齐纳二极管原理和齐纳击穿

齐纳二极管原理和齐纳击穿
齐纳二极管原理和齐纳击穿

齊納二極體原理和齊納擊穿

在通常情況下,反向偏置的PN結中只有一個很小的電流。這個漏電流一直保持一個常數,直到反向電壓超過某個特定的值,超過這個值之後PN結突然開始有大電流導通(圖1.15)。這個突然的意義重大的反嚮導通就是反向擊穿,如果沒有一些外在的措施來限制電流的話,它可能導致器件的損壞。反向擊穿通常設置了固態器件的最大工作電壓。然而,如果採取適當的預防措施來限制電流的話,反向擊穿的結能作為一個非常穩定的參考電壓。

圖1.15 PN結二極體的反向擊穿。

導致反向擊穿的一個機制是avalanche multiplication。考慮一個反向偏置的PN結。耗盡區隨著偏置上升而加寬,但還不夠快到阻止電場的加強。強大的電場加速了一些載流子以非常高的速度穿過耗盡區。當這些載流子碰撞到晶體中的原子時,他們撞擊松的價電子且產生了額外的載流子。因為一個載流子能通過撞擊來產生額外的成千上外的載流子就好像一個雪球能產生一場雪崩一樣,所以這個過程叫avalanche multiplication。

反向擊穿的另一個機制是tunneling。Tunneling是一種量子機制過程,它能使粒子在不管有任何障礙存在時都能移動一小段距離。如果耗盡區足夠薄,那麼載流子就能靠tunneling跳躍過去。Tunneling電流主要取決於耗盡區寬度和結上的電壓差。Tunneling引起的反向擊穿稱為齊納擊穿。

結的反向擊穿電壓取決於耗盡區的寬度。耗盡區越寬需要越高的擊穿電壓。就如先前討論的一樣,摻雜的越輕,耗盡區越寬,擊穿電壓越高。當擊穿電壓低於5伏時,耗盡區太薄了,主要是齊納擊穿。當擊穿電壓高於5伏時,主要是雪崩擊穿。設計出的主要工作于反嚮導通的狀態的PN二極體根據占主導地位的工作機制分別稱為齊納二極體或雪崩二極體。齊納二極體的擊穿電壓低於5伏,而雪崩二極體的擊穿電壓高

於5伏。通常工程師們不管他們的工作原理都把他們稱為齊納管。因此主要靠雪崩擊穿工作的7V齊納管可能會使人迷惑不解。

實際上,結的擊穿電壓不僅和它的摻雜特性有關還和它的幾何形狀有關。以上討論分析了一種由兩種均勻摻雜的半導體區域在一個平面相交的平面結。儘管有些真正的結近似這種理想情況,大多數結是彎曲的。曲率加強了電場,降低了擊穿電壓。曲率半徑越小,擊穿電壓越低。這個效應對薄結的擊穿電壓由很大的影響。大多數肖特基二極體在金屬-矽交界面邊緣有一個很明顯的斷層。電場強化能極大的降低肖特基二極體的測量擊穿電壓,除非有特別的措施能削弱Schottky barrier邊緣的電場。

圖1.16是以上所討論的所有的電路符號。PN結用一根直線代表陰極,而肖特基二極體和齊納二極體則對陰極端做了一些修飾。在所有這些圖例中,箭頭的方向都表示了二極體正向偏置下的電流方向。在齊納二極體中,這個箭頭可能有些誤導,因為齊納管通常工作在反向偏置狀態下。對於casual observer來說,這個符號出現時旁邊應該再插入一句“方向反了”。

圖1.16 PN結,肖特基,和齊納二極體的電路圖符號。有些電路圖符號中箭頭是空心的或半個箭頭。

齊納擊穿和雪崩擊穿

推薦

PN結反向擊穿有齊納擊穿和雪崩擊穿,一般兩種擊穿同時存在,但在電壓低於

5-6V時的擊穿以齊納擊穿為主,而電壓高於5-6V時的擊穿以雪崩擊穿為主。

兩者的區別對於穩壓管來說,主要是:

