九年级数学下册圆27.1.3垂径定理同步练习含答案解析华师版课时作业
九年级数学下册第27章圆27.1圆的认识27.1.2.2垂径定理练习华东师大版(2021年整理)

2018-2019学年九年级数学下册第27章圆27.1 圆的认识27.1.2.2 垂径定理同步练习(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学下册第27章圆27.1 圆的认识27.1.2.2 垂径定理同步练习(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学下册第27章圆27.1 圆的认识27.1.2.2 垂径定理同步练习(新版)华东师大版的全部内容。
27。
1.2 圆的对称性第2课时垂径定理知|识|目|标1.通过折叠、作图等方法,探索出圆是轴对称图形.2.通过圆的对称性探索出垂径定理及其推论,会用垂径定理解决有关的证明和计算问题.3.会利用垂径定理解决实际生活中的问题.目标一理解圆的轴对称性例1 教材补充例题下列说法正确的是( )A.每一条直径都是圆的对称轴B.圆的对称轴是唯一的C.圆的对称轴一定经过圆心D.圆的对称轴是经过圆内任意一点的直线【归纳总结】圆的对称轴的“两点注意”:(1)圆有无数条对称轴,任何一条直径所在的直线都是圆的对称轴.(2)对称轴是直线而不是线段,所以说“圆的对称轴是直径所在的直线”或说成“圆的对称轴是经过圆心的每一条直线”.目标二能应用垂径定理及其推论进行证明或计算例2 教材补充例题如图27-1-9,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是( )图27-1-9A.CM=DM B.错误!=错误! C.∠ACD=∠ADC D.OM=MB【归纳总结】垂径定理的“三点注意”:(1)垂径定理中的直径可以是直径、半径或过圆心的直线(线段),其本质是“过圆心”.(2)当垂径定理中的弦为直径时,结论仍然成立.(3)平分两条弧是指平分这条弦所对的优弧和劣弧,不要漏掉优弧.例3 教材补充例题如图27-1-10,AB是⊙O的直径,CD为弦,AB⊥CD,垂足为H,连结BC,BD。
2020-2021学年九年级数学华东师大版下册 27.1.3垂径定理

圆 你能破镜重 吗?
n
m C
A
B
·O
1.作弦AB.AC及它们的垂直平分线m.n,交于O点; 2.以O为圆心,OA为半径作圆。
圆 你能破镜重 吗?
n
m C
A
B
·O
1.作弦AB.AC及它们的垂直平分线m.n,交于O点; 2.以O为圆心,OA为半径作圆。
练习1:在半径为50㎜的圆O中,有长50㎜的 弦AB,计算: ⑴点O与AB的距离; ⑵∠AOB的度数。
BD重合 AE=BE, AC=BC, AD=BD
垂径定理:垂直于弦的直径平分这条弦,
并平分这条弦所对的两条弧
问题:此定理的条件和结论分别是什么?
条件 CD为直径 CD⊥AB
CD平分弦AB 结论 CD平分弧ACB
C CD平分弧A B
O
E
A
B
D
例1 如图,两个圆都 以点O为圆心,小圆的 弦CD与大圆的弦AB在 同一条直线上。你认为 AC与BD的大小有什么 关系?为什么?
.O
AM
B
5. 已知⊙O的半径为10,弦 AB∥CD,AB=12,CD=16,则AB 和CD的距离为 2或14 .
6.如图,已知AB、AC为弦, OM⊥AB于点M, ON⊥AC于点N , BC=4,求MN的长.
思路:由垂径定理可得M、N分别 是AB、AC的中点,所以MN= BC=2.
A
B
M
.
O
N C
已知:在⊙o中,CD是直径,AB是弦,CD⊥AB,垂足为E
求证:AE=EB,AC=BC,AD=BD
C
证明:连结OA,OB 则OA=OB
∵垂直于弦的直径CD所在的直线
2021-2022学年最新华东师大版九年级数学下册第27章 圆同步训练试卷(含答案详解)

华东师大版九年级数学下册第27章 圆同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A 、B 、C 在O 上,50∠=°ACB ,则OAB ∠的度数是( )A .100°B .50°C .40°D .25°2、在ABC 中,45B ∠=︒,6AB =,给出条件:①4AC =;②8AC =;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC 的长唯一.可以选取的是( )A .①B .②C .③D .①或③3、如图,点C 是以点O 为圆心,AB 为直径的半圆上的动点(点C 不与点A ,B 重合),4AB =.设弦AC 的长为x ,ABC ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.4、如图,PA、PB是O的切线,A、B是切点,点C在O上,且58∠=︒,则APBACB∠等于()A.54°B.58°C.64°D.68°5、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽72cmAB=,则水的最大深度为()A.36 cm B.27 cm C.24 cm D.15 cm6、在同一平面内,有一半径为6的⊙O和直线m,直线m上有一点P,且OP=4;则直线m与⊙O的位置关系是()A.相交B.相离C.相切D.不能确定7、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为()cm.A.3πB.6πC.12πD.18π8、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A .75°B .70°C .65°D .55° 9、扇形的半径扩大为原来的3倍,圆心角缩小为原来的19,那么扇形的面积( )A .不变B .面积扩大为原来的3倍C .面积扩大为原来的9倍D .面积缩小为原来的1310、如图,从⊙O 外一点P 引圆的两条切线PA ,PB ,切点分别是A ,B ,若∠APB =60°,PA =5,则弦AB 的长是( )A .52 B C .5 D .第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,半径为2的扇形AOB 的圆心角为120°,点C 是弧AB 的中点,点D 、E 是半径OA 、OB 上的动点,且满足∠DCE =60°,则图中阴影部分面积等于___________.2、已知扇形的圆心角为30,半径为6 cm,则扇形的弧长是____________cm.3、一个直角三角形的斜边长,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________2cm.4、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.5、如图,在半径为5的⊙O中,弦AB=6,OC⊥AB于点D,交⊙O于点C,则CD=_____.6、已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是 _____.7、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC,若弦BC的长度为∠BAC=________度.8、在圆内接四边形ABCD 中,40D B ∠-∠=︒,则D ∠的度数为______.9、如图,PA ,PB 是O 的切线,切点分别为A ,B .若30OAB ∠=︒,3PA =,则AB 的长为______.10、如图,把O 分成相等的六段弧,依次连接各分点得到正六边形ABCDEF ,如果O 的周长为12π,那么该正六边形的边长是______.三、解答题(5小题,每小题8分,共计40分)1、已知∠MPN 的两边分别与圆O 相切于点A ,B ,圆O 的半径为r .(1)如图1,点C 在点A ,B 之间的优弧上,∠MPN =80°,求∠ACB 的度数;(2)如图2,点C 在圆上运动,当PC 最大时,要使四边形APBC 为菱形,∠APB 的度数应为多少?请说明理由;(3)若PC 交圆O 于点D ,求第(2)问中对应的阴影部分的周长(用含r 的式子表示).2、下面是小亮设计的“过圆上一点作已知圆的切线”的尺规作图过程.已知:点A 在O 上.求作:直线PA 和O 相切.作法:如图,①连接AO ;②以A 为圆心,AO 长为半径作弧,与O 的一个交点为B ;③连接BO ;④以B 为圆心,BO 长为半径作圆;⑤作B 的直径OP ;⑥作直线PA .所以直线PA 就是所求作的O 的切线.根据小亮设计的尺规作图过程,(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:在O 中,连接BA .∵OA OB =,AO AB =,∴OB AB =.∴点A 在B 上.∵OP 是B 的直径,∴90OAP ∠=︒(______)(填推理的依据).∴OA AP ⊥.又∵点A 在O 上,∴PA 是O 的切线(______)(填推理的依据).3、在⊙O 中,AC AD =,四边形ABCD 是平行四边形.(1)求证:BA 是⊙O 的切线;(2)若AB =6,①求⊙O 的半径;②求图中阴影部分的面积.4、如图,△ABC 内接于⊙O ,弦BD ⊥AC ,垂足为E .点D ,点F 关于AC 对称,连接AF 并延长交⊙O 于点G .(1)连接OB ,求证:∠ABD =∠OBC ;(2)求证:点F ,点G 关于BC 对称;(3)若BF=OB=2,求△ABC面积的最大值.5、【教材呈现】下图是华师版九年级下册数学教材第43页的部分内容.圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)【推论证明】已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.求证:线段AB是⊙O的直径.请你结合图①写出推论1的证明过程.【深入探究】如图②,点A,B,C,D均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为.【拓展应用】如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE.若AB=DE的长为.-参考答案-一、单选题1、C【解析】【分析】先根据圆周角定理求出∠AOB 的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB =50°,∴∠AOB =100°,∵OA =OB ,∴∠OAB =∠OBA = 40°,故选:C .【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、B【解析】【分析】画出图形,作AD BE ⊥,交BE 于点D .根据等腰直角三角形的性质和勾股定理可求出AD 的长,再由AD 和AC 的长作比较即可判断①②;由前面所求的AD 的长和AB 的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB 上方,也可在AB 下方,其与AE 的交点即为C 点,为两点不唯一,可判断其不符合题意.【详解】如图,45ABE ∠=︒,6AB =,点C 在射线AE 上.作AD BE ⊥,交BE 于点D .∵45ABE ∠=︒,∴ABD △为等腰直角三角形,∴4BD AD AB ===>, ∴不存在4AC =的三角形ABC ,故①不符合题意;∵6AB =,=AD AC =8,而AC >6,∴存在8AC =的唯一三角形ABC ,如图,点C 即是.∴8AC =,使得BC 的长唯一成立,故②符合题意;∵4AD =>,68AB =<,∴存在两个点C 使ABC 的外接圆的半径等于4,两个外接圆圆心分别在AB 的上、下两侧,如图,点C和C '即为使ABC 的外接圆的半径等于4的点.故③不符合题意.故选B .【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质.利用数形结合的思想是解答本题的关键.3、B【解析】【分析】由AB 为圆的直径,得到∠C =90°,在Rt △ABC 中,由勾股定理得到BC =而列出△ABC 面积的表达式即可求解.【详解】解:∵AB 为圆的直径,∴∠C =90°,4AB =,AC x =,由勾股定理可知:∴BC ==∴1122∆=⋅=⋅ABC S BC AC x 此函数不是二次函数,也不是一次函数,∴排除选项A 和选项C , AB 为定值,当OC AB ⊥时,ABC ∆面积最大,此时AC =即x =y 最大,故排除D ,选B .故选:B .【点睛】本题考查了动点问题的函数图象,根据题意列出函数表达式是解决问题的关键.4、C【解析】【分析】连接OB ,OA ,根据圆周角定理可得2116AOB ACB ∠=∠=︒,根据切线性质以及四边形内角和性质,求解即可.【详解】解:连接OB ,OA ,如下图:∴2112AOB ACB ∠=∠=︒∵PA 、PB 是O 的切线,A 、B 是切点∴90OBP OAP ∠=∠=︒∴由四边形的内角和可得:36064APB OBP OAP AOB ∠=︒-∠-∠-∠=︒故选C .【点睛】此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.5、C【解析】【分析】连接OB ,过点O 作OC AB ⊥于点D ,交O 于点C ,先由垂径定理求出BD 的长,再根据勾股定理求出OD 的长,进而得出CD 的长即可.【详解】解:连接OB ,过点O 作OC AB ⊥于点D ,交O 于点C ,如图所示:则136()2BD AB cm ==, O 的直径为78cm ,39()OB OC cm ∴==,在Rt OBD △中,15()OD cm ,391524()CD OC OD cm ∴=-=-=,即水的最大深度为24cm ,故选:C .【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.6、A【解析】【分析】直接根据直线与圆的位置关系即可得出结论.【详解】解:∵⊙O的半径为6,直线m上有一动点P,OP=4,∴直线与⊙O相交.故选:A.【点睛】本题考查的是直线与圆的位置关系,熟知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l和⊙O相切是解答此题的关键.7、B【解析】【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=1×2π×2×3=6π(cm2).2故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8、B【解析】【分析】直接根据圆周角定理求解.解:35ACB∠=︒,270AOB ACB∴∠=∠=︒.故选:B.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、A【解析】【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为19n,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.【详解】设原来扇形的半径为r,圆心角为n,∴原来扇形的面积为2 360n rπ,∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的19,∴变化后的扇形的半径为3r,圆心角为19 n,∴变化后的扇形的面积为221(3)9360360n r n rππ=,∴扇形的面积不变.故选:A.本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.10、C【解析】【分析】先利用切线长定理得到PA =PB ,再利用∠APB =60°可判断△APB 为等边三角形,然后根据等边三角形的性质求解.