.【跟踪训练1】如图是由几个小正方体搭成的几何体的从上面看到的平面图,小正方形中的数字表示在该位置小正方体的个数,画出从前面和左面看到的平面图形.【分析】根据图中的数字,可知从前面看有3列,从左到右的个数分别是1,2,1;从左面看有2列,个数都是2.【答案】解:从前面看从左面看【归纳】根据从上面看到的标数字的形状图确定从前面和左面看到的形状图,只需比较对应各行、各列数字的大小即可,一般按如下技巧进行:(1)从前面看到的形状图由各列的最大数字确定;(2)从左面看到的形状图由各行的最大数字确定;(3)最后将数字转化为正方形的个数,画出形状图.【设计意图】通过例1及跟踪训练1,考查学生对从不同方向观察立体图形这类问题的掌握情况.考点二立体图形的展开图【例2】在下列图形中(每个小四边形皆为相同的正方形),可以是一个正方体展开图的是().A.B.C.D.【答案】C【归纳】正方体的展开图可按如下口诀记忆:中间四个面,上、下各一面;中间三个面,一、二隔“河”见;中间两个面,“楼梯”就出现;中间没有面,三、三连一线.【跟踪训练2】根据下列立体图形的平面展开图,填写立体图形的名称.(1)_______,(2)_______,(3)________.【答案】长方体三棱柱三棱锥【归纳】根据展开图判断立体图形形状的规律(1)展开图全是长方形或正方形时,要考虑长方体和正方体;(2)展开图中有三角形时,要考虑三棱柱或棱锥;(3)展开图中有长方形(或正方形)和圆时,要考虑圆柱;(4)展开图中有扇形时,要考虑圆锥.【设计意图】通过例2及跟踪训练2,让学生掌握立体图形和平面图形之间的相互转化,并能够解决立体图形的展开图这类问题.考点三直线、线段的基本事实【例3】A,B两地间修建曲路与修建直路相比,虽然有利于游人更好地观赏风光,但增加了路程.其中蕴含的数学道理是().A.经过一点可以作无数条直线B.经过两点有且只有一条直线C.两点之间,有若干种连接方式D.两点之间,线段最短【答案】D【解析】两地间修建曲路与修建直路相比,增加了路程,其中蕴含的数学道理是:两点之间,线段最短.【跟踪训练3】经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是_____________________.【答案】两点确定一条直线【解析】经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是:两点确定一条直线.【归纳】直线、线段的性质在日常生活中有很多应用,我们要善于抓住问题的实质.【设计意图】通过例3及跟踪训练3,让学生体会数学知识在生活中的应用价值.考点四线段的有关计算【例4】两根木条,一根长20 cm,另一根长24 cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为().A.2 cm B.4 cmC.2 cm或22 cm D.4 cm或44 cm【答案】C【解析】设较长的木条为AB=24 cm,较短的木条为BC=20 cm,点M,N分别为线段AB,BC的中点,则BM=12 cm,BN=10 cm.(1)如图①,点C不在线段AB上时,MN=BM+BN=12+10=22(cm);(2)如图②,点C在线段AB上时,MN=BM-BN=12-10=2(cm).综上所述,两根木条的中点之间的距离是2 cm或22 cm.【归纳】(1)遇到有关线段的计算问题,应认真分析图形及已知条件,找出已知与未知之间的关系,运用线段和、差、倍、分的意义及线段的中点的性质解题.(2)在题目没有给出图示的情况下,注意必要时分类讨论,在各种情况下分别求解后,得到题目的最终答案.【设计意图】通过例4的讲解学习,锻炼学生的思维严谨性,培养分类讨论的习惯.考点五角的有关计算【例5】如图,∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=().A.15°B.45°C.15°或30°D.15°或45°【答案】D【解析】因为∠AOB=60°,射线OC平分∠AOB,所以∠AOC=∠BOC=12∠AOB=30°.以OC为一边作∠COP=15°,分两种情况讨论:(1)如图①,当OP在∠BOC内部时,∠BOP=∠BOC-∠COP=30°-15°=15°;(2)如图②,当OP在∠AOC内部时,∠BOP=∠BOC+∠COP=30°+15°=45°.综上所述,∠BOP=15°或45°.【归纳】解与角有关的计算题的依据是平角、直角的度数及角的平分线的性质,熟练掌握角的平分线的性质是求解的关键;当题目中的条件在图形中没有明确给出时,要注意是否需要进行分类讨论.【设计意图】通过例5的讲解学习,让学生学会运用分类讨论思想解决有关角的平分线的问题.考点六余角和补角【例6】已知∠A和∠B互为补角,并且∠B的一半比∠A小30°,求∠A,∠B.【答案】解:设∠A=x°,则∠B=180°-x°.根据题意,得∠B=2(∠A-30°),得180-x=2(x-30),解得x=80.所以,∠A=80°,∠B=100°.【归纳】余角、补角的相关计算往往利用方程思想,即设一个角的度数为α,则它的余角和补角的度数分别为90°-α,180°-α,再根据题目所给的条件列方程求解.【跟踪训练4】一只蚂蚁从O点出发,沿东北方向爬行2.5 cm,碰到障碍物B后,折向北偏西60°方向爬行3 cm到C点.(1)画出蚂蚁的爬行路线;(2)求出∠OBC的度数.【答案】解:(1)如图所示;(2)∠OBC=45°+30°=75°.【归纳】解答与表示方向的角有关的问题,需要从图形的角度入手,解题的关键是找准中心,正确画出表示方向的角.【设计意图】通过例6及跟踪训练4,让学生掌握应用方程思想解决角的问题,以及应用方位角的相关知识解决实际问题.课堂小结板书设计一、从不同方向观察立体图形二、立体图形的展开图三、直线、线段的基本事实四、线段的有关计算五、角的有关计算六、余角和补角课后任务完成教材第185页复习题6第1~7题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。