電壓低於5-6V的穩壓管,齊納擊穿為主,穩壓值的溫度係數為負。

電壓高於5-6V的穩壓管,雪崩擊穿為主,穩壓管的溫度係數為正。

電壓在5-6V之間的穩壓管,兩種擊穿程度相近,溫度係數最好,

這就是為什麼許多電路使用5-6V穩壓管的原因。

穩壓管的原理決定了它的反應速度是不可能很快的

速度要求高的場合都用二極體+基準電壓

如果只是要做保護,用TVS

穩壓管主要用於穩壓,通過的電流越小越好

PN結的擊穿特性

當PN結上加的反向電壓增大到一定數值時,反向電流突然劇增,這種現象稱為PN結的反向擊穿。PN結出現擊穿時的反向電壓稱為反向擊穿電壓,用VB表示。反向擊穿可分為雪崩擊穿和齊納擊穿兩類。1.雪崩擊穿

當反向電壓較高時,結內電場很強,使得在結內作漂移運動的少數載流子獲得很大的動能。當它與結內原子發生直接碰撞時,將原子電離,產生新的"電子一空穴對"。這些新的"電子一空穴對",又被強電場加速再去碰撞其他原子,產生更多的"電子一空穴對"。如此鏈鎖反應,使結內載流子數目劇增,並在反向電壓作用下作漂移運動,形成很大的反向電流。這種擊穿稱為雪崩擊穿。顯然雪崩擊穿的物理本質是碰撞電離。2.齊納擊穿

齊納擊穿通常發生在摻雜濃度很高的PN結內。由於摻雜濃度很高,PN結很窄,這樣即使施加較小的反向電壓(5V以下),結層中的電場卻很強(可達左右)。在強電場作用下,會強行促使PN結內原子的價電子從共價鍵中拉出來,形成"電子一空穴對",從而產生大量的載流子。它們在反向電壓的作用下,形成很大的反向電流,出現了擊穿。顯然,齊納擊穿的物理本質是場致電離。

採取適當的摻雜工藝,將矽PN結的雪崩擊穿電壓可控制在8~1000V。而齊納擊穿電壓低於5V。在5~8V 之間兩種擊穿可能同時發生。

二極體和三極管PN結的反向擊穿電壓都不一樣,bc結是反向電壓,同樣有各種擊穿電壓。穩壓管也有各種電壓。當然都有最大電流設計。

齐纳二极管和肖特基二极管

齐纳二极管和肖特基二极管 肖特基二极管(Schottky)SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 SBD的结构及特点使其适合于在低压、大电流输出场合用作高频整流,在非常高的频率下(如X波段、C波段、S波段和Ku波段)用于检波和混频,在高速逻辑电路中用作箝位。在IC中也常使用SBD,像SBD TTL集成电路早已成为TTL 电路的主流,在高速计算机中被广泛采用。 反向恢复时间 现代脉冲电路中大量使用晶体管或二极管作为开关, 或者使用主要是由它们构成的逻辑集成电路。而作为开关应用的二极管主要是利用了它的通(电阻很小)、断(电阻很大) 特性, 即二极管对正向及反向电流表现出的开关作用。二极管和一般开关的不同在于,“开”与“关”由所加电压的极性决定, 而且“开”态有微小的压降V f,“关”态有微小的电流I 0。当电压由正向变为反向时, 电流并不立刻成为(- I 0) , 而是在一段时间ts 内, 反向电流始终很大, 二极管并不关断。经过ts后, 反向电流才逐渐变小, 再经过tf 时间, 二极管的电流才成为(- I 0) , 如图1 示。ts 称为储存时间, tf 称为下降时间。tr= ts+ tf 称为反向恢复时间, 以上过程称为反向恢复过程。 这实际上是由电荷存储效应引起的, 反向恢复时间就是存储电荷耗尽所需要的时间。该过程使二极管不能在快速连续脉冲下当做开关使用。如果反向脉冲的持续时间比tr 短, 则二极管在正、反向都可导通, 起不到开关作用。因此了解二极管反向恢复时间对正确选取管子和合理设计电路至关重要。 齐纳二极管 齐纳二极管zener diodes(又叫稳压二极管它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 齐纳二极管不同于锗二极管的是:如果反向电压,有时简称为“偏压”增加到某个特殊值,对于一个微小偏压的变化,就会使电流产生一个可观的增加。引起这种效应的电压称为“击穿”电压或“齐纳”电压。2DW7型管的击穿电压在5.8-6.5V之间,极大电流是30mA。

肖特基二极管特性详解(经典资料)