【详解】解:∵PA ,PB 为⊙O 的切线,∴PA =PB ,∵∠APB =60°,∴△APB 为等边三角形,∴AB =PA =5.故选:C .【点睛】本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.二、填空题1、43π【解析】【分析】如图,连接,,OC AC 过C 作CF OA ⊥于,F AOC △是等边三角形,求解3,CF 证明,60,AC OC DAC ACO 再证明,ACD OCE ASA ≌ 可得AOC AOB S S S 阴影扇形,再计算即可得到答案.【详解】解:如图,连接,,OC AC 过C 作CF OA ⊥于,FC 是AB 的中点,120,AOB ∠=︒ 160,2AOC BOC AOB ,AO COAOC ∴是等边三角形, ,60,AC OC OAC ACO 60,DACEOC ,2,CFAO AO CO 11,2AF OF AO 2222213,CF OC OF60,DCE,DCE OCD ACO OCD,ACD OCE ∴∠=∠ 而60,,DACEOC AC OC,ACD OCE ASA ≌,DOC OEC AOC DCEO S S S S 四边形AOC AOB S S S 阴影扇形212021423336023故答案为:43π【点睛】 本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,扇形面积的计算,掌握“利用转化的思想求解阴影部分的面积”是解本题的关键.2、π 【解析】【分析】知道半径,圆心角,直接代入弧长公式180n r L π=即可求得扇形的弧长. 【详解】解:180n r L π=, ∴扇形的弧长306180L cm ππ==, 故答案为:π.【点睛】 本题考查了弧长公式,解题的关键是要掌握弧长公式:180n r L π=才能准确的解题.3、【分析】设一直角边长为x ,另一直角边长为(6-x )根据勾股定理()(222+6x x -=,解一元二次方程求出1224x x ==,,利用三角形面积公式求124=42⨯⨯2cm 即可.【详解】解:设一直角边长为x ,另一直角边长为(6-x ),∵三角形是直角三角形,∴根据勾股定理()(222+6x x -=,整理得:2680x x -+=,解得1224x x ==,,这个直角三角形的斜边长为外接圆的直径,, 三角形面积为124=42⨯⨯2cm .4.【点睛】本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.4、2π【解析】利用勾股定理求出AC 及AB 的长,根据阴影面积等于AB C CAC DAB S S S''''--扇形扇形求出答案. 【详解】解:由旋转得,AB AB AC AC ''==,90CAC '∠=︒,B AC ''∠=∠BAC =30°,∵∠ABC =90°,∠BAC =30°,BC =1,∴AC =2BC =2,AB60CAB '∠=︒, ∴阴影部分的面积=AB C CAC DAB S S S ''''--扇形扇形2260902113603602ππ⨯⨯=--⨯=2π故答案为:2π.【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.5、1【解析】【分析】连接OA,先利用垂径定理得出AD的长,再由勾股定理得出OD的长即可解答.【详解】解:连接OA,∵AB=6,OC⊥AB于点D,∴AD=12AB=12×6=3,∵⊙O的半径为5,∴2222534OD OA AD,∴CD=OC-OD=5-4=1.故答案为:1.【点睛】本题考查的是垂径定理及勾股定理,解答此题的关键是作出辅助线构造出直角三角形,再利用勾股定理求解.6、相切或相交【解析】【分析】本题需分类讨论,当直线上的点到圆心的连线垂直于直线AB时,直线于圆的位置关系为相切,当直线上的点到圆心的连线与直线AB不垂直时,直线到圆心的距离小于圆的半径,直线与圆相交.【详解】设直线AB上与圆心距离为4cm的点为C,当OC⊥AB时,OC=⊙O的半径,所以直线AB与⊙O相切,当OC与AB不垂直时,圆心O到直线AB的距离小于OC,所以圆心O到直线AB的距离小于⊙O的半径,所以直线AB与⊙O相交,综上所述直线AB与⊙O的位置关系为相切或相交,故答案为:相切或相交.【点睛】本题考查直线与圆的位置关系,本题需根据圆心与直线上一点的距离,分类讨论圆与直线的位置关系,利用分类讨论思想是解决本题的关键.7、60【解析】【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.【详解】解:如图作OE⊥BC于E.∵OE ⊥BC ,∴BE =EC BOE =∠COE ,∴OE =1,∴OB =2OE ,∴∠OBE =30°,∴∠BOE =∠COE =60°,∴∠BOC =120°,∴∠BAC =60°,故答案为:60.【点睛】 本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题. 8、110°##110度【解析】【分析】根据圆内接四边形对角互补,得∠D +∠B =180°,结合已知求解即可.【详解】∵圆内接四边形对角互补,∴∠D +∠B =180°,∵40D B ∠-∠=︒∴∠D =110°,故答案为:110°.本题考查了圆内接四边形互补的性质,熟练掌握并运用性质是解题的关键.9、3【解析】【分析】由切线长定理和30OAB ∠=︒,可得PAB ∆为等边三角形,则AB PA =.【详解】解:连接,OA OP ,如下图:PA ,PB 分别为O 的切线,PA PB ∴=,PAB ∴为等腰三角形,30OAB ∠=︒,60PAB ∴∠=︒,PAB ∴∆为等边三角形,AB PA ∴=,3PA =,3AB ∴=.故答案为:3.本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.10、6【解析】【分析】如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OA、OB、OC、OD、OE、OF.∵正六边形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,∵O的周长为12π,∴O的半径为1262ππ=,正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.三、解答题1、(1)50°(2)∠APB=60°(3)13rπ⎫+⎪⎭【解析】【分析】(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC=PB =BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求AD,即可求解.【详解】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=,PD=r,∵∠AOP=90°−∠APO=60°,∴AD的长度=601803rrππ⨯⨯=,133r r rππ⎫++=+⎪⎭.【点睛】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,弧长公式,菱形的判定等知识,灵活运用这些性质解决问题是本题的关键.2、 (1)见解析(2)直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线【解析】【分析】(1)根据题意作出图形即可;(2)根据圆周角定理得到∠OAP=90°,根据切线的判定定理即可得到结论.(1)解:补全的图形如图所示;(2)证明:在O 中,连接BA .∵OA OB =,AO AB =,∴OB AB =.∴点A 在B 上.∵OP 是B 的直径,∴90OAP ∠=︒(直径所对的圆周角是直角)(填推理的依据).∴OA AP ⊥.又∵点A 在O 上,∴PA 是O 的切线(经过半径的外端,并且垂直于这条半径的直线是圆的切线)(填推理的依据). 故答案为:直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线【点睛】本题考查了作图,切线的判定,圆周角定理,正确的作出图形是解题的关键.3、(1)证明见解析;(2)①4π-【解析】【分析】(1)连接AO ,由AC AD =,四边形ABCD 是平行四边形,即得推得ACO △为等边三角形,即可得∠BAO =∠BAC +∠CAO =90°,即BA 是⊙O 的切线.(2)①由(1)有A 0=tan 60AB =︒②将阴影面积拆为相等的两部分,其中左侧部分为扇形ACO 面积减去三角形ACO 面积,由扇形面积公式,等边三角形面积公式计算后乘2即可.【详解】(1)证明:连接OA∵四边形ABCD是平行四边形∴AD//BE∴∠ADC=∠DCO又∵AC AD=∴∠ACD=∠ADC∴∠ACO=∠ACD+∠DCO=2∠ADC又∵2∠ADC=AOC∠∴AOC ACO∠=∠∴AO=AC又∵OC=AO∴ACO△为等边三角形∴∠ACO=∠CAO=60°,∠ACD=∠DCO=30°又∵AB//CD∴∠BAC=∠ACD=30°∴∠BAO=∠BAC+∠CAO=30°+60°=90°∴BA是⊙O的切线.(2)①由(1)可知∠BAO=90°,∠BOA=60°∴tanBA BOAAO ∠=∴AO =6tan tan BA BOA BOA ===∠∠②连接AO ,与CD 交于点M∵AC =OAC =60°∴CM =sin 603AC ⋅︒==∴11322AOC S AO CM =⋅⋅=⨯=△∵AO =AOC =60°∴22360AOCn r S ===︒扇形ππ ∴2AOC AOC S S S =-△阴影扇形()∴224S =-=-阴影(ππ【点睛】本题是一道圆内的综合问题,考察了证明某线是切线、平行四边形性质、等弧的性质、解直角三角形、等边三角形性质、勾股定理、扇形面积公式等,需熟练掌握这些性质及定理,而作出正确的辅助线是解题的关键.4、 (1)见解析(2)见解析(3)△ABC 的面积最大值为【解析】【分析】(1)连接OC ,根据BD AC ⊥,得出90BAC ABD ︒∠+∠=,根据,OB OC =得出,OBC OCB ∠=∠可得1902OBC BOC ︒∠+∠=,可得∠BAC =12BOC ∠,得出90BAC OBC ︒∠+∠=即可; (2)连接AD ,BG .根据点D ,点F 关于AC 对称,得出AC 垂直平分DF ,可得AD AF =,根据同弧所对圆周角性质D AFD ∠=∠,∠FAC =∠DAC ,得出DC GC =,∠DBC =∠GBC ,根据∠ADB =∠AGB ,∠AFD =∠BFG ,得出BF =BG ,根据∠CAG =∠CBG ,得出BC ⊥FG 即可;(3)连结OG ,CG 延长BO ,交⊙O 于H ,连结GH ,设AG 与BC 交于M ,由(2)得BF =BG =2,可证△OBG 为等边三角形,得出∠BOG =60°,根据OH =OG ,得出∠OHG =∠OGH =1302BOG ∠=︒,可得∠BAG =∠BCG =∠H =30°,利用30°直角三角形性质可得BA =2BM ,根据勾股定理在Rt △ABG 中,AG ⊥BC 于M ,AM=,设BM =x ,AM ,GM函数CM =MG x ABC 的面积最大,求出x(1)证明:如图①,连接OC ,BD AC ⊥,90AEB ︒∴∠=,90BAC ABD ︒∴∠+∠=,OB OC =,OBC OCB ∴∠=∠,2180OBC BOC︒∴∠+∠=,∴1902OBC BOC︒∠+∠=,∵∠BAC=12BOC ∠,90BAC OBC︒∴∠+∠=,ABD OBC∴∠=∠;(2)证明:如图②,连接AD,BG.∵点D,点F关于AC对称,∴AC垂直平分DF,AD AF=,D AFD∴∠=∠,∠FAC=∠DAC,∴DC GC=,∴∠DBC=∠GBC,∵∠ADB=∠AGB,∠AFD=∠BFG,∴BF=BG,∵∠CAG=∠CBG,∵BC⊥FG,∴点F ,点G 关于BC 对称;(3)(3)连结OG ,CG 延长BO ,交⊙O 于H ,连结GH ,设AG 与BC 交于M ,由(2)得BF =BG =2,∵BO =GO =2=BG ,∴△OBG 为等边三角形,∴∠BOG =60°,∵OH =OG ,∴∠OHG =∠OGH =1302BOG ∠=︒, ∴∠BAG =∠BCG =∠H =30°,∴BA =2BM ,在Rt △ABG 中,AG ⊥BC 于M ,AM,设BM =x ,∴AM ,GM ,∴CM =MG∴S △ABC =S △ABM +S △ACM =111222BM AM CM AM x ⨯+⨯=,∴当xABC 的面积最大,∴解得xS △ABC 最大=2S △ABM =2212x ⨯⨯==【点睛】本题考查直线垂直性质,互余性质,等腰三角形内角和性质,轴对称性质,线段垂直平分线性质,等腰三角形性质,同和所对圆周角性质,等边三角形判定与性质,30°直角三角形性质,勾股定理,三角形面积公式,锐角三角函数,函数最值等知识,通过辅助线画出准确图形是解题关键.5、【推论证明】见解析;【拓展应用】1+【解析】【分析】推论证明:根据圆周角定理求出180AOB ∠=︒,即可证明出线段AB 是⊙O 的直径;深入探究:连接AB ,首先根据∠ACB =90°得出AB 是⊙O 的直径,然后求出30BCD ∠=︒,然后根据同弧所对的圆周角相等得到30BAD ∠=︒,然后根据30°角直角三角形的性质求出BD 的长度,最后根据勾股定理即可求出AD 的长度;拓展应用:连接AE ,作CF ⊥DE 交DE 于点F ,首先根据等边三角形三线合一的性质求出AE BC ⊥,然后证明出A ,E ,C ,D 四点共圆,然后根据同弧或等弧所对的圆周角相等求出45CED CAD ∠=∠=︒,30EDC EAC ∠=∠=︒,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.【详解】解:推论证明:∵90C ∠=︒∴180AOB ∠=︒,∴A ,B ,O 三点共线,又∵点O 是圆心,∴AB 是⊙O 的直径;深入探究:如图所示,连接AB ,∵∠ACB =90°∴AB 是⊙O 的直径∴90ADB ∠=︒∵∠ACD =60°∴30BCD ACB ACD ∠=∠-∠=︒∵DB DB =∴30BAD BCD ∠=∠=︒∴在Rt ABD ∆中,112BD AB ==∴AD拓展应用:如图所示,连接AE ,作CF ⊥DE 交DE 于点F ,∵△ABC 是等边三角形,点E 是BC 的中点∴AE BC ⊥,1302CAE BAC ∠=∠=︒又∵以AC 为底边在三角形ABC 外作等腰直角三角形ACD∴90ADC ∠=︒,45DAC ∠=︒∴点A ,E ,C ,D 四点都在以AC 为直径的圆上,∵DC DC =∴45CED CAD ∠=∠=︒∵CF ⊥DE∴EFC ∆是等腰直角三角形∴EF CF =,222EF CF EC +=∴222EF EC =∵1122EC BC AB ===∴222EF =,解得:1EF =∴1FC = ∵EC EC =∴30EDC EAC ∠=∠=︒∴在Rt FCD ∆中,22CD FC ==∴DF∴1=+=DE EF DF【点睛】此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.。
2021春华师版九年级数学下册 第27章 27.1.3 圆的对称性——垂直于弦的直径性质

27.1 圆的认识
第3课时 圆的对称性——垂直 于弦的直径性质
1 课堂讲解 圆的轴对称性
垂径定理
2 课时流程 垂径定理的推论
逐点 导讲练
课堂 小结
作业 提升
知识点 1 圆的轴对称性
知1-导
用纸剪一个圆,沿着圆的任意一条直径对折, 重复做几次,你发现了什么?由此你能得到什么 结论?
