完整版)导数求切线方程专题训练

合集下载

导数的应用一:求切线方程(word版附答案)

导数的应用一:求切线方程(word版附答案)

导数的应用一:求切线方程一、选择题1.函数y =(x +1)2(x -1)在x =1处的导数等于( )A .1B .2C .3D .4[答案] D[解析] y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′ =2(x +1)·(x -1)+(x +1)2=3x 2+2x -1, ∴y ′|x =1=4.2.(2014~2015·贵州湄潭中学高二期中)曲线f (x )=x ln x 在点x =1处的切线方程为( ) A .y =2x +2 B .y =2x -2 C .y =x -1 D .y =x +1 [答案] C[解析] ∵f ′(x )=ln x +1,∴f ′(1)=1,又f (1)=0,∴在点x =1处曲线f (x )的切线方程为y =x -1.3.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( )A.n n +1 B .n +2n +1C .n n -1D .n +1n[答案] A[解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1, ∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1f (n )}(n ∈N *)的前n 项和为:Sn =11×2+12×3+13×4+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =1-1n +1=nn +1,故选A.4.函数y =sin2x -cos2x 的导数是( ) A .y ′=22cos ⎝⎛⎭⎫2x -π4 B .y ′=cos2x -sin2x C .y ′=sin2x +cos2x D .y ′=22cos ⎝⎛⎭⎫2x +π4 [答案] A[解析] y ′=(sin2x -cos2x )′=(sin2x )′-(cos2x )′ =2cos2x +2sin2x =22cos ⎝⎛⎭⎫2x -π4. 5.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( )[答案] B[解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B.6.(2014·山西六校联考)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( )A .e -1B .-1C .-e -1D .-e[答案] C[解析] ∵f (x )=2xf ′(e)+ln x , ∴f ′(x )=2f ′(e)+1x,∴f ′(e)=2f ′(e)+1e ,解得f ′(e)=-1e ,故选C.二、填空题7.若曲线f (x )=x -12在点(a ,f (a ))处的切线与两条坐标轴围成的三角形的面积为18,则a =________________.[答案] 64[解析] ∵f ′(x )=-12x -32,∴f ′(a )=-12a -32,∴切线方程为y -a -12=-12a -32(x -a ).令x =0得y =32a -12,令y =0得x =3a ,由条件知12·32a -12·3a =18,∴a =64.8.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ=___________.[答案] π6[解析] f ′(x )=-3sin(3x +φ), f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ) =2sin ⎝⎛⎭⎫3x +φ+5π6. 若f (x )+f ′(x )为奇函数,则f (0)+f ′(0)=0, 即0=2sin ⎝⎛⎭⎫φ+5π6,∴φ+5π6=k π(k ∈Z ). 又∵φ∈(0,π),∴φ=π6.9.(2014·江西临川十中期中)已知直线y =2x -1与曲线y =ln(x +a )相切,则a 的值为________________.[答案] 12ln2[解析] ∵y =ln(x +a ),∴y ′=1x +a ,设切点为(x 0,y 0),则y 0=2x 0-1,y 0=ln(x 0+a ),且1x 0+a =2,解之得a =12ln2.三、解答题10.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求y =f (x )的解析式.[解析] ∵f (x )的图象过点P (0,1),∴e =1. 又∵f (x )为偶函数,∴f (-x )=f (x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e. ∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2, ∴切点为(1,-1).∴a +c +1=-1. ∵f ′(x )|x =1=4a +2c ,∴4a +2c =1. ∴a =52,c =-92.∴函数y =f (x )的解析式为f (x )=52x 4-92x 2+1.一、选择题11.(2014·新课标Ⅱ理,8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3[答案] D[解析] 本题考查导数的基本运算及导数的几何意义. 令f (x )=ax -ln(x +1),∴f ′(x )=a -1x +1.∴f (0)=0,且f ′(0)=2.联立解得a =3,故选D. 12.(2015·海南省文昌中学高二期中)曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1[答案] C[解析] 函数的导数为f ′(x )=e x -1+x e x -1=(1+x )e x -1,当x =1时,f ′(1)=2, 即曲线y =x e x -1在点(1,1)处切线的斜率k =f ′(1)=2,故选C.13.已知y =tan x ,x ∈⎝⎛⎭⎫0,π2,当y ′=2时,x 等于( ) A.π3 B .23πC .π4D .π6[答案] C[解析] y ′=(tan x )′=⎝⎛⎭⎫sin x cos x ′=cos 2x +sin 2x cos 2x =1cos 2x =2,∴cos 2x =12,∴cos x =±22,∵x ∈⎝⎛⎭⎫0,π2,∴x =π4. 14.已知f (x )=log a x (a >1)的导函数是f ′(x ),记A =f ′(a ),B =f (a +1)-f (a ),C =f ′(a +1),则( )A .A >B >C B .A >C >B C .B >A >CD .C >B >A[答案] A[解析] 记M (a ,f (a )),N (a +1,f (a +1)),则由于B =f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a ,表示直线MN 的斜率,A =f ′(a )表示函数f (x )=log a x 在点M 处的切线斜率;C =f ′(a +1)表示函数f (x )=log a x 在点N 处的切线斜率.所以,A >B >C .二、填空题15.(2014~2015·三亚市一中月考)曲线y =x2x -1在点(1,1)处的切线为l ,则l 上的点到圆x 2+y 2+4x +3=0上的点的最近距离是________________.[答案] 22-1 [解析] y ′|x =1=-1(2x -1)2|x =1=-1,∴切线方程为y -1=-(x -1),即x +y -2=0,圆心(-2,0)到直线的距离d =22,圆的半径r =1,∴所求最近距离为22-1. 三、解答题16.求下列函数的导数: (1)y =x sin 2x ; (2)y =e x +1e x -1;(3)y =x +cos x x +sin x ; (4)y =cos x ·sin3x .[解析] (1)y ′=(x )′sin 2x +x (sin 2x )′ =sin 2x +x ·2sin x ·(sin x )′=sin 2x +x sin2x .(2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=-2e x (e x -1)2 .(3)y ′=(x +cos x )′(x +sin x )-(x +cos x )(x +sin x )′(x +sin x )2=(1-sin x )(x +sin x )-(x +cos x )(1+cos x )(x +sin x )2=-x cos x -x sin x +sin x -cos x -1(x +sin x )2.(4)y ′=(cos x ·sin3x )′=(cos x )′sin3x +cos x (sin3x )′ =-sin x sin3x +3cos x cos3x =3cos x cos3x -sin x sin3x .17.设函数f (x )=13x 3-a2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1.求b ,c 的值.[解析] 由f (x )=13x 3-a2x 2+bx +c ,得f (0)=c ,f ′(x )=x 2-ax +b ,f ′(0)=b ,又由曲线y =f (x )在点P (0,f (0))处的切线方程为y =1,得f (0)=1,f ′(0)=0,故b =0,c =1.。