肖特基二极管特性详解 我们所熟知的二极管被广泛应用于各种电路中,但我们真正了解二极管的某些特性关系吗?如二极管导通电压和反向漏电流与导通电流、环境温度存在什么样的关系等,让我们来扒扒很多数据手册中很少提起的特性关系和正确合理的选型。下面就随半导体设计制造小编一起来了解一下相关内容吧。 我们都知道在选择二极管时,主要看它的正向导通压降、反向耐压、反向漏电流等。但我们却很少知道其在不同电流、不同反向电压、不同环境温度下的关系是怎样的,在电路设计中知道这些关系对选择合适的二极管显得极为重要,尤其是在功率电路中。接下来我将通过型号为SM360A(肖特基管)的实测数据来与大家分享二极管鲜为人知的特性关系。 1、正向导通压降与导通电流的关系 在二极管两端加正向偏置电压时,其内部电场区域变窄,可以有较大的正向扩散电流通过PN结。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能真正导通。但二极管的导通压降是恒定不变的吗?它与正向扩散电流又存在什么样的关系?通过下图1的测试电路在常温下对型号为SM360A的二极管进行导通电流与导通压降的关系测试,可得到如图2所示的曲线关系:正向导通压降与导通电流成正比,其浮动压差为0.2V。从轻载导通电流到额定导通电流的压差虽仅为0.2V,但对于功率二极管来说它不仅影响效率也影响二极管的温升,所以在价格条件允许下,尽量选择导通压降小、额定工作电流较实际电流高一倍的二极管。 图1 二极管导通压降测试电路

图2 导通压降与导通电流关系 2、正向导通压降与环境的温度的关系 在我们开发产品的过程中,高低温环境对电子元器件的影响才是产品稳定工作的最大障碍。环境温度对绝大部分电子元器件的影响无疑是巨大的,二极管当然也不例外,在高低温环境下通过对SM360A的实测数据表1与图3的关系曲线可知道:二极管的导通压降与环境温度成反比。在环境温度为-45℃时虽导通压降最大,却不影响二极管的稳定性,但在环境温度为75℃时,外壳温度却已超过了数据手册给出的125℃,则该二极管在75℃时就必须降额使用。这也是为什么开关电源在某一个高温点需要降额使用的因素之一。 表1 导通压降与导通电流测试数据

齐纳二极管

齐纳二极管 齐纳二极管(又叫稳压二极管),此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 齐纳二极管不同于锗二极管的是:如果反向电压,有时简称为“偏压”增加到某个特殊值,对于一个微小偏压的变化,就会使电流产生一个可观的增加。引起这种效应的电压称为“击穿”电压或“齐纳”电压。2DW7型管的击穿电压在5.8-6.5V之间,极大电流是30mA。 肖特基二极管 肖特基(Schottky)二极管又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等肖特基(Schottky)二极管又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电

路中作整流二极管、小信号检波二极管使用。在通讯电源、变频器等中比较常见。供参考。电路中作整流二极管、小信号检波二极管使用。在通讯电源、变频器等中比较常见。供参考。 我知道的一个应用是在BJT的开关电路里面, 通过在BJT上连接Shockley二极管来箝位,使得晶体管在导通状态时其实处于很接近截至状态.从而提高晶体管的开关速度.这种方法是74LS,74ALS, 74AS等典型数字IC TTL内部电路中使用的技术. 稳压二极管是应用在反向击穿区的特殊的面接触型硅晶体二极管。稳压二极管的伏安特性曲线与硅二极管的伏安特性曲线完全一样,稳压二极管伏安特性曲线的反向区、符号和典型应用电路如图1所示。稳压二极管的特性曲线与普通二极管基本相似,只是稳压二极管的反向特性曲线比较陡。稳压二极管的正常工作范围,是在伏安特性曲线上的反向电流开始突然上升的部分。这一段的电流,对于常用的小功率稳压管来讲,一般为几毫安至几十毫安。 (a)符号(b)伏安特性(c)应用电路图1 稳压二极管的伏安特性