知1-讲
知3-讲
例3 如图所示,AB,CD 是⊙ O 的弦,M,N分别为AB, CD 的中点,且∠ AMN = ∠ CNM. 求证:AB=CD.
知3-讲
导引:如图所示,连结OM,ON,OA,OC. ∵ O 为圆心,且M,N 分别为AB,CD 的中点, ∴ AB=2AM,CD=2CN,OM ⊥ AB,ON ⊥ CD. ∴∠ OMA= ∠ ONC=90° . ∵∠ AMN= ∠ CNM,∴∠ OMN= ∠ ONM. ∴ OM=ON. 又∵ OA=OC,∴ Rt △ OAM ≌ Rt △ OCN. ∴ AM=CN. ∴ AB=CD.
圆是轴对称图形,圆有无数条对称轴,经过圆心的 每一条直线都是圆的对称轴.
知1-练
1 下列说法:(1)圆是轴对称图形;(2)圆有无数条对称
轴;(3)圆的任意一条直径都是圆的对称轴;(4)圆所
在平面内任意一条经过圆心的直线都是圆的对称轴,
其中正确的有( )
A.1个
B.2个 C.3个 D.4个
知1-练
总结
知3-讲
证明两条弦相等的方法: 证明两条弦相等,可以先证明弦的一半相等. 根据垂 径定理的推论,连结圆心和弦的中点是常见的作辅助 线的方法.
知3-练
1 如图所示,⊙O的直径CD=10 cm,AB是⊙O的弦, AM=BM,OM∶OC=3∶5,则AB的长为( ) A.8 cm B. 91 cm C.6 cm D.2 cm
2020九年级数学下册 第27章 27.1.2.2 垂径定理同步练习 (新版)华东师大版

27.1.2 圆的对称性第2课时 垂径定理知|识|目|标1.通过折叠、作图等方法,探索出圆是轴对称图形.2.通过圆的对称性探索出垂径定理及其推论,会用垂径定理解决有关的证明和计算问题. 3.会利用垂径定理解决实际生活中的问题.目标一 理解圆的轴对称性例1 教材补充例题 下列说法正确的是( ) A .每一条直径都是圆的对称轴 B .圆的对称轴是唯一的 C .圆的对称轴一定经过圆心D .圆的对称轴是经过圆内任意一点的直线 【归纳总结】圆的对称轴的“两点注意”:(1)圆有无数条对称轴,任何一条直径所在的直线都是圆的对称轴.(2)对称轴是直线而不是线段,所以说“圆的对称轴是直径所在的直线”或说成“圆的对称轴是经过圆心的每一条直线”.目标二 能应用垂径定理及其推论进行证明或计算例2 教材补充例题 如图27-1-9,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( )图27-1-9A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MB【归纳总结】垂径定理的“三点注意”:(1)垂径定理中的直径可以是直径、半径或过圆心的直线(线段),其本质是“过圆心”. (2)当垂径定理中的弦为直径时,结论仍然成立.(3)平分两条弧是指平分这条弦所对的优弧和劣弧,不要漏掉优弧.例3 教材补充例题 如图27-1-10,AB 是⊙O 的直径,CD 为弦,AB ⊥CD ,垂足为H ,连结BC ,BD . (1)求证:BC =BD ;(2)已知CD =6,OH =2,求⊙O 的半径.图27-1-10【归纳总结】垂径定理中常作的两种辅助线:(1)若已知圆心,则过圆心作垂直于弦的直径(或半径或线段).(2)若已知弧、弦的中点,则作弧、弦中点的连线或连结圆心和弦的端点等. 目标三 会用垂径定理解决实际生活中的问题例4 高频考题“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”题目用现在的数学语言表达如下:如图27-1-11所示,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =10寸,求直径CD 的长.请你解决这个问题.图27-1-11【归纳总结】垂径定理基本图形中的“四变量、两关系”:1.四变量:设弦长为a ,圆心到弦的距离为d ,半径为r ,弧的中点到弦的距离(弓形高)为h ,这四个变量知道其中任意两个即可求出其他两个. 2.两关系:(1)(a2)2+d 2=r 2;(2)h +d =r .图27-1-12知识点一 圆的轴对称性圆是____________,它的任意一条直径所在的直线都是它的________,圆有________条对称轴. 知识点二 垂径定理及其推论垂直于弦的直径__________,并且____________.推论: 平分弦(不是直径)的直径____________,并且______________________;平分弧的直径垂直平分这条弧所对的弦.已知CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB =10,CD =8,求BE 的长. 解:如图27-1-13,连结OC ,则OC =5. ∵AB 是⊙O 的直径,AB ⊥CD , ∴CE =12CD =4.在Rt △OCE 中,OE =OC 2-CE 2=3,∴BE=OB+OE=5+3=8. 图27-1-13 以上解答过程完整吗?若不完整,请进行补充.教师详解详析【目标突破】例1 [解析] C 因为对称轴是直线,不是线段,而圆的直径是线段,故A 不正确;因为圆的对称轴有无数条,故B 不正确;因为圆的对称轴是直径所在的直线,所以一定经过圆心,故D 不正确,C 正确.故选C . 例2 [解析] D ∵AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,∴M 为CD 的中点,即CM =DM ,故选项A 成立;由垂径定理可得CB ︵=DB ︵,故选项B 成立;在△ACM 和△ADM 中,∵AM =AM ,∠AMC =∠AMD =90°,CM =DM ,∴△ACM ≌△ADM ,∴∠ACD =∠ADC ,故选项C 成立;而OM 与MB 不一定相等,故选项D 不成立.故选D . 例3 解:(1)证明:∵AB 是⊙O 的直径,CD 为弦,AB ⊥CD ,∴BC ︵=BD ︵,∴BC =BD. (2)如图,连结OC.∵AB 是⊙O 的直径,CD 为弦,AB ⊥CD ,CD =6,∴CH =3,∴OC =OH 2+CH 2=22+32=13, 故⊙O 的半径为13.例4 [解析] 连结OA ,构造Rt △AOE ,利用勾股定理及垂径定理解答. 解:连结OA.∵CD ⊥AB 于点E ,CD 为⊙O 的直径, ∴AE =12AB =12×10=5(寸).在Rt △AEO 中,设AO =x 寸,则OE =(x -1)寸.由勾股定理,得x 2=52+(x -1)2, 解得x =13.∴AO =13寸,∴CD =2AO =26寸. 答:直径CD 的长为26寸. 【总结反思】[小结] 知识点一 轴对称图形 对称轴 无数知识点二 平分这条弦 平分这条弦所对的两条弧 垂直于这条弦 平分这条弦所对的两条弧 [反思]不完整.补充如下:如图,当垂足E 在线段OB 上时, 此时,BE =OB -OE =5-3=2. ∴BE 的长为8或2.。
华师大版九年级数学下册 第27章 圆 第一节 圆的认识 垂径定理 专题练习题

华东师大版九年级下册第27章圆第一节圆的认识垂径定理专题练习题1.垂径定理:垂直于弦的直径____这条弦,并且____弦所对的两条弧.2.如图,在半径为5 cm的⊙O中,弦AB=6 cm,OC⊥AB于点C,则OC=( )A.3 cm B.4 cm C.5 cm D.6 cm3.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是( )A.2.5 B.3.5 C.4.5 D.5.54. 如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为___.5. 如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于点E.(1)请写出四个不同类型的正确结论;(2)若BE=4,AC=6,求DE的长.6. 一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )A.4 B.5 C.6 D.87. 为了测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm),则该铁球的直径为____.8. H5N1亚型高致病性禽流感是一种传染速度很快的传染病,为防止禽流感蔓延,政府规定:离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在免疫区内有多少千米?9.如图,直线与两个同心圆交于图示的各点,MN=10,PR=6,则MP=____.10.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=8 cm,AG=1 cm,DE=2 cm,则EF=____cm.11. 如图,⊙O的直径AB=16 cm,P是OB的中点,∠APD=30°,求CD的长.12. 如图,⊙O的直径AB垂直于弦CD.垂足P是OB的中点,CD=6 cm,求直径AB的长.13. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.答案:1. 平分 平分2. B3. C4. 45.解:(1)不同类型的正确结论为BE =12BC ,BD ︵=CD ︵,∠BED =90°,BD =CD ,△BOD 是等腰三角形, △BDE ≌△CDE ,OB 2=OE 2+BE 2等 (2)∵AB 是 ⊙O 的直径,∴OA =OB ,∵OD ⊥BC 于E 点,∴BE =CE ,∴OE 为△ABC 的中位线,∴OE =12AC=12×6=3,在Rt △OBE 中,由勾股定理,得 OB =OE 2+BE 2=32+42=5,∴OD =OB =5, ∴DE =OD -OE =5-3=26. C7. 10 cm8.解:过O 作OE ⊥AB 于E ,连接OC , OA ,易求OE =5,AE =25,则 AB =2AE =45,∴AC +DB =AB -CD =45-4=4(5-1)(千米)9. 2 10. 6 11.解:连接OD ,过点O 作OM ⊥CD 于点M ,则CM =DM.∵直径AB =16 cm , P 为OB 的中点,∴OP =4 cm.在 Rt △OPM 中,∵∠APD =30°,∴OM =12OP =2 cm.在Rt △DOM 中,DM =DO 2-OM 2=82-22=215(cm ), ∴CD =2DM =415 cm12.解:连接OD ,∵P 是OB 的中点,∴OP =12OB =12OD ,∵AB ⊥CD ,∴∠OPD =90°,DP =12CD =12×6=3(cm ),在Rt △ODP 中,sin ∠ODP =OP OD =12OD OD =12,∴∠ODP =30°∴OD =DPcos 30°=23(cm ),∴AB =2OD =43(cm )13.解:(1)PQ =6 (2)PQ 长的最大值为332初中数学试卷。
华师大版初中数学九年级下册《27.1.1 圆的基本元素》同步练习卷(含答案解析

华师大新版九年级下学期《27.1.1 圆的基本元素》同步练习卷一.填空题(共42小题)1.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有个.2.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于.3.战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为.4.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)5.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A 的度数是.6.半径为5的⊙O中最大的弦长为.7.已知,圆A的周长是圆B的周长的4倍,那么圆A的面积是圆B的面积的倍.8.已知线段AB=6cm,则经过A、B两点的最小的圆的半径为.9.课本上将绳的一端固定住,另一端系一支笔,将绳子绷直,用笔绕着另一端画一圈就是一个圆,于是我们定义:圆是由到一定点距离都等于定长的所有的点组成的图形.下面是一种画椭圆的方法:(1)在地平面上选两个点,钉上两个钉子;(2)测量两个钉子间距离;(3)选用大于两钉子间距离长度的绳子;(4)将绳子两端分别系在钉子上;(5)将绳子绷直,用笔在绷直的拐角地方划线;(6)将绳子绕一圈,椭圆就得到啦!(如图所示)根据这个过程请你给椭圆下一个定义:.10.圆中最长的弦是.11.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=74°,则∠E=.12.若⊙O的半径为6cm,则⊙O中最长的弦为厘米.13.如图,MN为⊙O的弦,∠M=50°,则∠MON等于.14.如图,一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为厘米.15.⊙O1与⊙O2的半径之比为2:3,则⊙O2与⊙O1的周长之比为:;⊙O2与⊙O1的面积之比为:.16.一个塑料文具胶带如图所示,带宽为1cm,内径为4cm,外径为7cm,已知30层胶带厚1.5mm,则这卷胶带长m.(π≈3.14,结果保留4位有效数字)17.如图,大圆和圆的半径都分别是4cm和2cm,两圆外切于点C,一只蚂蚁由点A开始ABCDEFCGA的顺序沿着两圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走2010π cm后才停下来.则这只蚂蚁停在点.18.如图所示,1条直线最多能将圆的内部分成2部分,2条直线最多能将圆的内部分成4部分.那么3条直线最多能将圆的内部分成部分,5条直线最多能将圆的内部分成部分.(每部分不要求全等)19.如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成部分;圆的十九条弦最多可将圆分成部分.20.如图,一个人握着板子的一端,另一端放在圆柱上,某人沿水平方向推动板子带动圆柱向前滚动,假设滚动时圆柱与地面无滑动,板子与圆柱也没有滑动.