第六章 数据的收集与整理课后作业+2024-2025学年北师大版数学七年级上册

第六章数据的收集与整理1.对若干名青少年进行“你最喜爱的运动项目”的问卷调查,得到如下不完整的扇形统计图图①及条形统计图图②(柱的高度从高到低排列).条形统计图不小心被撕掉了一块,则图②的“()”中应填的运动项目是()A.足球B.游泳C.骑自行车D.篮球2.某单位有10 000名职工,想通过验血的方式筛查出某种病毒的携带者,如果对每个人的血样逐一化验,需要化验10 000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验.如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一个人呈阳性,就需要对这组的每个人再分别化验一次.假设携带该病毒的人数占0.03%.回答下列问题:(1)按照这种化验方法能减少化验次数.(填“能”或“不能”);(2)按照这种化验方法至多需要 2 015次化验,就能筛查出这10 000名职工中该种病毒的携带者.3.(2024·通辽)为迎接2024年5月26日的科尔沁马拉松赛事,某中学七年级提前开展了一次“马拉松”历史知识测试.七年级600名学生全部参加本次测试,调查研究小组随机抽取50名学生的测试成绩(百分制)作为一个样本.【收集数据】调查研究小组收集到50名学生的测试成绩:6061629473738585877263647066746567757671949384917682838392848080829291867786887270719390819074788175【整理、描述数据】通过整理数据,得到以下尚不完整的频数分布表、频数直方图和扇形统计图:组别成绩分组频数A 60≤x<70 aB 70≤x<80 16C 80≤x<90 16D 90≤x≤100 b(1)频数分布表中a=8,b=10,并补全频数直方图;(2)扇形统计图中m=20,D所对应的扇形的圆心角度数是72°.【应用数据】(3)若成绩不低于90分为优秀,请你估计参加这次知识测试的七年级学生中,成绩为优秀的人数.。
2024版人教版数学七年级上册第六章几何图形初步6.3.1 角的概念 教学课件ppt

当堂训练
6.垃圾打捞船 A 和 B 都停驻在湖边观测湖面,从 A 船发现 它的北偏东60°方向有白色漂浮物, 同时,从 B 船也发 现该白色漂浮物在它的北偏西30°方向. (1) 试在图中确定白色漂浮物C的位置;
北 60°
C
北
30°
A
B
当堂训练
(2) 点 C 在点 A 的北偏东60°的方向上,那么点 A在
大
方
西 C
O
45°45°
A东 位
F
G B
南
正东:射线 OA 正南:射线 OB 正西:射线 OC 正北:射线 OD 西北方向:射线 OE 西南方向:射线 OF
东北方向:射线 OH 东南方向:射线 OG
探究新知
说一说 如图,说出下列方位.
(1) 射线 OA 表示的方向为北__偏__东___4_0_°.
角的度量
度、分、秒
1°=60′,1′=60″
课堂小结
方位角
北 西北
45° 45°
西
45°45°
西南 南
东北 八 大 方
东位
东南
点 C 的___D___方向上.
北
A. 南偏东30° B. 南偏西30° C. 南偏东60° D. 南偏西60°
北 60°
A
C 60°
北 30°
B
课堂小结
角的定义
有公共端点的两条射线组成的图形 一条射线绕着它的端点旋转而形成的图形
角的表示 方法
用三个大写字母或一个大写字母表示 用一个数字加弧线表示 用一个小写希腊字母加弧线表示
●
远望一号
●
远望二号
巩固练习
●
60°
●
北师大版七年级上册数学 第六章 综合与实践 关注人口老龄化 课件(共33张PPT)
感
强自己的胆识,深入了解了老人们的
想
内心。通过老人的口中他们的儿女对 他们的关心程度也让我们更加关心自
己家里的老人,让他们每天过得开心。
敬请指正!
课题:关注人口老龄化
主题:《调查中问谁?》
第一阶段:选题指导,确定主题 第二阶段:制定调查方案,明确成员分工 第三阶段:展开调查,收集相关数据 第四阶段:小组内自行整理和分析数据,形成初步结论 第五阶段:班内交流讨论,完善方案和调查. 第六阶段:完成调查报告
大家感兴趣的主题:
关注热点话题: 林恩圻组:人们对“二胎政策”的看法 关注老年人心理类: 赵予康组:老年人心理状况 宋艺迪组:老人常见的心理问题及解决方法 蒋璐羽组:关照度不够,对老年人的情绪影响 关注老年人的社会保障类: 郑肖阳组:老人对社会保障的满意程度 顾宇航组:人口老龄化之养老金够用吗? 黄榆茜组:人口老龄化之养老方式情况
方法二:
将600人按一定的顺序排列(如按姓氏),进行等距分 组,如分10组,每组600÷10=60人,从每组中随机产 生6人,共产生6*10=60人,对这60人进行调查
在统计学上,这种抽样方式叫等距抽样(或系统抽样)
在统计学上,抽样的方法很多 感兴趣可以下来 作进一步了解
延伸阅读:教材162页 1936年美国总统选举 调查预测失败之谜
活动主题:调查中问谁?