2023届全国高考数学复习:专题(曲线的切线方程)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(曲线的切线方程)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(曲线的切线方程)重点讲解与练习考点一 求切线的方程【方法总结】求曲线切线方程的步骤(1)求曲线在点P (x 0,y 0)处的切线方程的步骤第一步,求出函数y =f (x )在点x =x 0处的导数值f ′(x 0),即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率; 第二步,由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)ꞏ(x -x 0).(2)求曲线过点P (x 0,y 0)的切线方程的步骤第一步,设出切点坐标P ′(x 1,f (x 1));第二步,写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1);第三步,将点P 的坐标(x 0,y 0)代入切线方程,求出x 1;第四步,将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程.注意:在求曲线的切线方程时,注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点.【例题选讲】[例1](1) (2021ꞏ全国甲)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________. (2) (2020ꞏ全国Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1(3) (2018ꞏ全国Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x(4) (2020ꞏ全国Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.(5)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 .(6) (2021ꞏ新高考Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( )A .e b <aB .e a <bC .0<a <e bD .0<b <e a(7)已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)(8) (2019ꞏ江苏)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.(9)设函数f (x )=x 3+(a -1)ꞏx 2+ax ,若f (x )为奇函数,且函数y =f (x )在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为 .(10)函数y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( ) A .18 B .14 C .12 D .1(11)曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离是 .【对点训练】1.设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A .⎣⎡⎦⎤0,π2∪⎣⎡⎭⎫5π6,πB .⎣⎡⎭⎫2π3,πC .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,πD .⎝⎛⎦⎤π2,5π6 2.函数f (x )=e x +1x 在x =1处的切线方程为 .3.(2019ꞏ全国Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.4.曲线f (x )=1-2ln x x在点P (1,f (1))处的切线l 的方程为( ) A .x +y -2=0 B .2x +y -3=0 C .3x +y +2=0 D .3x +y -4=05.(2019ꞏ全国Ⅱ)曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .x -y -π-1=0B .2x -y -2π-1=0C .2x +y -2π+1=0D .x +y -π+1=06.(2019ꞏ天津)曲线y =cos x -x 2(0,1)处的切线方程为________.7.已知f (x )=x ⎝⎛⎭⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为 . 8.已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,则过点P 的切线方程为________. 9.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 .10.设函数f (x )=f ′⎝⎛⎭⎫12x 2-2x +f (1)ln x ,曲线f (x )在(1,f (1))处的切线方程是( )A .5x -y -4=0B .3x -y -2=0C .x -y =0D .x =111.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=ln(1+x ),则曲线y =f (x )在点(0,0)处的切线方程为________,用此结论计算ln2 022-ln2 021≈________. 12.曲线f (x )=x +ln x 在点(1,1)处的切线与坐标轴围成的三角形的面积为( )A .2B .32C .12D .1413.已知曲线y =133+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.14.设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.15.(2021ꞏ全国乙)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.考点二 求参数的值(范围)【方法总结】处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.注意:曲线上横坐标的取值范围;谨记切点既在切线上又在曲线上.【例题选讲】[例1](1)已知曲线f (x )=ax 3+ln x 在(1,f (1))处的切线的斜率为2,则实数a 的值是________.(2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .(3)设函数f (x )=a ln x +bx 3的图象在点(1,-1)处的切线经过点(0,1),则a +b 的值为 .(4)(2019ꞏ全国Ⅲ)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( )A .a =e ,b =-1B .a =e ,b =1C .a =e -1,b =1D .a =e -1,b =-1 (5)设曲线y =x +1x -2在点(1,-2)处的切线与直线ax +by +c =0垂直,则a b =( ) A .13 B .-13 C .3 D .-3(6)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为________.(7)已知函数f (x )=x +a 2x ,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是 . (8)关于x 的方程2|x +a |=e x 有3个不同的实数解,则实数a 的取值范围为________.【对点训练】1.若曲线y =x ln x 在x =1与x =t 处的切线互相垂直,则正数t 的值为________.2.设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( )A .0B .1C .2D .33.若曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)4.函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .5.已知函数f (x )=x cos x +a sin x 在x =0处的切线与直线3x -y +1=0平行,则实数a 的值为 .6.已知函数f (x )=x 3+ax +b 的图象在点(1,f (1))处的切线方程为2x -y -5=0,则a =________;b =________.7.若函数f (x )=ax -3x 的图象在点(1,f (1))处的切线过点(2,4),则a =________.8.若曲线y =e x 在x =0处的切线也是曲线y =ln x +b 的切线,则b =( )A .-1B .1C .2D .e9.曲线y =(ax +1)e x 在点(0,1)处的切线与x 轴交于点⎝⎛⎭⎫-12,0,则a = ; 10.过点M (-1,0)引曲线C :y =2x 3+ax +a 的两条切线,这两条切线与y 轴分别交于A 、B 两点,若|MA |=|MB |,则a = .11.已知曲线C :f (x )=x 3-3x ,直线l :y =ax -3a ,则a =6是直线l 与曲线C 相切的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.14.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求在曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.参考答案【例题选讲】[例1](1) (2021ꞏ全国甲)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________. 答案 5x -y +2=0 解析 y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2) (2020ꞏ全国Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1答案 B 解析 f (1)=1-2=-1,切点坐标为(1,-1),f ′(x )=4x 3-6x 2,所以切线的斜率为k =f ′(1)=4×13-6×12=-2,切线方程为y +1=-2(x -1),即y =-2x +1.(3) (2018ꞏ全国Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x答案 D 解析 法一 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0.因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .法二 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,此时f (x )=x 3+x (经检验,f (x )为奇函数),所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .法三 易知f (x )=x 3+(a -1)x 2+ax =x [x 2+(a -1)x +a ],因为f (x )为奇函数,所以函数g (x )=x 2+(a -1)x +a 为偶函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .(4) (2020ꞏ全国Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.答案 2x -y =0 解析 设切点坐标为(x 0,y 0),因为y =ln x +x +1,所以y ′=1x +1,所以切线的斜率为1x 0+1=2,解得x 0=1.所以y 0=ln 1+1+1=2,即切点坐标为(1,2),所以切线方程为y -2=2(x -1),即2x -y =0.(5)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 . 答案 x -y -1=0 解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+lnx ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.(6) (2021ꞏ新高考Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( )A .e b <aB .e a <bC .0<a <e bD .0<b <e a答案 D 解析 根据y =e x 图象特征,y =e x 是下凸函数,又过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .故选D .(7)已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)答案 C 解析 设切点P (x 0,y 0),f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1=2,∴x 20=1,∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上,∴y 0=x 30-x 0+3,∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3.∴切点P 为(1,3)或(-1,3).(8) (2019ꞏ江苏)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.答案 (e ,1) 解析 设A (m ,n ),则曲线y =ln x 在点A 处的切线方程为y -n =1m (x -m ).又切线过点(-e ,-1),所以有n +1=1m (m +e).再由n =ln m ,解得m =e ,n =1.故点A 的坐标为(e ,1).(9)设函数f (x )=x 3+(a -1)ꞏx 2+ax ,若f (x )为奇函数,且函数y =f (x )在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为 .答案 (0,0) 解析 ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立,∴a =1,f ′(x )=3x 2+1,3x 20+1=1,x 0=0,f (x 0)=0,∴切点P (x 0,f (x 0))的坐标为(0,0).(10)函数y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( )A .18B .14C .12D .1答案 B 解析 ∵y =x -1x +1,∴y ′=(x +1)-(x -1)(x +1)2=2 x +1 2,∴k =y ′|x =0=2,∴切线方程为y +1=2(x -0),即y =2x -1,令x =0,得y =-1;令y =0,得x =12,故所求的面积为12×1×12=14.(11)曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离是 . 答案 2 解析 设曲线在点P (x 0,y 0)(x 0>0)处的切线与直线x -y -2=0平行,则0|x x y '==12x x x x 0=⎛⎫- ⎪⎝⎭=2x 0-1x 0=1.∴x 0=1,y 0=1,则P (1,1),则曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离d =|1-1-2|12+(-1)2=2. 【对点训练】1.设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A .⎣⎡⎦⎤0,π2∪⎣⎡⎭⎫5π6,πB .⎣⎡⎭⎫2π3,πC .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,πD .⎝⎛⎦⎤π2,5π6 1.答案 C 解析 y ′=3x 2-3,∴y ′≥-3,∴tan α≥-3,又α∈[0,π),故α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π,故 选C .2.函数f (x )=e x +1x 在x =1处的切线方程为 .2.答案 y =(e -1)x +2 解析 f ′(x )=e x -1x 2,∴f ′(1)=e -1,又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1,即切线方程为y -(e +1)=(e -1)(x -1),即y =(e -1)x +2.3.(2019ꞏ全国Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.3.答案 y =3x 解析 y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为y =3x .4.曲线f (x )=1-2ln x x在点P (1,f (1))处的切线l 的方程为( ) A .x +y -2=0 B .2x +y -3=0 C .3x +y +2=0 D .3x +y -4=04.答案 D 解析 因为f (x )=1-2ln x x f ′(x )=-3+2ln x x 2.又f (1)=1,且f ′(1)=-3,故所求切线方 程为y -1=-3(x -1),即3x +y -4=0.5.(2019ꞏ全国Ⅱ)曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .x -y -π-1=0B .2x -y -2π-1=0C .2x +y -2π+1=0D .x +y -π+1=05.答案 C 解析 设y =f (x )=2sin x +cos x ,则f ′(x )=2cos x -sin x ,∴f ′(π)=-2,∴曲线在点(π,-1)处的切线方程为y -(-1)=-2(x -π),即2x +y -2π+1=0.故选C .6.(2019ꞏ天津)曲线y =cos x -x 2(0,1)处的切线方程为________.6.答案 y =-12x +1 解析 y ′=-sin x -12,将x =0代入,可得切线斜率为-12.所以切线方程为y -1=-12x ,即y =-12x +1.7.已知f (x )=x ⎝⎛⎭⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为 . 7.答案 2x -y =0 解析 ∵f (x )为奇函数,∴f (-1)+f (1)=0,即e +a e -1e -a e =0,解得a =1,f (x )=x ⎝⎛⎭⎫e x +1e x ,∴f ′(x )=⎝⎛⎭⎫e x +1e x +x ⎝⎛⎭⎫e x -1e x ,∴曲线y =f (x )在x =0处的切线的斜率为2,又f (0)=0,∴曲线y =f (x )在x =0处的切线的方程为2x -y =0.8.已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,则过点P 的切线方程为________.8.答案 3x -3y +2=0或12x -3y -16=0 解析 设切点坐标为⎝⎛⎭⎫x 0,13x 30,由y ′=⎝⎛⎭⎫13x 3′=x 2,得y ′|x =x 0 =x 20,即过点P 的切线的斜率为x 20,又切线过点P ⎝⎛⎭⎫2,83,若x 0≠2,则x 20=13x 30-83x 0-2,解得x 0=-1,此时切线的斜率为1;若x 0=2,则切线的斜率为4.故所求的切线方程是y -83=x -2或y -83=4(x -2),即3x -3y +2=0或12x -3y -16=0.9.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 . 9.答案 x -y -1=0 解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.10.设函数f (x )=f ′⎝⎛⎭⎫12x 2-2x +f (1)ln x ,曲线f (x )在(1,f (1))处的切线方程是( )A .5x -y -4=0B .3x -y -2=0C .x -y =0D .x =110.答案 A 解析 因为f (x )=f ′⎝⎛⎭⎫12x 2-2x +f (1)ln x ,所以f ′(x )=2f ′⎝⎛⎭⎫12x -2+f (1)x .令x =12得f ′⎝⎛⎭⎫12=2f ′⎝⎛⎭⎫12 ×12-2+2f (1),即f (1)=1.又f (1)=f ′⎝⎛⎭⎫12-2,所以f ′⎝⎛⎭⎫12=3,所以f ′(1)=2f ′⎝⎛⎭⎫12-2+f (1)=6-2+1=5.所以曲线在点(1,f (1))处的切线方程为y -1=5(x -1),即5x -y -4=0.11.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=ln(1+x ),则曲线y =f (x )在点(0,0)处的切线方程为________,用此结论计算ln2 022-ln2 021≈________.11.答案 y =x 12 021 解析 函数f (x )=ln(1+x ),则f ′(x )=11+x,f ′(0)=1,f (0)=0,∴切线方程为y =x .∴ ln2 022-ln2 021=ln ⎝⎛⎭⎫1+12 021=f ⎝⎛⎭⎫12 021,根据以直代曲,x =12 021也非常接近切点x =0.∴可以将x =12 021代入切线近似代替f ⎝⎛⎭⎫12 021,即f ⎝⎛⎭⎫12 021≈12 021. 12.曲线f (x )=x +ln x 在点(1,1)处的切线与坐标轴围成的三角形的面积为( )A .2B .32C .12D .1412.