已知板子上的点B(直线与圆柱的横截面的切点)与手握板子处的点C 间的距离BC的长为Lm,当手握板子处的点C随着圆柱的滚动运动到板子与圆柱横截面的切点时,人前进了m.21.线段AB=10cm,当AB绕它的旋转一周时,它所“扫描”经过的平面面积最小,此时面积为.22.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是.23.到点O的距离是5cm的所有点构成的图形是.24.圆周上有6个点,任两点间连一条线段,则这些线段在圆内的交点最多有个.25.如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积为.26.如图是比例尺为1:200的铅球场地的示意图,铅球投掷圈的直径为2.135m,体育课上,某生推出的铅球落在投掷区的点A处,他的铅球成绩约为m (精确到0.1m).27.如图,两个半径都是4cm的圆外切于点C,一只蚂蚁由点A开始依ABCDEFCGA 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断地爬行,直到行走2006πcm后才停下来,请问这只蚂蚁停在哪一个点?答:停在点.28.已知⊙O的半径为4cm,以O为圆心的小圆与⊙O组成的圆环的面积等于小圆的面积,则这个小圆的半径是cm.29.如果把人的头顶和脚底分别看作一个点,把地球赤道看作一个圆,那么身高2m的小赵沿着赤道环行一周,他的头顶比脚底多行m.30.在同一平面内,1个圆把平面分成0×1+2=2个部分,2个圆把平面最多分成1×2+2=4个部分,3个圆把平面最多分成2×3+2=8个部分,4个圆把平面最多分成3×4+2=14个部分,那么10个圆把平面最多分成个部分.31.如右图中有条直径,有条弦,以点A为端点的优弧有条,有劣弧条.32.圆既是对称图形,又是对称图形.33.如图,圆中以A为一个端点的优弧有条,劣弧有条.34.若圆的半径为r,则圆的周长公式C=,圆的面积公式S=.35.到点O的距离等于4的点的集合是.36.有以下结论:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④半径相等的两个半圆是等弧;⑤长度相等的两条弧是等弧.其中错误的有(填序号).37.如图,圆中有条直径,条弦,圆中以A为一个端点的优弧有条,劣弧有条.38.某校计划在校园内修建一座周长为20m的花坛,同学们设计出正三角形,正方形和圆三种图案,通过计算说明使花坛面积最大的图案是(填图形).39.圆上各点到圆心的距离都.40.牛牛和壮壮在沙滩上玩游戏,需要画一个圆,而他们手中没有任何工具,请你帮他们想一个办法,怎样可以得到一个圆?41.以已知点O为圆心,可以画个圆.42.圆是轴对称图形,它有条对称轴,是直线;圆还是中心对称图形,对称中心是华师大新版九年级下学期《27.1.1 圆的基本元素》同步练习卷参考答案与试题解析一.填空题(共42小题)1.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有2个.【分析】以A为圆心,5cm长为半径作圆,与以AB为直径的圆交于2点,依此即可求解.【解答】解:如图所示:到点A的距离为5cm的点有2个.故答案为:2.【点评】此题考查了圆的认识,关键是熟悉圆可以看做是所有到定点O的距离等于定长r的点的集合的知识点.2.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于半径.【分析】根据半径的含义:连接圆心和圆上任意一点的线段叫做半径;在同圆或等圆中,所有的半径都相等;由此判断即可.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:半径.【点评】此题考查了半径的含义,注意基础知识的积累.3.战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为圆心.【分析】根据半径的含义:连接圆心和圆上任意一点的线段叫做半径;在同圆或等圆中,所有的半径都相等;由此判断即可.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:圆心【点评】此题考查了圆的认识,关键是根据半径的含义解答.4.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器中弧PB所对的圆心角是70°,因而P在小量角器上对应的度数为70°.故答案为:70°;【点评】本题主要考查了直径所对的圆周角是90度.能把实际问题转化为数学问题是解决本题的关键.5.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A 的度数是28°.【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案.【解答】解:由AB=OC,得AB=OB,∠A=∠AOB.由BO=EO,得∠BEO=∠EBO.由∠EBO是△ABO的外角,得∠EBO=∠A+∠AOB=2∠A,∠BEO=∠EBO=2∠A.由∠DOE是△AOE的外角,得∠A+∠AEO=∠EOD,即∠A+2∠A=84°,∠A=28°.故答案为:28°.【点评】本题考查了圆的认识,利用了等腰三角形的性质,利用三角形外角的性质得出关于∠A的方程是解题关键.6.半径为5的⊙O中最大的弦长为10.【分析】直径是圆中最大的弦.【解答】解:半径为5的⊙O的直径为10,则半径为5的⊙O中最大的弦是直径,其长度是10.故答案是:10.【点评】本题考查了圆的认识.需要掌握弦的定义.7.已知,圆A的周长是圆B的周长的4倍,那么圆A的面积是圆B的面积的16倍.【分析】设圆A的半径为a,圆B的半径为b.由2πa=4×2πb,得a=4b,由此即可解决问题.【解答】解:设圆A的半径为a,圆B的半径为b.由题意2πa=4×2πb,∴a=4b,∴⊙A的面积:⊙B的面积=π•(4b)2:πb2=16:1.故答案为16【点评】本题考查圆的有关知识,解题的关键是记住圆的周长公式、面积公式,属于基础题,中考常考题型.8.已知线段AB=6cm,则经过A、B两点的最小的圆的半径为3cm.【分析】经过线段AB最小的圆即为以AB为直径的圆,求出半径即可.【解答】解:根据题意得:经过线段AB最小的圆即为以AB为直径的圆,则此时半径为3cm.故答案为:3cm.【点评】本题考查的是圆的认识,熟知经过线段AB最小的圆即为以AB为直径的圆是解答此题的关键.9.课本上将绳的一端固定住,另一端系一支笔,将绳子绷直,用笔绕着另一端画一圈就是一个圆,于是我们定义:圆是由到一定点距离都等于定长的所有的点组成的图形.下面是一种画椭圆的方法:(1)在地平面上选两个点,钉上两个钉子;(2)测量两个钉子间距离;(3)选用大于两钉子间距离长度的绳子;(4)将绳子两端分别系在钉子上;(5)将绳子绷直,用笔在绷直的拐角地方划线;(6)将绳子绕一圈,椭圆就得到啦!(如图所示)根据这个过程请你给椭圆下一个定义:平面内与两个定点的距离的和等于常数(大于两定点的距离)的点的轨迹.【分析】根据椭圆的定义,可得答案.【解答】解:椭圆下一个定义:平面内与两个定点的距离的和等于常数(大于两定点的距离)的点的轨迹,故答案为:平面内与两个定点的距离的和等于常数(大于两定点的距离)的点的轨迹.【点评】本题考查了圆的认识,利用椭圆的画法获得有效信息是解题关键.10.圆中最长的弦是直径.【分析】根据圆的性质直接回答即可.【解答】解:圆中最长的弦是直径,故答案为:直径.【点评】本题考查了圆的认识,解题的关键是了解圆中最长的弦是直径,难度不大.11.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=74°,则∠E=()°.【分析】利用半径相等得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.【解答】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,∵OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×74°=()°.故答案是:()°.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.12.若⊙O的半径为6cm,则⊙O中最长的弦为12厘米.【分析】根据直径为圆的最长弦求解.【解答】解:∵⊙O的半径为6cm,∴⊙O的直径为12cm,即圆中最长的弦长为12cm.故答案为12.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).13.如图,MN为⊙O的弦,∠M=50°,则∠MON等于80°.【分析】利用等腰三角形的性质可得∠N的度数,根据三角形的内角和定理可得所求角的度数.【解答】解:∵OM=ON,∴∠N=∠M=50°,∴∠MON=180°﹣∠M﹣∠N=80°,故答案为80°.【点评】考查圆的认识;利用圆的半径相等这个知识点是解决本题的突破点.14.如图,一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为20厘米.【分析】设大圆半径为R,小圆半径分别为r1,r2,…,r n,根据题意得2r1+2r2+…+2r n=2R,两边都乘以π得到2πr1++2πr2+…+2πr n=2πR,然后根据圆的周长公式求解.【解答】解:设大圆半径为R,小圆半径分别为r1,r2,…,r n,∵小圆的圆心都在大圆的一个直径上,∴2r1+2r2+…+2r n=2R,∴2πr1++2πr2+…+2πr n=2πR,而2πR=20cm,∴2πr1++2πr2+…+2πr n=20cm.故答案为20.【点评】本题考查了圆的认识:在一个平面内,线段OA绕它固定的一个端点O 旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”;圆的周长=2πr (r为圆的半径).15.⊙O1与⊙O2的半径之比为2:3,则⊙O2与⊙O1的周长之比为:3:2;⊙O2与⊙O1的面积之比为:9:4.【分析】设⊙O1与⊙O2的半径分别为R1与R2,则R1:R2=2:3,然后根据圆的周长和面积公式计算即可.【解答】解:设⊙O1与⊙O2的半径分别为R1与R2,∵R1:R2=2:3,∴⊙O2与⊙O1的周长之比=2πR2:2πR1=3:2,⊙O2与⊙O1的面积之比=πR22:πR12=9:4.故答案为3:2,9:4.【点评】本题考查了圆的认识:圆的周长=2πR(R为圆的半径);圆的面积=πR2(R为圆的半径).16.一个塑料文具胶带如图所示,带宽为1cm,内径为4cm,外径为7cm,已知30层胶带厚1.5mm,则这卷胶带长51.81m.(π≈3.14,结果保留4位有效数字)【分析】首先求出胶带的体积,用胶带的体积除以一米长的胶带的体积即可求得.【解答】解:胶带的体积是:π(72﹣42)•1=33πcm3=33π×10﹣6m3一米长的胶带的体积是:0.01×1×5×10﹣4=5×10﹣6m3因而胶带长是:(33π×10﹣6)÷(5×10﹣6)≈51.81m.【点评】把求长的问题转化为求体积的问题是解决本题的关键.17.如图,大圆和圆的半径都分别是4cm和2cm,两圆外切于点C,一只蚂蚁由点A开始ABCDEFCGA的顺序沿着两圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走2010π cm后才停下来.则这只蚂蚁停在点E.【分析】首先求得蚂蚁由点A开始ABCDEFCGA的顺序走一周的路线长,然后确定走2010π cm是走了多少周,即可确定.【解答】解:A开始ABCDEFCGA的顺序转一周的路径长是:8π+4π=12πcm,蚂蚁直到行走2010π cm所转的周数是:2010π÷12π=167…6π.即转167周以后又走了6πcm.从A到B得路长是:2π,再到C的路线长也是2π,从C到D,到E的路线长是2π,则从A行走6πcm到E点.故答案是:E.【点评】本题主要考查了圆的周长的计算,正确而理解蚂蚁行走一周以后又回到A,是一个循环的过程,是解决本题的关键.18.如图所示,1条直线最多能将圆的内部分成2部分,2条直线最多能将圆的内部分成4部分.那么3条直线最多能将圆的内部分成7部分,5条直线最多能将圆的内部分成16部分.(每部分不要求全等)【分析】n条直线最多能将圆的内部分成多少部分?有(n2)部分.需要动手画图,观察,找规律.【解答】解:3条直线最多能将圆的内部分成4+3=7部分;4条直线最多能将圆的内部分成7+4=11条;5条直线最多能将圆的内部分成11+5=16条.n条直线最多能将圆的内部分成(n2)部分.【点评】本题考查画图观察找规律的能力.19.如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成11部分;圆的十九条弦最多可将圆分成191部分.【分析】根据每增加一条弦,增加了多少个部分,由易到难,寻找变化规律.【解答】解:一条弦将圆分成1+1=2部分,二条弦将圆分成1+1+2=4部分,三条弦将圆分成1+1+2+3=7部分,四条弦将圆分成1+1+2+3+4=11部分,…n条弦将圆分成1+1+2+3+…+n=1+部分,当n=19时,1+=191部分.【点评】本题是规律探讨性题型,由基本图形,逐步寻找一般规律.20.如图,一个人握着板子的一端,另一端放在圆柱上,某人沿水平方向推动板子带动圆柱向前滚动,假设滚动时圆柱与地面无滑动,板子与圆柱也没有滑动.已知板子上的点B(直线与圆柱的横截面的切点)与手握板子处的点C 间的距离BC的长为Lm,当手握板子处的点C随着圆柱的滚动运动到板子与圆柱横截面的切点时,人前进了2L m.【分析】人在向前运动时,圆也向前运动,人运动的距离就是杆子减少的长度与圆柱向前运动的距离的和.【解答】解:因为圆向前滚动的距离是Lm,所以人前进了2Lm.【点评】理解人运动的距离就是杆子减少的长度与圆柱向前运动的距离的和是解题的关键.21.