稳压二极管的使用方法《别下》

稳压二极管工作在反向击穿状态时,其两端的电压是基本不变的。利用这一性质,在电路里常用于构成稳压电路。 稳压二极管构成的稳压电路,虽然稳定度不很高,但却具有简单、经济实用的优点,因而应用非常广泛。 在实际电路中,要使用好稳压二极管,应注意如下几个问题。 1、要注意一般二极管与稳压二极管的区别方法。不少的一般二极管,特别是玻璃封装的管,外形颜色等与稳压二极管较相似,如不细心区别,就会使用错误。区别方法是:看外形,不少稳压二极管为园柱形,较短粗,而一般二极管若为园柱形的则较细长;看标志,稳压二极管的外表面上都标有稳压值,如5V6,表示稳压值为 5.6V;用万用表进行测量,根据单向导电性,用X1K挡先把被测二极管的正负极性判断出来,然后用X10K挡,黑表笔接二极管负极,红表笔接二极管正极,测的阻值与X1K挡时相比,若出现的反向阻值很大,为一般二极管的可能性很大,若出现的反向阻值变得很小,则为稳压二极管。 2、注意稳压二极管正向使用与反向使用的区别。稳压二极管正向导通使用时,与一般二极管正向导通使用时基本相同,正向导通后两端电压也是基本不变的,都约为0.7V。从理论上讲,稳压二极管也可正向使用做稳压管用,但其稳压值将低于1V,且稳压性能也不好,一般不单独用稳压管的正向导通特性来稳压,而是用反向击穿特性来稳压。反向击穿电压值即为稳压值。有时将两个稳压管串联使用,一个利用它的正向特性,另一个利用它的反向特性,则既能稳压又可起温度补偿作用,以提高稳压效果。 3、要注意限流电阻的作用及阻值大小的影响。在稳压二极管稳压电路中,一般都要串接一个电阻R,如图1或2示。该电阻在电路中起限流和提高稳压效果的作用。若不加该电阻即当R=0时,容易烧坏稳压管,稳压效果也会极差。限流电阻的阻值越大,电路稳压性能越好,但输入与输出压差也会过大,耗电也就越多。 4、要注意输入与输出的压差。正常使用时,稳压二极管稳压电路的输出电压等于稳压管反向击穿后两端的稳压值,若输入到稳压电路中的电压值小于稳压管的稳压值,则电路将失去稳压作用,只有是大于关系时,才有稳压作用,

齐纳二极管(稳压二极管)工作原理及主要参数

齐纳二极管(稳压二极管)工作原理及主要参数 齐纳二极管也叫稳压二极管.一般二极管处于逆向偏压时,若电压超过PIV(逆向峰值电压)值时二极管将受到破坏,这是因为一般二极管在两端的电位差既高之下又要通过大量的电流,此时所产生的功率所衍生的热量足以使二极管烧毁。 齐纳二极管就是专门被设计在崩溃区操作,是一个具有良好的功率散逸装置,可以当做电压参考或定电压组件。若利用齐纳二极管作为电压调节器,将使附载电压保持在Vz附近且几乎唯一定值,不受附载电流或电源上电压变动影响。一般二极管之崩溃电压,在制作时可以随意加以控制,所以一般齐纳二极管之崩电压(Vz)从数伏特至上百伏特都有。一般齐纳二极管在特性表或电路上除了标住Vz外,均会注明Pz也就是齐纳二极管所能承受之做大功率,也可由Pz=Vz*Iz 换算出奇纳二极管可通过最大电流Iz。dz3w上有个在线计算器,电路设计时可以用来计算稳压二极管的相关参数. 齐纳二极管工作原理 齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,二极管上并不会有电流产生,但当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线,可由此应证上述说明。 齐纳二极管(又叫稳压二极管)它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 在通常情况下,反向偏置的PN结中只有一个很小的电流。这个漏电流一直

肖特基二极管有哪些作用

肖特基二极管有哪些作用 肖特基二极管介绍: 肖特基二极管是以其发明人肖特基博士(Schottky)命名的,SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 肖特基二极管是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 肖特基二极管原理 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的多属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度表面逐渐降轻工业部,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 典型的肖特基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极(阻档层)金属材料是钼。二氧化硅(SiO2)用来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,可在基片与阳极金属之间形成合适的肖特基势垒,当加上正偏压E时,金属A和N型基片B分别接电源的正、负极,此时势垒宽度Wo变窄。加负偏压-E时,势垒宽度就增加。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别,通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题(Qrr→0),使开关特性获得时显改善。其反向恢复时间已能缩短到10ns以内。但它的反向耐压值较低,一般不超过去时100V。因此适宜在低压、大电流情况下工作。利用其低压降这特点,能提高低压、大电流整流(或续流)电路的效率。 肖特基二极管作用