答案 D 解析 f ′(x )=1+1x ,则f ′(1)=2,故曲线f (x )=x +ln x 在点(1,1)处的切线方程为y -1=2(x-1),即y =2x -1,此切线与两坐标轴的交点坐标分别为(0,-1),⎝⎛⎭⎫12,0,则切线与坐标轴围成的三角形的面积为12×1×12=14,故选D .13.已知曲线y =133+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.13.解析 (1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20. ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20ꞏx -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.14.设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.14.解析 (1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +b x 2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x (2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0,得y =-6x 0, 从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6. 15.(2021ꞏ全国乙)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.15.解析 (1)由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,Δ≤0,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3, 令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )在⎝ ⎛⎭⎪⎫-∞,1-1-3a 3上单调递增, 在⎝ ⎛⎭⎪⎫1-1-3a 3,1+1-3a 3上单调递减,在⎝ ⎛⎭⎪⎫1+1-3a 3,+∞上单调递增. (2)记曲线y =f (x )过坐标原点的切线为l ,切点为P (x 0,x 30-x 20+ax 0+1).因为f ′(x 0)=3x 20-2x 0+a ,所以切线l 的方程为y -(x 30-x 20+ax 0+1)=(3x 20-2x 0+a )(x -x 0).由l 过坐标原点,得2x 30-x 20-1=0,解得x 0=1,所以切线l 的方程为y =(1+a )x .由⎩⎪⎨⎪⎧y =(1+a )x ,y =x 3-x 2+ax +1解得⎩⎪⎨⎪⎧x =1,y =1+a 或⎩⎪⎨⎪⎧x =-1,y =-1-a . 所以曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标为(1,1+a )和(-1,-1-a ). 考点二 求参数的值(范围)【方法总结】处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.注意:曲线上横坐标的取值范围;谨记切点既在切线上又在曲线上.【例题选讲】[例1](1)已知曲线f (x )=ax 3+ln x 在(1,f (1))处的切线的斜率为2,则实数a 的值是________.答案 13 解析 f ′(x )=3ax 2+1x ,则f ′(1)=3a +1=2,解得a =13.(2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .答案 [2,+∞) 解析 直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线,∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0.又4x +1x ≥24x ꞏ1x =4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). (3)设函数f (x )=a ln x +bx 3的图象在点(1,-1)处的切线经过点(0,1),则a +b 的值为 .答案 0 解析 依题意得f ′(x )=a x +3bx 2,于是有⎩⎪⎨⎪⎧ f (1)=-1,f ′(1)=1+10-1,即⎩⎪⎨⎪⎧ b =-1,a +3b =-2,解得⎩⎪⎨⎪⎧a =1,b =-1,2.设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( )A .0B .1C .2D .32.答案 D 解析 ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.故选D .3.若曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)3.答案 C 解析 f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验点(1,3),(-1,3)均不在直线y =2x -1上,故选C .4.函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .4.答案 (-∞,2) 解析 由题意知f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x 2,所以a 的取值范围是(-∞,2).5.已知函数f (x )=x cos x +a sin x 在x =0处的切线与直线3x -y +1=0平行,则实数a 的值为 . 5.答案 2 解析 f ′(x )=cos x +x ꞏ(-sin x )+a cos x =(1+a )cos x -x sin x ,∴f ′(0)=1+a =3,∴a =2. 6.已知函数f (x )=x 3+ax +b 的图象在点(1,f (1))处的切线方程为2x -y -5=0,则a =________;b =________. 6.答案 -1 -3 解析 由题意得f ′(x )=3x 2+a ,则由切线方程得⎩⎪⎨⎪⎧f (1)=1+a +b =2×1-5,f ′(1)=3+a =2,解得a = -1,b =-3.7.若函数f (x )=ax -3x 的图象在点(1,f (1))处的切线过点(2,4),则a =________.7.答案 2 解析 f ′(x )=a +3x 2,f ′(1)=a +3,f (1)=a -3,故f (x )的图象在点(1,a -3)处的切线方程为y-(a -3)=(a +3)(x -1),又切线过点(2,4),所以4-(a -3)=a +3,解得a =2.8.若曲线y =e x 在x =0处的切线也是曲线y =ln x +b 的切线,则b =( )A .-1B .1C .2D .e8.答案 C 解析 y =e x 的导数为y ′=e x ,则曲线y =e x 在x =0处的切线斜率k =1,则曲线y =e x 在x=0处的切线方程为y -1=x ,即y =x +1.设y =x +1与y =ln x +b 相切的切点为(m ,m +1).又y ′=1x ,则1m =1,解得m =1.所以切点坐标为(1,2),则2=b +ln 1,得b =2.9.曲线y =(ax +1)e x 在点(0,1)处的切线与x 轴交于点⎝⎛⎭⎫-12,0,则a = ; 9.答案 1 解析 y ′=e x (ax +1+a ),所以y ′|x =0=1+a ,则曲线y =(ax +1)e x 在(0,1)处的切线方程为y=(1+a )x +1,又切线与x 轴的交点为⎝⎛⎭⎫-12,0,所以0=(1+a )×⎝⎛⎭⎫-12+1,解得a =1. 10.过点M (-1,0)引曲线C :y =2x 3+ax +a 的两条切线,这两条切线与y 轴分别交于A 、B 两点,若|MA |=|MB |,则a = .10.答案 -274 解析 设切点坐标为(t ,2t 3+at +a ),∵y ′=6x 2+a ,∴6t 2+a =2t 3+at +a t +1,即4t 3+6t 2=0,解得t =0或t =-32,∵|MA |=|MB |,∴两切线的斜率互为相反数,即2a +6×⎝⎛⎭⎫-322=0,解得a =-274.11.已知曲线C :f (x )=x 3-3x ,直线l :y =ax -3a ,则a =6是直线l 与曲线C 相切的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.答案 A 解析 因为曲线C :f (x )=x 3-3x ,所以f ′(x )=3x 2-3.设直线l 与曲线C 相切,且切点的横坐标为x 0,则切线方程为y =(3x 20-3)x -2x 30,所以⎩⎨⎧ 3x 20-3=a ,2x 30=3a ,解得⎩⎨⎧ x 0=3,a =6或⎩⎨⎧ x 0=-32,a =-34,所以a =6是直线l 与曲线C 相切的充分不必要条件,故选A .12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.12.解析 (1)y ′=x 2-4x +3=(x -2)2-1≥-1,∴当x =2时,y ′min =-1,y =53,∴斜率最小的切线过点⎝⎛⎭⎫2,53,斜率k =-1,∴切线方程为y -53=-1×(x -2),即3x +3y -11=0.(2)由(1)得k ≥-1,∴tan α≥-1,又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.13.解析 f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1. (2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根,所以Δ=4(1-a )2+12a (a +2)>0,即4a 2+4a +1>0,所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞.14.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求在曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围. 14.解析 (1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,即曲线C 上任意一点处的切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k (k ≠0),则由题意并结合(1)中结论可知⎩⎪⎨⎪⎧ k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1, 则-1≤x 2-4x +3<0或x 2-4x +3≥1,解得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。