线段AB=10cm,当AB绕它的中点旋转一周时,它所“扫描”经过的平面面积最小,此时面积为25πcm2.【分析】若该线段扫描经过的面积最小,即它旋转所形成的圆的面积最小,即半径最小,可确定,当线段AB绕着其中点旋转时经过的面积最小.【解答】解:当绕AB的中点旋转一周时,所形成的圆的半径最小,即其面积最小:S=52π=25π.故答案为中点、其面积为25cm2.【点评】本题考查了对圆的认识,知道圆的旋转定义及圆的面积公式是解题的关键.22.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是π.【分析】理解A到A′的距离是圆的周长,根据周长公式即可求解.【解答】解:将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A'重合,则转过的距离是圆的周长是π,因而点A'对应的实数是π.故答案为:π.【点评】本题主要考查了圆的周长公式的掌握.23.到点O的距离是5cm的所有点构成的图形是以O为圆心,5cm为半径的圆形.【分析】根据圆的定义即可得到答案.【解答】解:到点O的距离是5cm的所有点构成的图形是:以O为圆心,5cm 为半径的圆形.【点评】本题主要考查了圆的集合定义.24.圆周上有6个点,任两点间连一条线段,则这些线段在圆内的交点最多有15个.【分析】要求最多的交点数,本题等价于将6个点4个分组共有多少组,进而得出答案.【解答】解:每4个圆周上点就可以有一个内部交点,所以当这些交点不重合的时候,圆内交点最多,所以,本题等价于将6个点4个分组共有多少组,显然应该是:=15.故答案为:15.【点评】求交点的最多数,得出即将6个点4个分组共有多少组是解题关键.25.如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积为.【分析】剩下的纸板面积即阴影部分的面积.大圆的面积减去两个小圆的面积就是阴影部分的面积.【解答】解:S=πab.阴故答案为:πab.【点评】考查了不规则图形式面积的求法.不规则图形的面积求法一般采用转化为规则图形的面积和(或差).26.如图是比例尺为1:200的铅球场地的示意图,铅球投掷圈的直径为2.135m,体育课上,某生推出的铅球落在投掷区的点A处,他的铅球成绩约为 6.1m (精确到0.1m).【分析】首先量得图上距离,投掷圈的圆心到A点的距离大约3.6厘米,再根据实际距离=比例尺÷图上距离进行计算.【解答】解:∵3.6÷≈720cm=7.2m,∴7.2﹣2.135÷2=7.2﹣1.0675=6.1325≈6.1m.故答案为:6.1m.【点评】利用刻度尺量出圆心到A得图上距离,根据比例尺得到实际距离是解题的基本思路,正确进行测量是解决本题的关键.27.如图,两个半径都是4cm的圆外切于点C,一只蚂蚁由点A开始依ABCDEFCGA 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断地爬行,直到行走2006πcm后才停下来,请问这只蚂蚁停在哪一个点?答:停在D点.【分析】利用周长公式计算,再根据相邻两点间的路程计算走了整圈后,又走了几个点.【解答】解:根据行走一圈的周长是16π,每相邻两点间的路程是2π,2006π=16π×125+6π,则最后停在了第4个点,即D点.故选D.【点评】这里首先要计算一共走了多少圈,还余多少路程,再根据相邻两点间的路程计算走了整圈后,又走了几个点.28.已知⊙O的半径为4cm,以O为圆心的小圆与⊙O组成的圆环的面积等于小圆的面积,则这个小圆的半径是cm.【分析】由题意可求得大圆的面积及小圆的面积,再根据面积公式即可求得小圆的半径.【解答】解:∵⊙O的半径为4cm,∴圆的面积是16cm2,∴小圆的面积是8cm2,设小圆的半径是r,则πr2=8,∴r=2cm.【点评】本题主要考查圆的面积的计算公式.29.如果把人的头顶和脚底分别看作一个点,把地球赤道看作一个圆,那么身高2m的小赵沿着赤道环行一周,他的头顶比脚底多行4πm.【分析】根据圆的周长公式进行分析即可得到答案.【解答】解:设地球的半径是R,则人头绕地球环形时,人头经过的圆的半径是(R+2)m.地球的周长是2πRm,人头环形一周的周长是2π(R+2)m,因而他的头顶比脚底多行2π(R+2)﹣2πR=4πm.【点评】本题主要考查了圆的周长的计算方法.30.在同一平面内,1个圆把平面分成0×1+2=2个部分,2个圆把平面最多分成1×2+2=4个部分,3个圆把平面最多分成2×3+2=8个部分,4个圆把平面最多分成3×4+2=14个部分,那么10个圆把平面最多分成92个部分.【分析】根据例题可以得到n个圆分成的部分有:(n﹣1)•n+2个部分.进而就可以得到结果.【解答】解:10个圆把平面最多分成9×10+2=92个部分.【点评】此题注意发现规律是解决本题的关键.31.如右图中有1条直径,有4条弦,以点A为端点的优弧有2条,有劣弧2条.【分析】根据直径、弦、优弧及劣弧的概念解答即可得.【解答】解:图中直径只有AB这1条,弦有AC、AB、CD、BC这4条,以点A 为端点的优弧有、这2条,劣弧有、这2条,故答案为:1、4、2、2.【点评】本题主要考查圆的认识,解题的关键是掌握连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.32.圆既是轴对称图形,又是中心对称图形.【分析】根据轴对称图形、中心对称图形的定义即可判断.【解答】解:圆既是轴对称图形,又是中心对称图形.故答案为轴、中心;【点评】本题考查圆的认识,轴对称图形,中心对称图形等知识,解题的关键是熟练掌握基本知识,所以中考常考题型.33.如图,圆中以A为一个端点的优弧有3条,劣弧有3条.【分析】根据优弧和劣弧的定义写出答案即可.【解答】解:圆中以A为一个端点的优弧有、、这3条,以A为一个端点的劣弧有、、这3条,故答案为:3、3.【点评】本题考查了圆的认识,解题的关键是能够了解优弧和劣弧的定义.34.若圆的半径为r,则圆的周长公式C=2πr,圆的面积公式S=πr2.【分析】根据圆的面积和周长公式即可解决问题;【解答】解:若圆的半径为r,则圆的周长公式C=2πr,圆的面积公式S=πr2.故答案为2πr,πr2.【点评】本题考查圆的认识,圆的面积和周长公式等知识,解题的关键是记住圆的面积公式和周长公式.35.到点O的距离等于4的点的集合是以点O为圆心,以4为半径的圆.【分析】根据圆的定义即可解答.【解答】解:到点O的距离等于8的点的集合是:以点O为圆心,以4为半径的圆.故答案是:以点O为圆心,以4为半径的圆.【点评】本题考查了圆的定义:圆是到定点距离等于定长的点的集合.36.有以下结论:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④半径相等的两个半圆是等弧;⑤长度相等的两条弧是等弧.其中错误的有②⑤(填序号).【分析】根据弦和直径的定义对①②进行判断;根据弧的定义对③进行判断;根据等弧的定义对④⑤进行判断.【解答】解:直径是最长的弦,所以①为真命题;弦不一定是直径,所以②为假命题;半圆是弧,但弧不一定是半圆,所以③为真命题;半径相等的两个半圆是等弧,所以④为真命题;长度相等的两条弧不一定是等弧,所以⑤为假命题.故答案为②⑤.【点评】本题考查了圆的认识,掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)是解题的关键.37.如图,圆中有一条直径,三条弦,圆中以A为一个端点的优弧有四条,劣弧有四条.【分析】根据直径、弦、优弧和劣弧的定义写出答案即可.【解答】解:圆中有AB一条直径,AB、CD、EF三条弦,圆中以A为一个端点的优弧有四条,劣弧有四条,故答案为:一,三,四,四.【点评】本题考查了圆的认识,解题的关键是能够了解圆内有关的定义,难度不大.38.某校计划在校园内修建一座周长为20m的花坛,同学们设计出正三角形,正方形和圆三种图案,通过计算说明使花坛面积最大的图案是圆(填图形).【分析】根据周长相等的所有图形中圆的面积最大求解.【解答】解:∵周长相等的所有图形中圆的面积最大,∴同学们设计出正三角形,正方形和圆三种图案,通过计算说明使花坛面积最大的图案是圆,。
华师大版初中数学九年级下册《27.1.3 圆周角》同步练习卷

华师大新版九年级下学期《27.1.3 圆周角》2019年同步练习卷一.填空题(共50小题)1.如图,正方形ABCD内接于⊙O,E是劣弧CD上一动点,则∠AEB=°.2.如图,AB是⊙O的直径,点C、D在圆上,∠D=65°,则∠BAC等于度.3.⊙O是正方形ABCD的外接圆,若点P在⊙O上且与A,B不重合,则∠APB的大小为度度.4.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,设∠A=α,则∠E+∠F=(用含α的式子表示).5.如图,四边形ABCD内接于⊙O,若∠ABD=62°,∠C=122°,则∠ADB的度数为°.6.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A =°.7.如图,AB是⊙O的直径,弦BC=4cm,点F是弦BC的中点,∠ABC=60°,若动点E 以2cm/s的速度在线段AB上由A向B运动,连接EF,设运动时间为t(s),当△BEF 是直角三角形时,t的值等于.8.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是.9.如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,150°,则∠AOB的度数为;∠B的度数为.10.如图,四边形ABCD内接于⊙O,AB是直径,OD∥BC,∠ABC=40°,则∠BCD的度数为11.如图,AB是⊙O的直径,点C和点D在⊙O上,若∠BDC=20°,则∠AOC等于度.12.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠OBC=50°,则∠ACB =°.13.如图,AB、AC是⊙O的弦,OE⊥AB、OF⊥AC,垂足分别为E、F.如果∠EOF=100°,∠C=60°,那么∠FEA=.14.如图,AB是⊙O的直径,C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为.15.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的正弦值是.16.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O 于点F,则∠BAF=.17.如图,平面直角坐标系中,O为坐标原点,以O为圆心作⊙O,点A、C分别是⊙O与x轴负半轴、y轴正半轴的交点,点B、D在⊙O上,那么∠ADC的度数是.18.如图,BD为⊙O的直径,点A为的中点,∠ABD=35°,则∠DBC=°.19.如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为.20.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE=.21.如图,点D(0,3),O(0,0),C(4,0),B在⊙A上,BD是⊙A的一条弦.则sin ∠OBD=.22.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,若∠D=130°,则∠CAB=度.23.如图,已知AB,CD为⊙O的直径,且CH垂直平分OB于点H,则tan∠HDC=.24.如图,⊙O是四边形ABCD的外接圆,CE∥AD交AB于点E,BE=BC,∠BCD=122°,则∠ADC=°.25.如图,在⊙O的内接五边形ABCDE中,∠CAD=40°,则∠B+∠E=.26.如图,点A、D在⊙O上,BC是直径,∠D=35°,则∠OAC=.27.如图,⊙O的弦AB、CD相交于点P,已知CP=3,PD=4,AP=2,那么AB=.28.如图,A、B、C、D是半径为10的⊙O上的四点,其中∠CAD=∠ABD°=60°.则圆心O到CD的距离OE是.29.如图,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠E=15°,则∠AOC的度数为.30.如图,已知点A,B,C,D都在⊙O上,CD=6cm,∠ABC=120°,则⊙O的面积为.31.如图所示,以锐角△ABC的边AB为直径作⊙O,交AC,BC于E、D两点.若AC=14,7sin C=3tan B,则BD=.32.如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,圆O经过A、C、E三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=.33.如图,正方形ABCD的四个顶点分别在⊙O上,点P在上不同于点C的任意一点,则∠DPC的度数是度.34.如图,⊙O为△ABC的外接圆,其中D点在上,且OD⊥AC,已知∠A=36°,∠C =60°,则∠BOD=.35.如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=.36.如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C位于弦AB两侧,连接AD、CD、OB,若∠BOC=70°,则∠ADC=度.37.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=°.38.如图,已知⊙O的直径为8cm,A、B、C三点在⊙O上,且∠ACB=30°,则AB长.39.如图所示,四边形ABCD内接于⊙O,∠ABC=115°,则∠AOC的度数为度.40.如图,在⊙O中,直径为AB,∠ACB的平分线交⊙O于D,则∠ABD=.41.如图,AB是⊙O的直径,点C在⊙O上,且点D在上.若∠AOC=134°,则∠BDC 的大小为度.42.如图,AB为⊙O直径,点C,D在⊙O上,tan∠CAB=,则∠ADC=.43.