影响调查结果准确性的重要因素:抽样的设计 抽样是要注意样本的代表性和广泛性,且要有一定的容量
老师的感想:
这次同学们走进了生活,通过老龄化的话题体验了调查活动,全面 感受了收集数据的过程,初步经历了整理和分析数据,通过数据同 学们了解不少社会现状,感触及收获剖多,但数据收集的方案需要 优化
1、访问
收
人教版七年级数学上册第六章达标测试卷含答案
人教版七年级数学上册第六章达标测试卷七年级数学上(R版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.下列图形中,与其他三个不同类的是()A BC D2.[2023郴州]下列几何体中,从三个方向看到的图形完全一样的是()A BC D3.当我们在教室中排课桌时,有时在最前和最后的课桌旁拉一根长绳,沿着长绳排列能使课桌排的更整齐,这样做的数学道理是()A.两点之间,线段最短B.垂线段最短C.点动成线D.两点确定一条直线4.[教材P159习题T8变式2024长春期末]学校组织学生参观一汽红旗汽车生产线,感受一汽人创业、守业、拓业的红旗精神.某同学在活动结束后,将“执着的扛旗人”六个汉字分别写在一个正方体的表面上,如图是它的一种展开图,则在原正方体中,与“旗”字所在面相对的面上的汉字为()(第4题)A.执B.着C.的D.扛5.如图,点C是线段AB的中点,AB=6 cm.如果点D是线段AB上一点,且BD=1 cm,那么CD的长为()(第5题)A.1 cm B.2 cm C.3 cm D.4 cm 6.[2024吕梁一模]如图,OC在∠AOB外部,OM,ON分别是∠AOC,∠BOC的平分线.已知∠AOB=110°,∠BOC=60°,则∠MON的度数为()(第6题)A.50°B.75°C.60°D.55°7.[教材P71例1变式新情境生活应用]嘉淇乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间的距离是1 km(最小圆的半径是1 km),下列关于小艇A,B的位置描述,正确的是()A.小艇A在游船的北偏东60°方向上,且与游船的距离是3 kmB.游船在小艇A的南偏西60°方向上,且与小艇A的距离是3 kmC.小艇B在游船的北偏西30°方向上,且与游船的距离是2 kmD.游船在小艇B的南偏东60°方向上,且与小艇B的距离是2 km8.[教材P179习题T11变式]将一副直角三角尺按如图所示的不同方式摆放,则图中锐角∠α与∠β相等的是()A BC D9.[新考法折叠法法2024驻马店期末]如图,已知∠AOB=130°,以点O为顶点作直角∠COB,以点O为端点作一条射线OD.通过折叠的方法,使OD与OC重合,然后展开,OB落在OB'处,OE为折痕,若∠COE=15°,则∠AOB'=()(第9题)A.30°B.25°C.20°D.15°10.[ 2024长春双阳区期末]如图,已知O为直线AB上一点,将直角三角板的直角顶点放在点O处,若OC是∠MOB的平分线,则下列结论正确的是()(第10题)A.∠AOM=3∠NOC B.∠AOM=2∠NOCC.2∠AOM=3∠NOC D.3∠AOM=5∠NOC二、填空题(每题4分,共24分)11.国扇文化有着深厚的文化底蕴,历来中国有“制扇王国”之称.打开折扇时,随着扇骨的移动形成一个扇面,如图,这种现象可以用数学原理解释为.(第11题)12.已知∠1=4°18',∠2=4.4°,则∠1∠2.(填“>”“<”或“=”) 13.如图,∠AOC=90°,点B,O,D在同一直线上,若∠1=26°,则∠2的度数为.(第13题)14.[教材P172练习T1变式]下午3:40时,时钟上分针与时针的夹角是度.15.[新考法分类讨论法]已知线段AB=30 cm,点P沿线段AB自点A向点B以2 cm/s的速度运动,同时点Q沿线段BA自点B向点A以3 cm/s的速度运动,则s后,P,Q两点相距10 cm.16.[新考法分类讨论法2024南阳期中]如图,已知∠AOB=90°,射线OC绕点O从OA 位置开始,以每秒3°的速度顺时针旋转,同时,射线OD绕点O从OB位置开始,以每秒1°的速度逆时针旋转,并且当OC与OA成180°角时,OC与OD同时停止旋转.在旋转的过程中,秒后,OC与OD的夹角是30°.(第16题)三、解答题(共66分)17.(8分)[教材P166练习T1变式]如图,在同一平面内有四个点A,B,C,D,请按要求完成下列问题(不要求写出画法).(1)作射线AC;(2)作直线BD与射线AC相交于点O;(3)分别连接AB,AD;(4)我们容易判断出线段AB+AD与BD的大小关系是,理由是.18.(10分) [新考法折叠法2024泉州泉港区期末]下图是一个正方体的表面展开图,已知在原正方体中,相对面上的数的和为8,求-2xy+z的值.AB 19.(10分)[2023嘉兴模拟]已知点B在线段AC上,点D在线段AB上,如图,若BD=14 CD,E为线段AB的中点,EC=12 cm,求线段AC的长度.=1320.(12分) [新考法分类讨论法]已知点A在数轴上对应的数为a,点B对应的数为b,A,B之间的距离记作AB,且|a+4|+(b-10)2=0.(1)求线段AB的长;(2)设点P在数轴上对应的数为x,当PA+PB=20时,求x的值.21.(12分) [新视角规律探究题]欧拉公式讲述的是多面体的顶点数(V)、面数(F)、棱数(E)之间存在的等量关系.(1)如图,通过观察图中几何体,完成下列表格:多面体顶点数(V) 面数(F) 棱数(E)四面体 4 4五面体 5 8六面体8 6(2)通过对如图所示的多面体的归纳,请你补全欧拉公式:V+F-E=.【实际应用】(3)足球一般由32块黑白皮子缝合而成,且黑色的是正五边形,白色的是正六边形.如果我们近似地把足球看成一个多面体.你能利用欧拉公式计算出正五边形和正六边形各有多少块吗?请写出你的解答过程.22.(14分)[新趋势学科内综合]如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC∶∠BOC=1∶2,∠MON的一边OM在射线OB上,另一边ON在直线AB的下方,且∠MON=90°.(1)如图,求∠CON的度数;(2)将图中的∠MON绕点O以每秒6°的速度逆时针旋转一周,在旋转的过程中,若直线ON 恰好平分锐角∠AOC,求∠MON的运动时间t;(3)在(2)的条件下,当∠AOC与∠NOC互余时,请直接写出∠BOC与∠MOC之间的数量关系.参考答案一、1. C2. D3. D4. B5. B6. D7. D8. B9. C10. B点拨:因为∠MON=90°,所以∠BON=90°-∠AOM.因为OC是∠MOB的平分线,所以∠MOB=2∠BOC.所以∠AOM=180°-∠MOB=180°-2∠BOC=180°-2∠BON-2∠NOC=180°-2(90°-∠AOM)-2∠NOC=2∠AOM-2∠NOC.