导数切线方程练习题(材料应用)

导数切线方程练习题(材料应用)

导数切线方程练习题 1、曲线212y x =在点1(1,)2处切线的倾斜角为________________2、已知曲线222y x x =+-在点M 处的切线与x 轴平行,则点M 的坐标是________________3、曲线21xy x =-在点(1,1)处的切线方程为____________________.4、曲线3y x =在点(1,1)处的切线与x 轴、直线2x =所围成的三角形面积为__________.5、曲线12x y e =在点2(4,)e 处的切线与坐标轴所围三角形的面积为________________6、已知2()ln(1)f x x x =++,若()1f a '=,则实数a 的值为__________.7、sin3y x =在(,0)3π处的切线斜率为__________________.8.若幂函数()y f x =的图像经过点11(,)42A ,则它在A 点处的切线方程是________________9.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为________________10.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为________________11.曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为________________12.设曲线11x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a 等于 ________________13.已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,________________14.曲线y=2sinx 在点P (π,0)处的切线方程为 ________________15.若曲线3y x ax =+在坐标原点处的切线方程是20x y -=,则实数a =________________16.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-17.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为()A . 1n B . 11n + C . 1nn + D . 118.已知直线ax ﹣by ﹣2=0与曲线y=x 3在点P (1,1)处的切线互相垂直,则为_____________19.函数x xx f +=1cos )(在)1,0(处的切线方程是________________20.函数y=f(x)的图像在点M(1,f(1))处的切线方程为221+=x y ,则)1()1(f f '+=______21.直线2y x b =+与曲线3ln y x x =-+相切,则b 的值为 .22.已知曲线1*()()n f x x n N +=∈与直线1x =交于点P ,若设曲线y=f (x )在点P 处的切线与x 轴交点的横坐标为201212012220122011,log log log n x x x x +++则的值为 . 23.在两曲线sin y x =和cos y x =的交点2(,42π处,两切线的斜率之积等于 . 24.已知函数()x f x xe =.(1)求这个函数的导数;(2)求这个函数的图象在点1x =处的切线方程.25.求与直线2610x y -+=垂直,且与曲线3231y x x =+-相切的直线方程。