稳压二极管结构和工作原理

稳压二极管结构和工作原理 稳压二极管的基本结构同普通二极管一样,是一个PN结,但是由于制造工艺不同,当这种PN结处于反向击穿状态时,PN结不会损坏,稳压二极管用于稳定电压就是应用它的这一击穿特性。 加在稳压二极管的反向电压增加到一定数值时,形成大的反向电流,此时电压基本不变,称为隧道击穿,这个近似不变的电压称为齐纳电压,对硅稳压二极管而言,稳定电压在5V以下的器件靠齐纳电压工作。 当反向电压比较高时,受强电场作用形成大的反向电流,而电压基本不变,称为雪崩击穿,这一基本不变的电压称为雪崩电压。对硅稳压二极管而言,稳定电压在7V以上的器件靠雪崩电压工作。 1.稳压二极管U-I特性曲线解说 稳压二极管U—I特性曲线,它可以说明稳压二 极管的稳压原理。从图7-34中可以看出,这一特性曲 线与普通二极管的U-I特性曲线基本一样。X轴方向 表示稳压二极管上的电压大小,Y轴方向表示流过稳 压二极管的电流大小。 从第一象限的曲线可以看出,它同普通二极管的 正向特性曲线一样,此时相当于给稳压二极管PN结 加正向偏置电压,稳压二极管在进行稳压作用时不用 这种偏置方式,这一点与普通二极管明显不同。 从第三象限的曲线可以看出下列三点: (1)在反向电压较低时,稳压二极管截止,它不工作在这一区域。 (2)反向电压增大到U Z时,曲线限陡,说明流过稳压二极管的电流在变化时,稳压二极管两端的电压基本不变,电压是稳定的,稳压二极管正是工作在这一状态下。换方之,当稳压二极管工作在稳压状态时,稳定电压有很微小的变化,可以引起稳压二极管很大的反向电流变化。 (3)U Z是稳压二极管的稳定电压值,称为稳压值。不同的稳压二极管,这一稳定电压的大小不同。稳压二极管的PN结处于反向穿状态时,只要流过这一PN结的工作电流不大于最大稳定电流,稳压二极管就不会损坏。如果反向电流再增大,则稳压二极管也会损坏。 综上所述,利用稳压二极管构成稳压电路时,必须给稳压二极管的PN结加上反向偏置电压。 2.温度补偿型稳压二极管工作原理 如图7-35所示是温度补偿型稳压二极管内部结 构示意图。一些要求电压温度特性较高的场合,采用 多种措施进行温度补偿。温度补偿型稳压二极管在工 作时,1脚和2脚不分,内部的两只稳压二极管的性能 相同,两只二极管一只工作在正向,另一只工作在反向, 这样两个PN结一个正向偏置,另一个反向偏置。 PN结在正向和反向偏置状态下的压降受温度影 响结果相反,当正向偏置的PN结随温度升高而压降 增大时,反向偏置的PN结压降则下降,这样一个压降 增大,另一个减小,相互抵消,使两个PN结压降之和基 本不变,达到温度补偿的目的。

齐纳二极管

齐纳二极管 齐纳二极管的主要作用就是当作一种电压调整器,QLCO-A146提供稳定的参考电压,可应用在电源供应器、电压表与其他的仪器中。齐纳二极管的符号如图3.1所示。齐纳二极管是一种硅pn结元件,它和整流二极管不同,因为它是设计用于反向击穿区。齐纳二极管的击穿电压,可在生产制造时仔细控制掺杂的程度加以设定,其伏安特性曲线如图3.2,一般整流二极管和齐纳二极管的工作区域,是以阴影区域表示。假如齐纳二极管处于正向偏压,它就如同整流二极管一般。 齐纳击穿 齐纳二极管是设计用于反向击穿区。齐纳二极管的反向击穿有两种类型,就是累增击穿和齐纳击穿。齐纳击穿则是齐纳二极管在低反向偏压时发生。如果齐纳二极管经过大量掺杂,就可降低击穿电压。这样可以产生很薄的耗尽区,结果就可在耗尽区产生很强的电场,从而导致隧道效应。当接近反向击穿电压(Vz)时,电场的强度足够将电子拉离价带,因而产生大量的电流。齐纳二极管的击穿电压若约小于5V,就会工作于反向击穿区。而那些高于5V击穿电压的齐纳二极管,则是工作于累增击穿区,两种类型都称为齐纳二极管。 击穿特性