所以∠AOM=2∠NOC.二、11.线动成面12.<13.116°14.130点拨:因为时针每小时走30°,分针每分钟走6°,所以下午3:40时,分针与×30°)=130°.时针的夹角为40×6°-(3×30°+406015.4或8点拨:设x s后,P,Q两点相距10 cm.由题意得2x+3x+10=30或2x+3x-10=30,解得x=4或x=8.所以4 s或8 s后,P,Q两点相距10 cm.16.15或30点拨:设t秒后,OC与OD的夹角是30°,则∠AOC=3t°,∠BOD=t°.①如图①,因为∠AOB=90°,所以∠AOC+∠COD+∠BOD=90°,即3t°+30°+t°=90°,解得t=15.②如图②,因为∠AOB=90°,所以∠AOC-∠COD+∠BOD=90°,即3t°-30°+t°=90°,解得t=30.综上可知,15秒或30秒后,OC与OD的夹角是30°.三、17.解:(1)(2)(3)如图所示.(4)AB+AD>BD;两点之间,线段最短18.解:将这个展开图折成正方体,则“5”与“y”是相对面,“x”与“2”是相对面,”与“-1”是相对面.“z3因为相对面上的数的和为8,所以5+y=8,x+2=8,z-1=8.3所以x =6,y =3,z =27.所以-2xy +z =-2×6×3+27=-9. 19.解:设BD =x cm .因为BD =14AB =13CD ,所以AB =4BD =4x cm ,CD =3BD =3x cm . 又因为DC =DB +BC ,所以BC =3x -x =2x (cm ). 又因为AC =AB +BC ,所以AC =4x +2x =6x (cm ). 因为E 为线段AB 的中点, 所以BE =12AB =12×4x =2x (cm ).又因为EC =BE +BC ,所以EC =2x +2x =4x (cm ). 又因为EC =12 cm ,所以4x =12,解得x =3. 所以AC =6×3=18(cm ).20.解:(1)因为|a +4|+(b -10)2=0,所以a +4=0,b -10=0,解得a =-4,b =10. 所以AB =10-(-4)=14.(2)如图①,当P 在点A 左侧时,PA +PB =(-4-x )+(10-x )=20,即-2x +6=20,解得x =-7;如图②,当点P 在点B 右侧时,PA +PB =(x +4)+(x -10)=20,即2x -6=20,解得x =13;如图③,当点P 在点A 与点B 之间时,PA +PB =(x +4)+(10-x )=20,不存在这样的x 值,舍去.综上所述,x 的值是-7或13.21.解:(1)6;5;12(2)2(3)设正五边形有x 块,则正六边形有(32-x )块,由题意得F =32,E =5x+6(32-x )2=-12x +96,所以V =E ÷3×2=-13x +64. 根据欧拉公式V +F -E =2, 得-13x +64+32-(-12x +96)=2,解得x=12,则32-x=20.所以正五边形有12块,正六边形有20块.22.解:(1)因为∠AOC∶∠BOC=1∶2,∠AOC+∠BOC=180°,×180°=60°.所以∠AOC=13因为∠MON=90°,所以∠AON=90°,所以∠CON=∠AOC+∠AON=60°+90°=150°.(2)若直线ON恰好平分锐角∠AOC,则分两种情况:①如图a,易知ON沿逆时针旋转的度数为60°,所以t=60°÷6°=10(s).②如图b,易知ON沿逆时针旋转的度数为90°+150°=240°,=40(s).所以t=240°6°综上所述,∠MON的运动时间t为40 s或10 s.(3)∠BOC+∠MOC=180°或∠BOC=∠MOC.。
七年级初一数学数学第六章 实数试题含答案
七年级初一数学数学第六章 实数试题含答案一、选择题1.设n 为正整数,且20191n n <<+,则n 的值为( )A .42B .43C .44D .452.已知253.6=15.906,25.36=5.036,那么253600的值为( )A .159.06B .50.36C .1590.6D .503.6 3.在有理数中,一个数的立方等于这个数本身,这种数的个数为( ) A .1B .2C .3D .44.计算:122019(1)(1)(1)-+-++-的值是( )A .1-B .1C .2019D .2019-5.下列结论正确的是( ) A .无限小数都是无理数 B .无理数都是无限小数 C .带根号的数都是无理数 D .实数包括正实数、负实数6.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2019次后,则数2019对应的点为( )A .点AB .点BC .点CD .这题我真的不会7.下列各组数中,互为相反数的是( ) A .2-与12-B .|2-2C 2(2)-38-D 38-38-8.下列各式正确的是( ) A 164=±B 1116493= C 164-=- D 164=9.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .1010.下列各式中,正确的是( ) A 4±2B 42=C 2(2)2-=-D 3644-=-二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 12.观察下列各式: (1)123415⨯⨯⨯+=; (2)2345111⨯⨯⨯+=; (3)3456119⨯⨯⨯+=;根据上述规律,若121314151a ⨯⨯⨯+=,则a =_____. 13.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____. 14.写出一个大于3且小于4的无理数:___________. 15.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.16.已知31.35 1.105≈,3135 5.130≈,则30.000135-≈________.17.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.18.将2π,933-272这三个数按从小到大的顺序用“<”连接________. 19.若x <0323x x ____________.20.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.三、解答题21.观察下列各式﹣1×12=﹣1+12﹣1123⨯=﹣11+23﹣1134⨯=﹣11+34(1)根据以上规律可得:﹣1145⨯= ;11-1n n += (n ≥1的正整数). (2)用以上规律计算:(﹣1×12)+(﹣1123⨯)+(﹣1134⨯)+…+(﹣1120152016⨯).22.