高中数学导数的几何意义求切线方程专题-解析版

高中数学导数的几何意义求切线方程专题-解析版

导数的几何意义求切线方程专题题型一:切点已知求切线方程【例1】.函数f(x)=xe x的图象在点(1,f(1))处的切线方程是________.【答案】y=2ex−e【解析】因为f(x)=xe x,所以f(1)=e,f′(x)=e x+xe x,所以f′(1)=2e,所以f(x)的图象在点(1,f(1))处的切线方程为y−e=2e(x−1),即y=2ex−e.变式1.已知函数f(x)=x+aln⁡x.当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;【答案】2x−y−1=0【解析】当a=1时,f(x)=x+ln⁡x,f′(x)=1+1x(x>0).所以f(1)=1,f′(1)=2,所以切线方程为2x−y−1=0.【备注】考查导数的几何意义,先由导数得到斜率,再根据点斜式得到切线方程.变式2.已知函数f(x)=(x+1)ln⁡x−a(x−1).当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;【答案】y=−2x+2.【解析】当a=4时,f(1)=0,函数f(x)的导函数f′(x)=ln⁡x+1−3,因此f′(1)=−2,从而所求的切线方程为y=−2(x−1),也即y=−2x+2.【备注】本小题是常规的利用导函数求函数的切线方程问题.题型二:切点未知求切线方程【例2】.【2018年浙江宁波高二下学期周测】过原点作曲线y=e x的切线,则切线方程为________【答案】y=ex【解析】y′=e x设切点的坐标为(x0,e x0),切线的斜率为k,则k=e x0,故切线方程为y−e x0=e x0(x−x0)又切线过原点,∴−e x0=e x0(−x0),∴x0=1,y0=e,k=e.则切线方程为y=ex故答案为y=ex.变式.已知函数f(x)=x3−3x,过点P(2,−6)作曲线y=f(x)的切线,则切线方程是 ________【答案】3x+y=0或24x−y−54=0【解析】由f(x)=x3−3x,得f′(x)=3x2−3,设切点为(x0,x03−3x0),则斜率k=3x02−3,∴切线方程为y−(x03−3x0)=(3x02−3)(x−x0),即y=(3x02−3)x−2x03.∵切线过点P(2,−6),则−6=2(3x02−3)−2x03,解得:x0=0或x0=3.∴所求切线方程是y=−3x或y=24x−54.故答案为:3x+y=0或24x−y−54=0.题型三:已知切线方程求参数【例3】.若抛物线y=x2与直线2x+y+m=0相切,则m= ________【答案】1【解析】设切点为P(x0,y0).易知y′|x=x=2x0.由{2x0=−2,y0=x02,得{x0=−1,y0=1,所以P(−1,1).又P(−1,1)在直线2x+y+m=0上,所以2×(−1)+1+m=0,解得m=1.变式1.【2016年辽宁大连单元测试】设函数f(x)=x2-ln⁡(x+a)+b,g(x)=x3.若函数f(x)在点(0,f(0))处的切线方程为x+y=0,求实数a,b的值;【答案】a=1,b=0【解析】f′(x)=2x−1x+a依题意{f′(0)=−1a=−1 f(0)=−ln⁡a+b=0变式2.【2015年浙江舟山高二下学期月考】在同一坐标系中,直线l是函数f(x)=√1−x2在(0,1)处的切线,若直线l与g(x)=−x2+mx相切于x=1处,则m=________【答案】2【解析】函数y=f(x)=2即为上半圆x2+y2=1,(0,1)为与y轴的交点,即有在(0,1)处的切线为y=1,由题意可得直线l:y=1也是g(x)=−x2+mx的切线,所以g(x)在x=0处的导函数值为0,g′(0)=−2∗0+m=0且g(1)=1,所以m=2题型四:公切线求参数问题【例4】.若直线y=kx+t是曲线y=e x+2的切线,也是曲线y=e x+1的切线,则t=________ .【答案】4−2ln⁡2【解析】设y=kx+t与y=e x+2和y=e x+1的切点分别为(x1,kx1+t)、(x2,kx2+t).由导数的几何意义可得k=e x1=e x2+1,得x1=x2+1.再由切点也在各自的曲线上,可得kx1+t=e x1+2,kx2+t=e x2+1.联立上述式子{k=e x1x1=x2+1 kx1+t=e x1+2 kx2+t=e x2+1解得k=2,x1=ln⁡2,t=4−2ln⁡2.故答案为4−2ln⁡2.【备注】本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题.先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可变式:函数f(x)=ln⁡x+mxx+1与g(x)=x2+1有公切线y=ax(a>0),则实数m的值为________ .【答案】4【解析】设公切线y=ax与g(x)=x2+1的切点为(x0,x02+1),g"(x)=2x,故切线斜率为2x0,则切线为y−(x02+1)=2x0(x−x0),因为切线过原点(0,0),所以−x 02−1=−2x 02,解答x 0=1或x 0=−1, 因为切线斜率a =2x 0>0,所以x 0=1,a =2, 设公切线y =2x 与f(x)=ln⁡x +mxx+1相切与点(x 1,ln⁡x 1+mx 1x 1+1),f"(x)=1x +m (x+1)2,故斜率1x 1+m(x1+1)2=2①切线方程为y −(ln⁡x 1+mx 1x1+1)=(1x 1+m(x 1+1)2)(x −x 1),因为过(0,0),所以−ln⁡x 1−mx 1x1+1=−1−mx 1(x 1+1)2②联立①②解得x 1=1,m =4. 故答案为4.【备注】本题考查利用导数研究函数在某一点处的切线方程,根据条件设出切点,利用切线过原点且和两函数图象相切即可求出m 的值.针对训练1.曲线f(x)=x 3+11在点P(1,12)处的切线与y 轴交点的纵坐标是( ) A .−9 B .−3 C .9 D .15【答案】C【解析】因为y ′=3x 2,切点为(1,12),所以切线的斜率为3,故切线方程为3x −y +9=0,令x =0,得y =9【备注】求在某点处切线2.【2018年浙江杭州下城区浙江省杭州高级中学高二下学期期中考试数学试卷】已知直线y =−2x −23与曲线2f(x)=13x 3−bx 相切,则b =________. 【答案】3【解析】f(x)=13x 3−bx ,f ′(x)=x 2−b =−2,{x 2−b =−213x 3−bx =−2x −23,x =1,b =3.3.已知函数f(x)=ax2+(2a−1)x−ln⁡x,a∈R.若曲线y=f(x)在点(1,f(1))处的切线经过点(2,11),求实数a的值;【答案】a=2【解析】由题意得f′(x)=2ax+(2a−1)−1 x=2ax2+(2a−1)x−1x=(2ax−1)(x+1)x∴f′(1)=2(2a−1)∵f(1)=3a−1∴曲线y=f(x)在点(1,f(1))处的切线方程为y=2(2a−1)(x−1)+3a−1代入点(2,11),得a=2【备注】根据题意,对函数f(x)求导,由导数的几何意义分析可得曲线y=f(x)在点(1,f(1))处的切线方程,代入点(2,11),计算可得答案4.【2013年山西太原单元测试】设函数f(x)=x3−3ax+b,a≠0在点(2,f(2))处与直线y=8相切求实数a,b的值;【答案】a=4,b=24;【解析】f′(x)=3x2−3a,f′(2)=0,f(2)=8即12−3a=0,8−6a+b=8解得a=4,b= 245.函数f(x)=x2−2ax+ln⁡x(a∈R).函数y=f(x)在点(1,f(1))处的切线与直线x−2y+ 1=0垂直,求a的值;【答案】a=52【解析】函数f(x)的定义域为(0,+∞),f′(x)=2x−2a+1x,f′(1)=3−2a,由题意f′(1)⋅12=(3−2a)⋅12=−1,解得a=52.6.已知函数f(x)=aln⁡x−bx2图像上一点P(2,f(2))处的切线方程为y=−3x+2ln⁡2+2,求a,b 的值【答案】a=2,b=1【解析】f′(x)=ax−2bx{k=f′(2)=a2−4b=−3y0=f(2)=aln⁡2−4b=−6+2ln⁡2+2解得:a=2,b=1【备注】若想解得参数a,b需要注意两点:1、切点是个很特殊的点,既在曲线上,又在切线上。