图3.3显示齐纳二极管的特性曲线的反向偏压部分。请注意当反向偏压(VR)增加,反向电流(IR)-直到曲线的膝点之前都仍然维持非常小。此时的反向电流又称为稳定电流。在这一点,击穿效应开始出现,内部的电阻值,也称为动态阻抗(Zz),随着反向电流快速增加而开始降低。从膝点以下,反向击穿电压(vz)基本上维持定值,即使当稳定电流增加也只些微地增加。 这种能够维持两端之间反向电压不变的能力,就是齐纳二极管的关键特性。当齐纳二极管工作在击穿区时就像一个电压调整器,因为它在特定的反向电流范围内,两端的电压几乎维持在固定值。为了调整电压,要让二极管维持在击穿区工作,就必须保持反向电流在最低值。可以从在图3.3中的曲线看出,当反向电流阵低到曲线的膝点以下,电压会急速地下降,因此丧失调整电压的功能。同时,当二极管的电流超过最大值IZM时,二极管可能会因为过量的功率消耗而损毁。所以,基本上当齐纳二极管的反向电流值在IZK~IZM的范围内,它在两端之间会维持接近定值的电压。通常资料表中所指的稳定电压,是指当反向电流为齐纳测试电流时的电压。 齐纳等效电路 图3.4(a)显示齐纳二极管在反向击穿区的理想模型。它拥有等于齐纳电压的定值电压降。这个定值电压降可用一个直流电压源加以表示,事实上虽然齐纳二极管并不会产生一个电动势

肖特二极管的工作原理是什么.doc

肖特二极管的工作原理是什么 SBD是肖特基势垒二极管(Schottky Barrier Diode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 肖特基二极管是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 典型的肖特基二极管基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极使用钼或铝等材料制成阻档层。用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,

齐纳二极管项目可行性研究报告

齐纳二极管项目 可行性研究报告 xxx实业发展公司

齐纳二极管项目可行性研究报告目录 第一章项目概论 第二章项目建设背景及必要性分析第三章市场调研 第四章产品规划及建设规模 第五章项目选址研究 第六章土建工程说明 第七章工艺方案说明 第八章项目环保研究 第九章项目职业安全 第十章建设风险评估分析 第十一章节能分析 第十二章计划安排 第十三章投资方案 第十四章项目经济效益 第十五章招标方案 第十六章综合评估

第一章项目概论 一、项目承办单位基本情况 (一)公司名称 xxx实业发展公司 (二)公司简介 公司是一家集研发、生产、销售为一体的高新技术企业,专注于产品,致力于产品的设计与开发,各种生产流水线工艺的自动化智能化改造,为 客户设计开发各种产品生产线。 公司根据自身发展的需要,拟在项目建设地建设项目,同时,为公司 后期产品的研制开发预留发展余地,项目建成投产后,不仅大幅度提升项 目承办单位项目产品产业化水平,为新产品研发打下良好基础,有力促进 公司经济效益和社会效益的提高,将带动区域内相关行业发展,形成配套 的产业集群,为当地经济发展做出应有的贡献。 优良的品质是公司获得消费者信任、赢得市场竞争的基础,是公司业 务可持续发展的保障。公司高度重视产品和服务的质量管理,设立了品管部,有专职质量控制管理人员,主要负责制定公司质量管理目标以及组织 公司内部质量管理相关的策划、实施、监督等工作。 (三)公司经济效益分析

上一年度,xxx有限责任公司实现营业收入6211.48万元,同比增长25.63%(1267.31万元)。其中,主营业业务齐纳二极管生产及销售收入为5750.65万元,占营业总收入的92.58%。 根据初步统计测算,公司实现利润总额1190.10万元,较去年同期相比增长242.35万元,增长率25.57%;实现净利润892.57万元,较去年同期相比增长93.65万元,增长率11.72%。 上年度主要经济指标

稳压二极管工作原理

稳压二极管工作原理 一、稳压二极管原理及特性 一般三极管都是正向导通,反向截止;加在二极管上的反向电压如果超过二极管的承受能力,二极管就要击穿损毁。但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。这种特殊的二极管叫稳压管。 稳压管的型号有2CW、2DW 等系列,它的电路符号如图5-17所示。 稳压管的稳压特性,可用图5一18所示伏安特性曲线很清楚地表示出来。 稳压管是利用反向击多区的稳压特性进行工作的,因此,稳压管在电路中要反向连接。稳压管的反向击穿电压称为稳定电压,不同类型稳压管的稳定电压也不一