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = .(2)直接写出下列各式的计算结果: ①1111 (12233420152016)++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 23.定义☆运算: 观察下列运算:两数进行☆运算时,同号 ,异号 .特别地,0和任何数进行☆运算,或任何数和0进行☆运算, . (2)计算:(﹣11)☆[0☆(﹣12)]= . (3)若2×(﹣2☆a )﹣1=8,求a 的值.24.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a ba b ab a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则; 2与2的大小 ∵224-= << 则45<< ∴2240-=> ∴22>请根据上述方法解答以下问题:比较2-与3-的大小. 25.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++26.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”. (1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m 可以分解成m =pq+n 4的形式(p≤q ,n≤b ,p ,q ,n 均为正整数),在m 的所有表示结果中,当nq ﹣np 取得最小时,称“m =pq+n 4”是m 的“最小分解”,此时规定:F (m )=q np n++,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F (20)=2222++=1,求所有“特色数”的F (m )的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先确定2019介于1936、2025这两个平方数之间,从而可以得到4445<<,再根据已知条件即可求得答案. 【详解】解:∵193620192025<< ∴2244201945<<.<∴4445<<∵n 为正整数,且1n n <<+∴44n =.故选:C 【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与2019临界的两个完全平方数是解决问题的关键.2.D解析:D 【分析】根据已知等式,利用算术平方根性质判断即可得到结果. 【详解】,=×100=503.6, 故选:D . 【点睛】此题考查了算术平方根,熟练掌握算术平方根的性质是解本题的关键.3.C解析:C 【分析】设这个数为x, 根据题意列出关于x 的方程,求出方程的解即可. 【详解】解:设这个数为x ,根据题意得:3x x =, 解得:x=0或-1或1,共3个; 故选:C . 【点睛】此题考查了有理数的立方,熟练掌握运算法则是解本题的关键.4.A解析:A 【分析】根据题意,1-的奇数次幂等于1-,1-的偶数次幂等于1,然后两个加数作为一组和为0,即可得到答案. 【详解】解:∵1-的奇数次幂等于1-,1-的偶数次幂等于1, ∴122019(1)(1)(1)-+-++-=1234201720182019[(1)(1)][(1)(1)][(1)(1)](1)-+-+-+-++-+-+-=2019(1)- =1-; 故选:A. 【点睛】本题考查了数字规律性问题,有理数的混合运算,解题的关键是熟练掌握1-的奇数次幂等于1-,1-的偶数次幂等于1.5.B解析:B 【分析】利用无理数,实数的性质判断即可. 【详解】A 、无限小数不一定是无理数,错误;B 、无理数都是无限小数,正确;C 、带根号的数不一定是无理数,错误;D 、实数包括正实数,0,负实数,错误, 故选:B . 【点睛】考核知识点:实数.理解实数的分类是关键.6.A解析:A 【分析】根据题意得出每3次翻转为一个循环,2019能被3整除说明跟翻转3次对应的点是一样的. 【详解】翻转1次后,点B 所对应的数为1, 翻转2次后,点C 所对应的数为2 翻转3次后,点A 所对应的数为3 翻转4次后,点B 所对应的数为4 经过观察得出:每3次翻转为一个循环 ∵20193673÷=∴数2019对应的点跟3一样,为点A. 故选:A. 【点睛】本题是一道找规律的题目,关键是通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.7.C解析:C 【分析】先化简,然后根据相反数的意义进行判断即可得出答案. 【详解】 解:A. 2-与12-不是一组相反数,故本选项错误;B. |,所以| 不是一组相反数,故本选项错误;,故选:C【点睛】本题考查了相反数,能将各数化简并正确掌握相反数的概念是解题关键.8.D解析:D【分析】根据算术平方根的定义逐一判断即可得解.【详解】=,故原选项错误;4=,故原选项错误;D. 4=,计算正确,故此选项正确.故选D.【点睛】此题主要考查了算术平方根,解题的关键是掌握算术平方根的定义.9.D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D.【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.10.D解析:D【分析】根据平方根及立方根的定义依次计算各项后即可解答.【详解】选项A=2,选项A错误;选项B2=±,选项B错误;选项C=,选项C错误;选项D 4=-,选项D 正确. 故选D . 【点睛】本题考查了平方根及立方根的定义,熟练运用平方根及立方根的定义是解决问题的关键.二、填空题 11.. 【解析】 【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=. “解析:12++n n . 【解析】 【详解】根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.181 【分析】观察各式得出其中的规律,再代入求解即可. 【详解】 由题意得将代入原式中故答案为:181. 【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】n=求解即可.观察各式得出其中的规律,再代入12【详解】由题意得()31=⨯++n nn=代入原式中将12a==⨯+=12151181故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.13.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.