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则⊙C的半径为.44.如图,点D为∠BAC边AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作半圆,交AC于另一点E,交AB于点F、G,连接EF.若∠BAC=22°,则∠EFG=°.45.如图,AD为⊙O的直径,∠ABC=75°,且AC=BC,则∠BED=.46.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为.47.如图,已知AB是⊙O的直径,BC为弦,过圆心O作OD⊥BC交弧BC于点D,连接DC,若∠DCB=32°,则∠BAC=.48.如图,⊙O的弦AB=8cm,点C为优弧上的动点,且∠ACB=30°.若弦DE经过弦AC、BC的中点M、N,则DM+EN的最大值是cm.49.如图,AB是⊙O的直径,且弦AC=3,圆周角∠D=30°,则弦BC的长为.50.四边形ABCD内接于⊙O,AB是直径,∠ABD=30°,则∠BCD的度数为.华师大新版九年级下学期《27.1.3 圆周角》2019年同步练习卷参考答案与试题解析一.填空题(共50小题)1.如图,正方形ABCD内接于⊙O,E是劣弧CD上一动点,则∠AEB=45°.【分析】连接OA、OB,如图,利用正方形的性质得∠AOB=90°,然后根据圆周角定理得到∠AEB的度数.【解答】解:连接OA、OB,如图,∵四边形ABCD为正方形,∴∠AOB=90°,∴∠AEB=∠AOB=45°.故答案为45.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了正方形的性质.2.如图,AB是⊙O的直径,点C、D在圆上,∠D=65°,则∠BAC等于25度.【分析】由AB是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可求得∠ACB 的度数,又由∠D=65°,即可求得∠B的度数,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BAC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠D=65°,∠B与∠D是对的圆周角,∴∠D=∠B=65°,∴∠BAC=90°﹣∠B=25°.故答案为:25.【点评】此题考查了圆周角定理.此题比较简单,解题的关键是掌握半圆(或直径)所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.3.⊙O是正方形ABCD的外接圆,若点P在⊙O上且与A,B不重合,则∠APB的大小为度45度.【分析】连接OA,OB,根据正方形的性质得到∠AOB=90°,根据圆周角定理解答即可.【解答】解:连接OA,OB,∵四边形ABCD是⊙O的内接正方形,∴∠AOB==90°,由圆周角定理得,∠APB=∠AOB=45°,故答案为:45.【点评】本题考查的是正方形的性质,圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,设∠A=α,则∠E+∠F=180°﹣2α(用含α的式子表示).【分析】根据圆内接四边形的性质得到∠ADC+∠ABC=180°,∠ECD=∠A=α,∠BCF =∠A=α,根据三角形内角和定理计算即可.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∠ECD=∠A=α,∠BCF=∠A=α,∴∠EDC+∠FBC=180°,∴∠E+∠F=360°﹣180°﹣2α=180°﹣2α,故答案为:180°﹣2α.【点评】本题考查的是圆内接四边形的性质、三角形内角和定理,掌握圆内接四边形的对角互、圆内接四边形的任意一个外角等于它的内对角是解题的关键.5.如图,四边形ABCD内接于⊙O,若∠ABD=62°,∠C=122°,则∠ADB的度数为60°.【分析】首先根据圆内接四边形的性质根据∠C求得∠A的度数,然后利用三角形内角和定理求得∠ADB的度数.【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠C=122°,∴∠A=58°,∵∠ABD=62°,∴∠ADB=180°﹣∠ABD﹣∠A=180°﹣62°﹣58°=60°,故答案为:60.【点评】本题考查了圆内接四边形的性质,解题的关键是根据圆内接四边形对角互补确定∠A的度数,难度不大.6.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A =22.5°.【分析】连接半径OC,先根据点C为的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=×45°,可得结论.【解答】解:连接OC,∵OE⊥AB,∴∠EOB=90°,∵点C为的中点,∴∠BOC=45°,∵OA=OC,∴∠A=∠ACO=×45°=22.5°,故答案为:22.5°.【点评】此题考查了圆周角定理与等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.如图,AB是⊙O的直径,弦BC=4cm,点F是弦BC的中点,∠ABC=60°,若动点E 以2cm/s的速度在线段AB上由A向B运动,连接EF,设运动时间为t(s),当△BEF 是直角三角形时,t的值等于2s或s.【分析】求出∠C=90°,求出AB,分为两种情况:画出图形,根据图形求出移动的距离即可.【解答】解:∵动点E以2cm/s的速度从A点出发沿着A→B的方向运动,∵AB是⊙O直径,∴∠C=90°,∵F为BC中点,BC=4cm,∴BF=CF=2cm,∵∠C=90°,∠B=60°,∴∠A=30°,∴AB=2BC=8cm,分为两种情况:①当∠EFB=90°时,∵∠C=90°,∴∠EFB=∠C,∴AC∥EF,∵FC=BF,∴AE=BE,即E和O重合,AE=4,t=4÷2=2(s);②当∠FEB=90°时,∵∠ABC=60°,∴∠BFE=30°,∴BE=BF=1,AE=8﹣1=7,t=7÷2=(s);故答案为:2s或s.【点评】本题考查了圆周角定理,含30度角的直角三角形性质,平行线分线段成比例定理等知识点的综合运用,注意要进行分类讨论啊.8.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是30°.【分析】连接DC,根据正切的定义求出∠OCD,根据圆周角定理解答.【解答】解:连接DC,在Rt△DOC中,tan∠OCD==,则∠OCD=30°,由圆周角定理得,∠OBD=∠OCD=30°,故答案为:30°.【点评】本题考查的是圆周角定理,坐标与图形性质,正切的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等是解题的关键.9.如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,150°,则∠AOB的度数为105°;∠B的度数为25°.【分析】根据量角器的知识,可直接求出∠AOB,连结OD,如图,根据题意得∠DOC=25°,∠AOD=90°,由于OD=OA,则∠ADO=45°,然后利用三角形外角性质得∠ADO=∠B+∠DOB,所以∠B=45°﹣25°=20°【解答】解:∵点C、D、A在量角器上对应读数分别为45°,70°,150°,∴∠AOB=∠MOA﹣∠MOC=150°﹣45°=105°,连结OD,如图,则∠DOC=70°﹣45°=25°,∠AOD=150°﹣70°=80°,∵OD=OA,∴∠ADO=50°,∵∠ADO=∠B+∠DOB,∴∠B=50°﹣25°=25°.故答案为:105°,25°.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).10.如图,四边形ABCD内接于⊙O,AB是直径,OD∥BC,∠ABC=40°,则∠BCD的度数为110°【分析】根据平行线的性质求出∠AOD,根据等腰三角形的性质求出∠OAD,根据圆内接四边形的性质计算即可.【解答】解:∵OD∥BC,∴∠AOD=∠ABC=40°,∵OA=OD,∴∠OAD=∠ODA=70°,∵四边形ABCD内接于⊙O,∴∠BCD=180°﹣∠OAD=110°,故答案为:110°.【点评】本题考查的是圆内接四边形的性质、平行线的性质,掌握圆内接四边形的对角互补是解题的关键.11.如图,AB是⊙O的直径,点C和点D在⊙O上,若∠BDC=20°,则∠AOC等于140度.【分析】可先利用圆周角定理求得∠BOC,再利用邻补角可求得∠AOC.【解答】解:∵∠BDC=20°,∴∠BOC=40°,∴∠AOC=180°﹣40°=140°.故答案为:140【点评】本题主要考查圆周角定理,掌握同弧所对的圆周角等于圆心角的一半是解题的关键.12.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠OBC=50°,则∠ACB=20°.【分析】根据圆周角定理即可得到结论.【解答】解:∵OB=OC,∠OBC=50°,∴∠BOC=180°﹣2∠OBC=80°,∵∠BOC=2∠AOB,∴∠AOB=∠BOC=40°,∴∠ACB=AOB=20°.故答案为:20.【点评】此题主要考查了圆周角定理的应用,熟记圆周角定理是解题关键.13.如图,AB、AC是⊙O的弦,OE⊥AB、OF⊥AC,垂足分别为E、F.如果∠EOF=100°,∠C=60°,那么∠FEA=40°.【分析】先求出∠A,进而得出∠B=40°,再由OE垂直于AB,利用垂径定理得到E为AB 的中点,同理得到F为AC的中点,可得出EF为三角形ABC的中位线,即可得出结论.【解答】解:∵OE⊥AB,OF⊥AC,∴∠OF A=∠OEA=90°,∴∠A=180﹣∠EOF=80°,∵∠C=60°,∴∠B=180°﹣80°﹣60°=40°,∵OE⊥AB,OF⊥AC,∴E为AB的中点,F为AC的中点,即EF为△ABC的中位线,∴EF∥BC,∴∠FEA=∠B=40°,故答案为:40°【点评】此题考查了四边形内角和,垂径定理,以及三角形中位线定理,平行线的性质,熟练掌握垂径定理是解本题的关键.14.如图,AB是⊙O的直径,C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为110°.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故答案为:110°.【点评】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的正弦值是.【分析】直接利用圆周角定理结合勾股定理以及锐角三角函数关系得出答案.【解答】解:由题意可得:∠AED=∠ABC,故∠AED的正弦值为:sin∠ABC===.故答案为:.【点评】此题主要考查了圆周角定理以及解直角三角形,正确得出:∠AED=∠ABC是解题关键.16.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O 于点F,则∠BAF=15°.【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【解答】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°,故答案为:15°.【点评】本题考查的是圆周角定理、平行四边形的性质定理、等边三角形的性质的综合运用,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、等腰三角形的三线合一是解题的关键.17.如图,平面直角坐标系中,O为坐标原点,以O为圆心作⊙O,点A、C分别是⊙O与x轴负半轴、y轴正半轴的交点,点B、D在⊙O上,那么∠ADC的度数是135°.【分析】利用“在同圆中,同弧所对的圆周角是所对的圆心角的一半”求得∠ABC=∠AOC =45°;然后由圆内接四边形的对角互补来求∠ADC的度数.【解答】解:如图,∵∠AOC=90°,∴∠ABC=∠AOC=45°,又∵点A、B、C、D共圆,∴∠ADC+∠ABC=180°,∴∠ADC=135°.故答案是:135°.【点评】本题考查了圆周角定理、坐标与图形性质以及圆内接四边形的性质.此题利用圆周角定理求得∠ABC的度数是解题的关键.18.如图,BD为⊙O的直径,点A为的中点,∠ABD=35°,则∠DBC=20°.【分析】求出∠BAD=90°,求出∠ADB=55°,推出∠ACB=∠ADB=55°,求出AB=AC,推出∠ABC=∠ACB=55°,即可得出答案.【解答】解:连接AD,∵BD是直径,∴∠BAD=90°,∵∠ABD=35°,∴∠ADB=55°,∴∠ACB=∠ADB=55°,∵A为弧BDC的中点,∴AB=AC,∴∠ABC=∠ACB=55°,∵∠ABD=35°,∴∠DBC=55°﹣35°=20°,故答案为:20.【点评】本题考查了等腰三角形性质,圆周角定理,三角形内角和定理的应用,主要考查学生的推理能力.19.如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为.【分析】作直径BE,连接CE,作CF⊥BE于点F,则在直角△BCE中可以利用勾股定理求得EC的长,然后证明∠EBC=∠ECF=∠ACD,求得tan∠EBC即可.【解答】解:作直径BE,连接CE,作CF⊥BE于点F.∵CF⊥BE,CD⊥AB又∵∠A=∠E,∴∠ECF=∠ACD.∵BE是直径,CF⊥BE,∴∠BCE=90°,∠EBC=∠ECF=∠ACD,∴EC==8,∴tan∠EBC===.∴tan∠ACD=tan∠EBC=.故答案是:.【点评】本题考查了圆周角定理,以及三角函数的定义,勾股定理,正确作出辅助线是关键.20.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE=2.