(完整版)导数解曲线公切线问题

(完整版)导数解曲线公切线问题

导数解公切线专题3 2151. (2009年江西文12)若存在过点(1,0)的直线与曲线y X和y ax x 9都相切,4则a等于25亠217亠257亠A. 1或B. 1或C. 或-D.—或764446442.(2016年全国II理16)若直线y kx b是曲线y ln x2的切线,也是曲线y In (x1)的切线,则b .3•求曲线y=x3+x2- 2X在点A(1,0)处的切线方程•变式:求曲线y=x3+x2—2x过点A(1,0)的切线方程【答案】1 In2【解析】试题分析;对因数y=lnx+2求导得y (=-f 对> =ln (x+l )求导得#=丄,设直线y =与圉数X x+1y=}nx+2相切于点号口小),与函埶y = ln (x +1)相切于点占(花jJ :则时=Ln 珂+ 2= In 任+1),则点的g'J 在切线上得$-(1口珂+2)=丄(工-珂),由Eg/J 在切线上得3•求曲线y=x 3+x 2— 2x 在点A(1,0)处的切线方程• 解:T y ' =x 2+2x — 2,•••切线斜率 k= y'x =1=3. •••切线方程为y=3(x — 1), 即 3x — y — 3=0.变式:求曲线y=x 3+x 2— 2x 过点A(1,0)的切线方程.y-ln (^ + 1) = —-—(x-x,),这两芳立绫表示同一牛世戈,所以“ ja + 1ln(x n +1) =1口叫’解之得X ; 叼+131. (2009年江西文12)若存在过点(1,0)的直线与曲线y x 和yax 215 x 49都相切,则a 等于A .1或-64B .1 或 214C .-或-244 641.设过(1,0)的直线与y33x 相切于点(x 0 , x 0 ),所以切线方程为x o3x o 2(x X o )23x 0 x 2x 0,又(1,0)在切线上,则X 。

0或X 。

21525当X 0时,由y0与y axx 9相切可得 a4643」丄27 27 一2 15当X )—时,由yx 与y ax X 9相切可得a24 442. ( 2016 年全国II理16) 若直线ykx b 是曲线 y In xy In (x 1)的切线,则b所以选A .考点:导数的几何意义•1,2的切线,也是曲线解设切点P (X。

(完整版)利用导数求曲线的切线和公切线

(完整版)利用导数求曲线的切线和公切线

利用导数求曲线的切线和公切线一. 求切线万程【例11 .已知曲线f(x)=x 3-2x 2+1.(1) 求在点P (1,0 )处的切线l 1的方程;⑵ 求过点Q( 2,1 )与已知曲线f(x)相切的直线丨2的方程.提醒:注意是在某个点处还是过某个点!二. 有关切线的条数【例21.( 2014?北京)已知函数f (x ) =2x 3 - 3x .(I)求f (x )在区间[-2, 1]上的最大值;(n)若过点P (1, t )存在3条直线与曲线y=f (x )相切,求t 的取值范围;(川)问过点 A (- 1, 2), B (2, 10), C (0, 2)分别存在几条直线与曲线 y=f (x )相切?(只需写出结论)【解答1 解:(I)由 f (x ) =2x 3 - 3x 得 f '( x ) =6x 2- 3, 令 f '(x ) =0 得,x= -^_或 x=」,•- f (-2) =- 10, f (-=) =:-:, f (斗)=-::,f (1) =- 1, .f (x )在区间[-2, 1]上的最大值为:.:.(n)设过点P (1, t )的直线与曲线y=f (x )相切于点(X 。