如等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.15.【分析】令,然后两边同时乘以3,接下来根据题目中的方法计算即可. 【详解】 令 则 ∴ ∴故答案为:. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解解析:2021312- 【分析】令23202013333S =+++++,然后两边同时乘以3,接下来根据题目中的方法计算即可. 【详解】令23202013333S =+++++则23202133333S =++++∴2021331S S -=-∴2021312S -=故答案为:2021312-.【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解题的关键.16.-0.0513 【分析】根据立方根的意义,中,m 的小数点每移动3位,n 的小数点相应地移动1位. 【详解】 因为 所以-0.0513 故答案为:-0.0513考核知识点:立方根.理解立方解析:-0.0513【分析】n=中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】≈5.130≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.17.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.18.<<【分析】先根据数的开方法则计算出和的值,再比较各数大小即可.【详解】==,==,∵>3>2,∴<<,即<<,故答案为:<<本题考查实数的大小比较,正确化简得出和的值是解解析:3<2π 【分析】的值,再比较各数大小即可. 【详解】3=33=22=32-=32, ∵π>3>2,∴22<32<2π,即3<2π,故答案为:3<2π 【点睛】本题考查实数的大小比较,正确化简得出3的值是解题关键. 19.0【分析】 分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x <0,0x x =-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.20.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.三、解答题21.(1)1145-+,111n n -++;(2)20152016-. 【分析】(1)根据题目中的式子,容易得到式子的规律;(2)根据题目中的规律,将乘法变形为加法即可计算出所求式子的结果.【详解】解:(1)11114545-⨯=-+,1111-=-11n n n n +++, 故答案为:1145-+,111n n -++;(2)1111111(1)()()()2233420152016-⨯+-⨯+-⨯+⋯+-⨯ 11111111()()()2233420152016=-++-++-++⋯+-+ 112016=-+ 20152016=-. 【点睛】本题考查规律性:数字的变化类,解题的关键是明确题意,找出所求式子中数的变化的特点.22.(1)111n n -+;(2)①20152016;②1n n +;(3)10074032. 【分析】(1)观察所给的算式可得:分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,由此即可解答;(2)根据所得的规律把各分数进行转化,再进行分数的加减运算即可解答;(3)先提取14,类比(2)的运算方法解答即可. 【详解】(1)()11n n + =111n n -+; (2)①1111...12233420152016++++⨯⨯⨯⨯=11111122334-+-+-+…+1120152016-=112016-=20152016; ②()1111...1223341n n ++++⨯⨯⨯⨯+=11111122334-+-+-+…+111n n -+=111n -+=1n n +; (3)1111 (24466820142016)++++⨯⨯⨯⨯ =14(1111 (12233410071008)++++⨯⨯⨯⨯), =14(11111122334-+-+-+…+1110071008-), =14(111008-), =14×10071008=10074032. 【点睛】本题考查了有理数的运算,根据题意找出规律是解决问题的关键.23.(1)得正,再把绝对值相加;得负,再把绝对值相加;等于这个数的绝对值;(2)-23;(3)a=-52 【分析】(1)通过观察表中各算式,然后从两数的符号关系或是否有0出发归纳出☆运算的法则; (2)根据(1)归纳的☆运算的法则进行计算,注意先算括号内的,再与括号外的计算; (3)根据(1)归纳出的运算法则对a 的取值进行分类讨论即可得到答案.【详解】(1)由表中各算式,可以得到:同号得正,再把绝对值相加; 异号得负,再把绝对值相加;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值; (2)由(1)归纳的☆运算的法则可得:原式=(﹣11)☆|-12|=(﹣11)☆12= -(|(﹣11)|+|12|)= -23;(3)①当a=0时,左边=()22012213⨯--=⨯-=☆,右边=8,两边不相等,∴a≠0; ②当a>0时,2×(﹣2☆a)﹣1=2×[-(2+a )]﹣1=8,可解得132a =-(舍去), ③当a<0时,2×(﹣2☆a)﹣1=2×(|﹣2|+|a|)﹣1=8,可解得a=52-, 综上所述:a=-52. 【点睛】本题考查新定义的实数运算,通过观察实例归纳出运算规律是解题关键.24.23>-【分析】根据例题得到2(3)5--=-5.【详解】解:2(3)5--=- ∵<,∴45<<, ∴2(3)50-=->, ∴23>-.【点睛】此题考查实数的大小比较方法,两个实数可以利用做差法比较大小.25.(1)202021-;(2)2020312-;(3)201101554-. 【分析】 仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.26.(1)1022;(2)3066,2226;(3)6736【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x ,百位数字是y ,根据“依赖数”定义,则有:十位数字是(2x ﹣y ),个位数字是(2x+y ),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x 、y 即可,从而求出所有特色数;(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F(m)=q np n++,故将(2)中特色数分解,找到最小分解,然后将n、p、q的值代入F(m)=q np n++,再比较大小即可.