【分析】连接OD,OC,AD,由⊙O的直径AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根据勾股定理可求出AD的长,在Rt△ADE 中,利用∠DAC的正切值求解即可.【解答】解:连接OD,OC,AD,∵半圆O的直径AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴AD===2,在Rt△ADE中,∵∠DAC=30°,∴DE=AD•tan30°=2×=2.故答案为:2.【点评】本题考查了圆周角定理、相似三角形的判定和性质、勾股定理的应用等知识;本题要特别注意的是BE、DE不是相似三角形的对应边,它们的比不等于相似比,以免造成错解.21.如图,点D(0,3),O(0,0),C(4,0),B在⊙A上,BD是⊙A的一条弦.则sin∠OBD=.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC =4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∴CD=5,连接CD,∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故答案为:.【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义,是基础知识要熟练掌握.22.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,若∠D=130°,则∠CAB=40度.【分析】根据圆内接四边形的性质求出∠B,根据圆周角定理得到∠ACB=90°,根据三角形内角和定理计算即可.【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∴∠B=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°∴∠CAB=90°﹣50°=40°,故答案为:40.【点评】本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.23.如图,已知AB,CD为⊙O的直径,且CH垂直平分OB于点H,则tan∠HDC=.【分析】利用锐角三角三角函数关系得出∠COH=60°,进而表示出EH,DE的长,即可得出答案.【解答】解:如图所示:过点H作EH⊥DC于点E,∵CH垂直平分OB于点H,∴OH=CO,∴sin∠OCH==,∴∠OCH=30°,∴∠COH=60°,∴设EO=x,则HO=2x,EH=x,DO=4x,则tan∠HDC===.故答案为:.【点评】此题主要考查了圆周角定理以及锐角三角三角函数关系,正确得出∠COH的度数是解题关键.24.如图,⊙O是四边形ABCD的外接圆,CE∥AD交AB于点E,BE=BC,∠BCD=122°,则∠ADC=116°.【分析】根据内接四边形的对角互补和平行线的性质解答即可.【解答】解:∵CE∥AD,∴∠A=∠BEC,∵BE=BC,∴∠BEC=∠ECB,∵∠BCD=122°,∴∠A=180°﹣122°=58°,∴∠BEC=∠ECB=∠A=58°,∴∠B=180°﹣58°﹣58°=64°,∴∠ADC=180°﹣64°=116°,故答案为:116【点评】此题考查圆内接四边形的性质,关键是根据内接四边形的对角互补解答.25.如图,在⊙O的内接五边形ABCDE中,∠CAD=40°,则∠B+∠E=220°.【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠E=180°+40°=220°.故答案为:220.【点评】本题考查了圆周角定理及圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.26.如图,点A、D在⊙O上,BC是直径,∠D=35°,则∠OAC=55°.【分析】由圆周角定理推论可求得∠AOC,在△AOC中由三角形内角和定理可求得答案.【解答】解:∵点A、D在⊙O上,BC是直径,∠D=35°,∴∠AOC=2∠D=70°,∵OA=OC,∴∠OAC==55°,故答案为:55°.【点评】本题主要考查圆周角定理,掌握同弧所对的圆周角等于圆心角的一半是解题的关键.27.如图,⊙O的弦AB、CD相交于点P,已知CP=3,PD=4,AP=2,那么AB=8.【分析】根据相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”进行计算.【解答】解:由相交弦定理得:P A•PB=PC•PD,∴BP===6,∴AB=8,故答案为8.【点评】本题主要考查相交弦定理:圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等..28.如图,A、B、C、D是半径为10的⊙O上的四点,其中∠CAD=∠ABD°=60°.则圆心O到CD的距离OE是5.【分析】连接OC,由等边三角形的性质可知,∠OCE=30°,根据OC=10利用直角三角形的性质即可得出结论.【解答】证明:连接OC.在△ACD中,∵∠CAD=∠ABD=60°,∠ACD=∠ABD,∴∠ACD=60°,∴∠ADC=180°﹣∠CAD﹣∠ACD=180°﹣60°﹣60°=60°,∴△ACD是等边三角形;∵⊙O为△ACD外接圆,∴O也为△ACD的内心,∴CO平分∠ACD,∴∠OCE=30°,∴OE=OC=5.故答案为5.【点评】本题考查了圆周角定理、等边三角形的判定,直角三角形的性质等知识,将各知识点有机结合,旨在考查同学们的综合应用能力.29.如图,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠E=15°,则∠AOC的度数为45°.【分析】求∠AOC的度数,可以转化为求∠C与∠E的问题.【解答】解:连接OD,∵AB=2DE=2OD,∴OD=DE,又∠E=15°,∴∠DOE=∠E=15°,∴∠ODC=30°,同理∠C=∠ODC=30°∴∠AOC=∠E+∠OCE=45°.故答案为:45°.【点评】本题主要考查了三角形的外角和定理,外角等于不相邻的两个内角的和.30.如图,已知点A,B,C,D都在⊙O上,CD=6cm,∠ABC=120°,则⊙O的面积为36π.【分析】先利用圆内接四边形的性质得到∠D=60°,再根据圆周角定理得∠ACD=90°,接着根据含30度的直角三角形的三边的关系得到AD=12,然后利用圆的面积公式计算.【解答】解:∵∠ABC+∠D=180°,∴∠D=180°﹣120°=60°,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=2CD=12,∴⊙O的半径为6,⊙O的面积为36π.故答案为36π.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.31.如图所示,以锐角△ABC的边AB为直径作⊙O,交AC,BC于E、D两点.若AC=14,7sin C=3tan B,则BD=6.【分析】连接AD,分别在Rt△ACD和Rt△ABD中,表示出sin C和tan B的值,根据它们的比例关系,即可求得BD、AC的关系式,进而代值计算即可.【解答】解:连接AD,∵AB为直径,∴∠ADB=90°,∴在Rt△ACD和Rt△ABD中,sin C=,tan B=,由7sin C=3tan B,可得:7×=3×,即3AC=7BD,∵AC=14,∴BD=6.故答案为:6.【点评】此题主要考查的是圆周角定理和锐角三角函数的定义,以AD为介质来得到AC、BD的比例关系是解决问题的关键.32.如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,圆O经过A、C、E三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=18°.【分析】连接AE,根据圆周角定理可得出∠AEC的度数,再由直角三角形的性质得出AE =BE,根据三角形外角的性质即可得出结论.【解答】解:连接AE,∵∠AFC=36°,∴∠AEC=36°.∵点E是斜边BC的中点,∴AE=BE,∴∠B=∠BAE.∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠BAE=2∠B=36°,∴∠B=18°.故答案为:18°.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.33.如图,正方形ABCD的四个顶点分别在⊙O上,点P在上不同于点C的任意一点,则∠DPC的度数是135度.【分析】直接利用正方形的性质得出∠DBC的度数,再利用圆内接四边形的性质得出答案.【解答】解:连接BD,∵四边形ABCD是正方形,∴∠DBC=45°,∴∠DPC=180°﹣45°=135°.故答案为:135.【点评】此题主要考查了正方形的性质以及圆内接四边形的性质,正确掌握正方形性质是解题关键.34.如图,⊙O为△ABC的外接圆,其中D点在上,且OD⊥AC,已知∠A=36°,∠C =60°,则∠BOD=156°.【分析】连接CO,由圆周角定理可求∠BOC,由等腰三角形的性质求∠BCO,可得∠OCA,利用互余关系求∠COD,则∠BOD=∠BOC+∠COD.【解答】解:连接CO,∠BOC=2∠A=2×36°=72°,在△BOC中,∵BO=CO,∴∠BCO=(180°﹣72°)÷2=54°,∴∠OCA=∠BCA﹣54°=60°﹣54°=6°,又∵OD⊥AC,∴∠COD=90°﹣∠OCA=90°﹣6°=84°,∴∠BOD=∠BOC+∠COD=72°+84°=156°.故答案为:156°.【点评】本题考查了圆周角定理.关键是将圆周角的度数转化为圆心角的度数,利用互余关系,角的和差关系求解.35.如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=80°.【分析】连接EM,根据等腰三角形的性质得到AM⊥BC,进而求出∠AMD=70°,于是得到结论.【解答】解:连接EM,∵AB=AC,∠BAM=∠CAM,∴AM⊥BC,∵AM为⊙O的直径,∴∠ADM=∠AEM=90°,∴∠AME=∠AMD=90°﹣∠BMD=50°∴∠EAM=40°,∴∠EOM=2∠EAM=80°,故答案为:80°.【点评】本题考查了等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.36.如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C位于弦AB两侧,连接AD、CD、OB,若∠BOC=70°,则∠ADC=35度.【分析】首先利用垂径定理证明,=,推出∠AOC=∠COB=70°,可得∠ADC=AOC =35°.【解答】解:如图,连接OA.∵OC⊥AB,∴=,∴∠AOC=∠COB=70°,∴∠ADC=AOC=35°,故答案为35.【点评】本题考查圆周角定理、垂径定理等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题.37.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=27°.【分析】根据菱形的性质得到∠ACB=∠DCB=(180°﹣∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【解答】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°﹣∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.【点评】本题考查了菱形的性质,三角形的外角的性质,圆内接四边形的性质,熟练掌握菱形的性质是解题的关键.38.如图,已知⊙O的直径为8cm,A、B、C三点在⊙O上,且∠ACB=30°,则AB长4cm.【分析】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠ACB=30°,根据直角三角形的性质解答.【解答】解:作直径AD,连接BD,∴∠ABD=90°,由圆周角定理得,∠D=∠ACB=30°,∴AB=AD=4cm,故答案为:4cm.【点评】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、直径所对的圆周角是直角是解题的关键.39.如图所示,四边形ABCD内接于⊙O,∠ABC=115°,则∠AOC的度数为130度.【分析】先根据圆内接四边形的性质求出∠D,再利用圆周角定理解答.【解答】解:∵∠ABC=115°∴∠D=180°﹣∠B=65°∴∠AOC=2∠D=130°.故答案为:130.【点评】本题利用了圆周角定理,圆内接四边形的性质求解.40.如图,在⊙O中,直径为AB,∠ACB的平分线交⊙O于D,则∠ABD=45°.【分析】由AB为直径,得到∠ACB=90°,由因为CD平分∠ACB,所以∠ACD=45°,这样就可求出∠ABD.【解答】解:∵AB为直径,∴∠ACB=90°,又∵CD平分∠ACB,∴∠ACD=45°,∴∠ABD=∠ACD=45°.故答案为45°.【点评】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了直径所对的圆周角为90度.41.如图,AB是⊙O的直径,点C在⊙O上,且点D在上.若∠AOC=134°,则∠BDC 的大小为23度.【分析】可先求得∠BOC,再利用圆周角定理可求得∠BDC.【解答】解:∵AB是⊙O的直径,且∠AOC=134°,∴∠BOC=180°﹣134°=46°,∴∠BDC=∠BOC=23°,故答案为:23.【点评】本题主要考查圆周角定理,掌握同弧所对的圆周角等于圆心角的一半是解题的关键.42.如图,AB为⊙O直径,点C,D在⊙O上,tan∠CAB=,则∠ADC=30°.【分析】连接BC,如图,先利用特殊角的三角函数值得到∠CAB=60°,然后根据圆周角定理得到∠ACB=90°,利用互余得到∠B=30°,然后根据圆周角定理得到∠ADC=∠B=30°.