,y °),则y °=2诃-3X 0,且切线斜率为k=6爲-3, .切线方程为 y -y o = (6-,- - 3)(x - x o ), +t+3=0,设 g (x ) =4x 3 - 6x 2+t+3 ,则“过点P (1, t )存在3条直线与曲线y=f (x )相切”,等价于“ g (x )有3 个不同的零点”.T g '(x ) =12x 2- 12x=12x (x - 1),.g (0) =t+3是g (x )的极大值,g (1) =t+1是g (x )的极小值. .g (0)> 0 且 g (1)v 0,即-3v t v- 1,.当过点过点P (1, t )存在3条直线与曲线y=f (x )相切时,t 的取值范围是 (-3,- 1).(rn)过点A (- 1, 2)存在3条直线与曲线y=f (x )相切;过点B (2, 10)存在2条直线与曲线y=f (x )相切; 过点C (0, 2)存在1条直线与曲线y=f (x )相切.(6t - y o = -3)( 1-X 。

导数求切线问题练习

导数求切线问题练习
点睛:对于导数的几何意义,要注意“曲线在点P处的切线”和“曲线过点P的切线”两种说法的区别。
(1)“曲线在点P处的切线”表示点P为切点,且点P在曲线上,过点P的切线只有一条;
(2)“曲线过点P的切线”表示点P不一定在曲线上,即使点P在曲线上时也不一定为切点,此时过点P的切线不一定只有一条。
4.(1) .
②已知斜率求切点.已知斜率 ,求切点 ,即解方程 .
③求切线倾斜角的取值范围.先求导数的范围,即确定切线斜率的范围,然后利用正切函数的单调性解决.
5.
【解析】试题分析:求函数的导数,根据导数的几何意义,求得切线的斜率,结合切线方程即可得到 , ,进而得到函数的解析式.
试题解析:由题意得

解得 .
6.(1) (2)
则y′=(sin u)′·u′=cos ·2,
∴y′=2cos .
(4)令u=2x-5,则y=ln u,
则y′=(ln u)′·u′= ,即y′= .
【点睛】
本题主要考查了导数的运算法则,属于基础题.
【解析】
【分析】
(1)利用导数的乘法运算法则求解即可;
(2)利用导数的加法运算法则求解即可;
(3)利用复合函数的求导法则求解即可;
(4)利用复合函数的求导法则求解即可.
【详解】
(1)y′=(x2)′·sin x+x2·(sin x)′=2xsin x+x2cos x.
(2)y′= .
(3)设u=2x+ ,则y=sin u,
4.已知曲线y=x3,求:
(1)曲线在点P(1,1)处的切线方程;(2)过点P(1,0)的曲线的切线方程.
5.函数 及其图象上一点 .
(1)若直线 与函数 的图象相切于 ,求直线 的方程;

用导数法求切线方程

用导数法求切线方程

用导数法求切线方程 ——专题训练
典型例题
(一)已知曲线方程和切点坐标,求切线方程
例1、求43x y =在点()8,16P 处的切线方程.
【反思总结】
(二)已知曲线方程和切点斜率,求切线方程
例2、已知x y =,求与直线42--=x y 垂直的切线方程. (平行呢?)
【反思总结】
例3、求曲线x e y =在x=1处的切线斜率和切线方程.
【反思总结】
例4、求曲线33x x y -=在点处()2,2-A 的切线方程.
【反思总结】
例5.求过曲线x x y +-=3上过点()0,1的切线方程.
例6.求曲线5
9++=
x x y 在x=3处切线方程.
例7.求曲线232131x x y +=
在点()0,0处的切线方程.
例8.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值.
例9.已知函数()()012
>a a x x f -=在1=x 处的切线为l ,求l 与两坐标轴围成的∆S 的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完整版)导数求切线方程专题训练
导数求切线方程的练题
一、典型例题
1.已知曲线方程和切点坐标,求切线方程
例如,求曲线y=4x^3在点P(16,8)处的切线方程。

2.已知曲线方程和切点斜率,求切线方程
例如,已知y=x,求与直线y=-2x-4垂直的切线方程。

3.已知曲线方程和曲线外一点,求切线方程
例如,过原点做曲线y=ex的切线,求切线斜率和切线方程。

4.已知曲线方程和曲线上一点,求过该点的切线方程
例如,求曲线y=3x-x^3过点A(2,-2)的切线方程。

二、当堂检测
1.求过曲线y=-x^3+x上过点(1,0)的切线方程。

2.求经过原点且与曲线y=(x+9)/(x+5)相切的曲线方程。

3.求过曲线y=(1/3)x^2+x上一点(2,3)的切线方程。

4.若直线e^(2x)+y-e^(2-1)=0与曲线y=(1-a)e^x相切,求a 的值。

5.曲线y=x^3-3x^2+1在点(1,-1)处的切线方程为()。

6.与直线2x-y+4=0平行的抛物线y=x^2的切线方程是()。

7.求过曲线y=x^3-2x上的点(1,-1)的切线方程。

8.求过点(2,0)且与曲线y=x^2相切的直线方程。

9.已知函数f(x)=ax+1(a>0),g(x)=x+bx。

Ⅰ)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
Ⅱ)当a=3,b=-9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围。

2013北京市高考文】已知函数f(x)=x+xsinx+cosx。

Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值。

Ⅱ)若曲线y=f(x)与直线y=b有两个不同的交点,求b的取值范围。

相关文档
最新文档