【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),根据题意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x=3+7k,(k是非负整数)∴此方程的一位整数解为:x=4,y=5(此时2x+y>10,故舍去);x=3,y=7(此时2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此时2x﹣y<0,故舍去);∴特色数是3066,2226.(3)根据最小分解的定义可知: n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=q np n ++,由(2)可知:特色数有3066和2226两个,对于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解时:n=2,p=50,q=61∴F(3066)=61263= 50252++对于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解时:n=2,p=34,q=65∴F(2226)=636 5267= 342++∵6367 5236<故所有“特色数”的F(m)的最大值为:67 36.【点睛】此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键.。
人教版2024新版七年级数学上册第六章《几何图形初步》基础练:6.2.1 直线、射线、线段
《6.2.1 直线、射线、线段》基础练易错诊断(打“√”或“×”)1.经过一点可以画无数条直线.()2.直线只能用两个大写字母表示.()3.以点O为端点的射线可以表示为射线O a.()知识点1 经过两点有且只有一条直线4.木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是()A.两点确定一条直线B.两点确定一条线段C.过一点有一条直线D.过一点有无数条直线5.每年“两会”期间,工作人员都要进行会场布置,他们拉着线将桌子上的茶杯摆放整齐,工作人员这样做依据的数学道理是_________.知识点2 直线、线段、射线的区别与表示6.手电筒发射出来的光线,类似于几何中的()A.线段B.射线C.直线D.折线7.下列说法正确的是()A.直线AB和直线a不是同一条直线B.直线AB和直线BA是两条直线C.射线AB和射线BA是两条射线D.线段AB和线段BA是两条线段8.如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB9.下列说法正确的是()A.画一条长3cm的射线B.射线、线段、直线中直线最长C.射线是直线的一部分D.延长直线AB到C10.如图,在平面内有M,N,P三点.(1)画直线MP,线段NP,射线MN;(2)在线段NP上任取一点Q(不同于N,P),连接线段MQ;(3)数数看,此时图中线段的条数知识点3 点与直线、直线与直线的位置关系11.下列说法错误的是()A.图①中直线l经过点AB.图②中直线a,b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点12.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,其中正确的有________.(只填写序号)参考答案1.答案:√2.答案:×3.答案:×4.答案:A解析:其依据是两点确定一条直线.5.答案:两点确定一条直线解析:工作人员这样做依据的数学道理是:两点确定一条直线.6.答案:B解析:手电筒发射出来的光线,给我们的感觉是手电筒是射线的端点,光的传播方向是射线的方向,故类似于几何中的射线.7.答案:C解析:A.直线AB和直线a可能是同一条直线,故本选项错误;B.直线AB和直线BA是一条直线,故本选项错误;C.射线AB和射线BA是两条射线是正确的;D.线段AB和线段BA是一条线段,故本选项错误.8.答案:B解析:由图可得,直线AB,线段BC,射线AC,射线AB,图中不存在直线BC.9.答案:C解析:A.画一条长3cm的射线,说法错误,射线可以向一个方向无限延伸.B.射线、线段、直线中直线最长说法错误,射线可以向一个方向无限延伸,直线可以向两个方向无限延伸;C.射线是直线的一部分,正确;D.延长直线AB到C说法错误,直线可以向两个方向无限延伸.10.答案:见解析解析:(1)如图,直线MP,线段NP,射线MN即为所求;(2)如图,线段MQ即为所求;(3)由图可得,图中线段的条数为6.11.答案:C解析:A.图①中直线l经过点A,正确;B.图②中直线a,b相交于点A,正确;C.图③中点C在线段AB外,故本选项错误;D.图④中射线CD与线段AB有公共点,正确.12.答案:①③④解析:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学第六章
教学目标:
1. 经历数据收集与整理的过程,了解统计的意义和作用。
2. 学会用调查法收集数据,认识条形统计图、扇形统计图、折线统计图,会选择合适的统计图表示数据。
3. 感受数据收集、整理、描述和分析的过程,会用统计图描述数据,能依据统计图表中的数据提出并回答简单的问题,并能够进行简单的预测。
教学重点:
1. 掌握数据整理的方法,认识条形统计图、扇形统计图、折线统计图。
2. 感受数据收集、整理、描述和分析的过程,能依据统计图表中的数据提出并回答简单的问题,并进行简单的预测。
教学难点:
1. 理解统计的意义和作用。
2. 选择合适的统计图表示数据。
教学方法:
1. 通过具体实例,让学生感受数据收集、整理、描述和分析的过程。
2. 正确运用条形统计图、扇形统计图、折线统计图表示数据,并能依据统计图表中的数据提出并回答简单的问题,进行简单的预测。
3. 让学生充分地交流讨论,体现学习的自主性。
教具准备:
多媒体课件、统计图表。
教学过程:
一、创设情境,引入新课
教师:同学们,我们的学校是一所充满活力、蓬勃发展的学校。
你们爱自己的学校吗?今天老师想让你们当一次小小调查员,调查一下我们学校每个年级的人数,并展示我们学校每个年级的人数分布图。
你们想不想看?这节课我们就来学习数据的收集与整理。
(板书课题)
二、自主探究,合作交流
1. 数据的收集。
教师:首先我们要用调查法收集数据。
什么是调查法呢?调查法就是根据调查目的,确定调查对象和调查范围,然后对这一范围内的情况进行全面了解和掌握的一种方法。
在调查时要注意全面、准确、不重复、不遗漏。
学生思考后,小组讨论完成下列问题:
(1)你所在的班级男女生各有多少人?你是怎样知道的?