【解答】解:连接BC,如图,∵tan∠CAB=,∴∠CAB=60°,∵AB为直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=30°,∴∠ADC=∠B=30°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.43.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则⊙C的半径为3.【分析】根据圆内接四边形的对角互补求出∠A的度数,得到∠ABO的度数,根据直角三角形的性质求出AB的长,得到答案.【解答】解:∵点A的坐标为(0,3),∴OA=3,∵四边形ABMO是圆内接四边形,∴∠BMO+∠A=180°,又∠BMO=120°,∴∠A=60°,则∠ABO=30°,∴AB=2OA=6,则则⊙C的半径为3,故答案为:3.【点评】本题考查的是圆内接四边形的性质和直角三角形的性质,掌握圆内接四边形的对角互补是解题的关键.44.如图,点D为∠BAC边AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作半圆,交AC于另一点E,交AB于点F、G,连接EF.若∠BAC=22°,则∠EFG=33°.【分析】先根据等边对等角可求∠DOA=∠BAC=22°,然后根据圆周角定理可求:∠AEF =∠DOA=11°,然后根据三角形外角的性质即可求∠EFG的度数.【解答】解:∵AD=DO,∴∠DOA=∠BAC=22°,∴∠AEF=∠DOA=11°,∵∠EFG=∠BAC+∠AEF,∴∠EFG=33°.故答案为:33.【点评】此题考查了圆周角定理,等腰三角形的性质和三角形外角的性质,熟记定理与性质是解题的关键.45.如图,AD为⊙O的直径,∠ABC=75°,且AC=BC,则∠BED=135°.【分析】由AD为⊙O的直径,∠ABC=75°,且AC=BC,可求得∠ABD=90°,∠D=∠C=30°,继而可得∠CBD=15°,由三角形内角和定理,即可求得答案.【解答】解:∵AD为⊙O的直径,∴∠ABD=90°,∵AC=BC,∠ABC=75°,∴∠BAC=∠ABC=75°,∴∠C=180°﹣∠ABC﹣∠BAC=30°,∠CBD=∠ABD﹣∠ABC=15°,∴∠D=∠C=30°,∴∠BED=180°﹣∠CBD﹣∠D=135°.故答案为:135°.【点评】此题考查了圆周角定理、等腰三角形的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.46.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为.【分析】首先设⊙A与x轴的另一个交点为D,连接CD,根据直角对的圆周角是直径,即可得CD是直径,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,可得∠OBC=∠ODC,继而可求得答案.【解答】解:设⊙A与x轴的另一个交点为D,连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵C(0,5),∴OC=5,∴OD==5,∵∠OBC=∠ODC,∴cos∠OBC=cos∠ODC===.故答案为:.【点评】此题考查了圆周角定理、勾股定理以及三角函数的定义.注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂径定理27.1.3一.选择题(共5小题)1.如图,⊙O的半径为5,弦心距OC=3,则弦AB的长是()A.4B.6C.8D.52.如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中错误的是()A.CE=DE B.=C.∠BAC=∠BAD D.OE=BE 3.如图,⊙O的半径为10cm,弦AB的弦心距OC为6cm,则AB的长是()A.16cm B.10cm C.8cm D.6cm 4.在⊙O中,弦AB垂直且平分一条半径,则劣弧的度数等于()A.30°B.120°C.150°D.60°5.如图,⊙O中,OD⊥AB于点C,OB=13,AB=24,则OC的长为()A.3B.4C.5D.6二.填空题(共10小题)6.如图,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是.7.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD=cm.8.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是.9.如图,⊙O是△ABC的外接圆,且AB=AC=5,BC=8,则⊙O的半径为.10.如图,⊙O的直径CD与弦AB(非直径)交于点M,添加一个条件:,使得=.11.AB是⊙O的弦,半径OA=20cm,∠AOB=120°,则△AOB的面积是cm2.12.如图,∠P AC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,则线段EF的长是cm.13.如图,⊙O的直径AB与弦CD交于点E,AE=5,BE=1,CD=4,则∠AED=.14.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为10,AB=16,则CD的长是.15.半径等于16的圆中,垂直平分半径的弦长为.三.解答题(共6小题)16.在圆O中,直径CD⊥弦AB于E,AB=6,=,求DE的长.17.如图,△ABC中,∠ACB=90°,CA=15cm,CB=20cm,以CA为半径的⊙C交AB 于D,求AD的长.18.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,OC=5cm,求DC的长.19.如图,AB是半圆O的直径,点C在半圆O上,CD⊥AB于D,AB=12,DB=4,求CD的长.20.如图,⊙O的半径OA=5cm,AB是弦,C是AB上一点,且OC⊥OA,OC=BC (1)求∠A的度数.(2)求AB的长.21.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,求BE的长.垂径定理27.1.3参考答案与试题解析一.选择题(共5小题)1.如图,⊙O的半径为5,弦心距OC=3,则弦AB的长是()A.4B.6C.8D.5解:连接OA,如图所示:∵OC⊥AB,OC=3,OA=5,∴AB=2AC,∵AC===4,∴AB=2AC=8.故选:C.2.如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中错误的是()A.CE=DE B.=C.∠BAC=∠BAD D.OE=BE 解:根据垂径定理和等弧对等弦,得A、B、C正确,只有D错误.故选:2.D.3.如图,⊙O的半径为10cm,弦AB的弦心距OC为6cm,则AB的长是()A.16cm B.10cm C.8cm D.6cm 解:连接OA,∵弦AB垂直OC,⊙O的半径为10cm,∴OA=10cm,OC=6cm,由勾股定理得:AC==8cm,∴AB=2AC=16cm,故选:A.4.在⊙O中,弦AB垂直且平分一条半径,则劣弧的度数等于()A.30°B.120°C.150°D.60°解:如图所示:连接OA,OB,∵AB垂直且平分OD,∴AB=2AE,OA=2EO,∴∠OAE=30°,∴∠AOE=60°,同理,∠BOE=60°,∴∠AOB=∠AOE+∠BOE=120°.故选:4.B.5.如图,⊙O中,OD⊥AB于点C,OB=13,AB=24,则OC的长为()A.3B.4C.5D.6解:∵OD⊥AB,∴AC=BC=AB=×24=12,在Rt△OBC中,OC==5.故选:C.二.填空题(共10小题)6.如图,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是3≤OP≤5.解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=8,∴AM=4,在Rt△AOM中,OM=,OM的长即为OP的最小值,∴6.3≤OP≤5.7.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD=3cm.解:∵OD⊥AC于点D,∴AD=CD,又∵OA=OB,∴OD为△ABC的中位线,∴OD=BC,∵BC=6cm,∴OD=3cm.故答案为3.8.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是.解:∵OC⊥弦AB于点C,∴BC=AC=AB=×4=2,在Rt△OBC中,OC=1,BC=2,∴OB==.故答案为9.如图,⊙O是△ABC的外接圆,且AB=AC=5,BC=8,则⊙O的半径为.解:过A作AD⊥BC于D,连接BO,△ABC中,AB=AC,AD⊥BC,则AD必过圆心O,Rt△ABD中,AB=5,BD=3∴AD=3设⊙O的半径为x,Rt△OBD中,OB=x,OD=x﹣3根据勾股定理,得:OB2=OD2+BD2,即x2=(x﹣3)2+42,解得:x=.故答案是:.10.如图,⊙O的直径CD与弦AB(非直径)交于点M,添加一个条件:AB⊥CD,使得=.解:∵CD为⊙O的直径,AB为弦(非直径),∴可添加AB⊥CD,或AB平分CD即可,故答案为AB⊥CD,或AB平分CD(答案不唯一).11.AB是⊙O的弦,半径OA=20cm,∠AOB=120°,则△AOB的面积是100cm2.解:过O作OC⊥AB,交AB于点C,如图所示,则C为AB的中点,即AC=BC,∵OA=OB,∠AOB=120°,∴∠A=∠B=30°,在Rt△AOC中,OA=20cm,∠A=30°,∴OC=OA=10cm,根据勾股定理得:AC==10cm,∴AB=2AC=20cm,则S△AOB=AB•OC=×20×10=100cm2.故答案为:10012.如图,∠P AC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,则线段EF的长是6cm.解:过O点作OH⊥EF于H,连OF,如图则EH=FH,在Rt△AOH中,AO=AD+OD=3+5=8,∠A=30°,则OH=OA=4,在Rt△OHF中,OH=4,OF=5,则HF==3,则EF=2HF=6cm.故答案为6.13.如图,⊙O的直径AB与弦CD交于点E,AE=5,BE=1,CD=4,则∠AED=30°.解:连接OD,过圆心O作OH⊥CD于点H.∴DH=CH=CD(垂径定理);∵CD=4,∴DH=2;又∵AE=5,BE=1,∴AB=6,∴OA=OD=3(⊙O的半径);∴OE=2;∴在Rt△ODH中,OH==1(勾股定理);在Rt△OEH中,OH=OE,∴∠OEH=30°,即∠AED=30°.故答案为:30°.14.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为10,AB=16,则CD的长是4.解:连接OA,如图,∵OC⊥AB,∴AD=BD=AB=×16=8,在Rt△OAD中,OD==6,∴CD=OC﹣OD=10﹣6=4.故答案为4.15.半径等于16的圆中,垂直平分半径的弦长为16.解:如图,OA=16,则OC=8,根据勾股定理得,AC==8,∴弦AB=16.故答案为:16.三.解答题(共6小题)16.在圆O中,直径CD⊥弦AB于E,AB=6,=,求DE的长.16.解:∵=,∴CE=3DE,∴CD=CE+DE=4DE,∴OD=CD=2DE,∴OE=OD﹣DE=DE,∴OA=OD=2DE,∴OA=2OE.∵CD垂直平分AB,∴AE=AB=×6=3,∠AEO=90°,∴∠OAE=30°,∴OA===2,∴DE=OA=×2=.17.如图,△ABC中,∠ACB=90°,CA=15cm,CB=20cm,以CA为半径的⊙C交AB 于D,求AD的长.解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=15,∴AB===25.过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵S△ABC=AC•BC=AB•CM,且AC=15,BC=20,AB=25,∴CM==12,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即225=AM2+144,解得:AM=9,∴AD=2AM=18.18.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,OC=5cm,求DC的长.18.解:连接OA,∵OC⊥AB,∴AD=AB=4,由勾股定理得,OD==3,∴DC=OC﹣OD=2cm.19.如图,AB是半圆O的直径,点C在半圆O上,CD⊥AB于D,AB=12,DB=4,求CD的长.19.解:连接OC.∵AB是半圆O的直径,∴OC=OB=AB=×12=6.∴OD=OB﹣DB=6﹣4=2,∴在直角△OCD中,CD===4.20.如图,⊙O的半径OA=5cm,AB是弦,C是AB上一点,且OC⊥OA,OC=BC (1)求∠A的度数.(2)求AB的长.解:(1)连接OB,∵AO=OB,OC=BC,∴∠A=∠B=∠BOC.∵OA⊥OC,∴∠AOC=90°.∵∠A+∠B+∠BOC+∠AOC=180°,∴3∠A+90°=180°,∴∠A=30°;(2)∵∠A=30°,OA=5cm,∴AC===cm,BC=OC=AC=cm,∴AB=AC+BC=+=5(cm).21.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,求BE的长.解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED=CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE==,∴BE=OB﹣OE=4﹣.。