(2)在全校每个年级中抽取一个班计算该班男女生各有多少人?你是怎样做的?
(3)全校每个年级的人数是怎样得到的?你认为这种方法怎样?
(4)通过上面的调查活动,你知道我们学校每个年级的人数吗?为什么?
学生交流后明确:全校每个年级的人数是通过抽样调查得到的,而抽样调查具有代表性和广泛性等特点。
然后教师引导学生总结出数据的收集过程为:明确调查问题→选择调查对象→确定调查范围→设计调查方案→实施调查→记录调查结果→得出结论。
同时强调在调查时要合理分组,注意调查项目的全面性和广泛性。
2. 数据的整理。
教师:通过调查我们得到了大量的数据,这些数据是杂乱无章的,为了更好地分析这些数据,我们就要对数据进行整理。
数据的整理就是将杂乱无章的数据按照一定的顺序排列起来,以便更好地揭示数据的规律和特征。
数据的整理可以通过表格和图形两种方式表示出来。
同学们先思考下面的问题:
(1)你认为应该怎样对数据进行整理?
(2)你更喜欢哪种方式表示数据?为什么?
学生交流后明确:数据的整理可以通过表格和图形两种方式表示出来。
表格可以将杂乱的数据按顺序排列整齐;图形则更直观地表示出数据的规律和特征,如条形统计图、扇形统计图、折线统计图等。
在实际应用中,应根据具体情况选择合适的方式进行数据的整理。
接着教师引导学生总结出数据的整理过程为:收集数据→数据筛选→数据分类→数据整理→绘制图表。
并强调在整理数据时要确保数据的准确性和完整性。
3. 用图表表示数据。
教师:为了更好地分析数据,我们通常将数据用图表表示出来。
下面我们一起来学习用图表表示数据的方法。
首先我们来学习条形统计图和折线统计图。
(板书)(1)条形统计图。
教师出示一张条形统计图,让学生观察并思考:条形统计图的优点是什么?如何制作条形统计图?学生交流后明确:条形统计图的优点是可以直观地表示出每个项目的具体数目和差距;制作条形统计图时可根据数据的多少确定条形的长短、宽窄和间隔距离等。
接着教师出示一张空白的条形统计图,让学生根据本校每个年级的人数完成这张条形统计图。
然后让同桌互相检查完成情况并相互交流制作心得。
教师强调在制作条形统计图时要注意:标题要写清楚;
横轴刻度要从左到右逐渐增加;纵轴刻度应适当分布;条形高度要一致;最后要有制作日期等必要内容。
(2)折线统计图。
教师出示一张折线统计图,让学生观察并思考:折线统计图的优点是什么?如何制作折线统计图?学生交流后明确:折线统计图的优点是可以直观地表示出数据的变化情况和趋势;制作折线统计图时可根据数据的多少确定折线的起伏程度和方向等。
接着教师出示一张空白的折线统计图,让学生根据本校每个年级的人数完成这张折线统计图。
然后让同桌互相检查完成情况并相互交流制作心得。
教师强调在制作折线统计图时要注意:标题要写清楚;横轴刻度要从左到右逐渐增加;纵轴刻度应适当分布;线条要平直;最后要有制作日期等必要内容。
(3)扇形统计图。
教师出示一张扇形统计图,让学生观察并思考:扇形统计图的优点是什么?如何制作扇形统计图?学生交流后明确:扇形统计图的优点是可以直观地表示出各部分在总体中所占的百分比;制作扇形统计图时可根据数据的多少确定扇形的圆心角大小和各部分所占的比例等。
接着教师出示一张空白的扇形统计图,让学生根据本校每个年级的人数完成这张扇形统计图。
然后让同桌互相检查完成情况并相互交流制作心得。
教师强调在制作扇形统计图时要注意:标题要写清楚;整个圆要等分;各部分所占比例要准确;最后要有制作日期等必要内容。
三、实践应用,巩固提高
1. 完成教材第100页“随堂练习”第1题。
先让学生独立完成后小组交流讨论:你是怎样整理调查结果的?你更喜欢哪种整理方法?为什么?然后全班交流,教师引导学生总结出各种整理方法的优缺点和应用范围。
2. 完成教材第100页“随堂练习”第2题。
先让学生明确调查目的和要求,然后小组内分工合作进行调查和整理数据,最后全班交流展示调查结果,并根据调查结果回答问题。
3. 完成教材第101页“课后练习”第1题。
先让学生明确题目要求,然后独立完成数据的收集、整理和描述,最后全班交流展示调查结果,并根据调查结果回答问题。
四、课堂小结,畅谈收获
教师引导学生总结本节课的收获和体会,并强调在实际生活中要善于运用数据的收集与整理来解决问题和分析问题。
同时布置作业:完成课后练习第2题,收集整理家庭各项支出情况,并填写统计表。
教学反思:本节课通过创设情境引导学生自主探究和合作交流学习数据的收集与整理的方法和技能,并在实践应用中巩固提高。
但学生在用图表表示数据时还需要进一步加强练习和提高准确度。
同时要注意在课堂上调动学生的积极性和主动性,提高教学效果和质量。