样,某一型号的稳压管的稳压值固定在口定范围。例如:2CW11的稳压值是3.2伏到4.5伏,其中某一只管子的稳压值可能是3.5伏,另一只管子则可能是4,2伏。 在实际应用中,如果选择不到稳压值符合需要的稳压管,可以选用稳压值较低的稳压管,然后串联几只硅二极管“枕垫”,把稳定电压提高到所需数值。这是利用硅二极管的正向压降为0.6~0.7伏的特点来进行稳压的。因此,二极管在电路中必须正向连接,这是与稳压管不同的。 稳压管稳压性能的好坏,可以用它的动态电阻r来表示: 显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU越小,动态电阻越小,稳压管性能就越好。 稳压管的动态电阻是随工作电流变化的,工作电流越大,动态电阻越小。因此,为使稳压效果好,工作电流要选得合适。工作电流选得大些,可以减小动态电阻,但不能超过管子的最大允许电流(或最大耗散功率)。各种型号管子的工作电流和最大允许电流,可以从手册中查到。 稳压管的稳定性能受温度影响,当温度变化时,它的稳定电压也要发生变化,常用稳定电压的温度系数来表示,这种性能例如2CW19型稳压管的稳定电压Uw= 12伏,温度系数为0.095%℃,说明温度每升高1℃,其稳定电压升高11.4毫伏。为提高电路的稳定性能,往往采用适当的温度补偿措施。在稳定性能要求很高时,需使用具有温度补偿的稳压,如2DW7A、2DW7W、2DW7C 等。 二、稳压二极管稳压电路图 由硅稳压管组成的简单稳压电路如图5- l9(a)所示。硅稳压管DW与负载Rfz,并联,R1为限流电阻。

肖特基二极管电路特性

万联芯城销售ST,ON,TI等多家国际品牌原装进口肖特基二极管。肖特基二极管价格优秀,质量有保证。万联芯城专为终端工厂企业提供一站式电子元器件报价业务,与全国近5000家企业达成战略合作伙伴关系。点击进入万联芯城 点击进入万联芯城

我们所熟知的二极管被广泛应用于各种电路中,但我们真正了解二极管的某些特性关系吗?如二极管导通电压和反向漏电流与导通电流、环境温度存在什么样的关系等,让我们来扒扒很多数据手册中很少提起的特性关系和正确合理的选型。下面就随半导体设计制造小编一起来了解一下相关内容吧。 我们都知道在选择二极管时,主要看它的正向导通压降、反向耐压、反向漏电流等。但我们却很少知道其在不同电流、不同反向电压、不同环境温度下的关系是怎样的,在电路设计中知道这些关系对选择合适的二极管显得极为重要,尤其是在功率电路中。接下来我将通过型号为SM360A(肖特基管)的实测数据来与大家分享二极管鲜为人知的特性关系。 1、正向导通压降与导通电流的关系 在二极管两端加正向偏置电压时,其内部电场区域变窄,可以有较大的正向扩散电流通过PN结。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能真正导通。但二极管的导通压降是恒定不变的吗?它与正向扩散电流又存在什么样的关系?通过下图1的测试电路在常温下对型号为SM360A的二极管进行导通电流与导通压降的关系测试,可得到如图2所示的曲线关系:正向导通压降与导通电流成正比,其浮动压差为0.2V。从轻载导通电流到额定导通电流的压差虽仅为0.2V,但对

于功率二极管来说它不仅影响效率也影响二极管的温升,所以在价格条件允许下,尽量选择导通压降小、额定工作电流较实际电流高一倍的二极管。 图1 二极管导通压降测试电路 2、正向导通压降与环境的温度的关系 在我们开发产品的过程中,高低温环境对电子元器件的影响才是产品稳定工作的最大障碍。环境温度对绝大部分电子元器件的影响无疑是巨大的,二极管当然也不例外,在高低温环境下通过对SM360A 的实测数据表1与图3的关系曲线可知道:二极管的导通压降与环境温度成反比。在环境温度为-45℃时虽导通压降最大,却不影响二极管的稳定性,但在环境温度为75℃时,外壳温度却已超过了数据手册给出的125℃,则该二极管在75℃时就必须降额使用。这也是为什么开关电源在某一个高温点需要降额使用的因素之一。 表1 导通压降与导通电流测试数据

肖特基二极管与快恢复二极管区别

肖特基二极管和快恢复二极管又什么区别 (他们恢复时间都是很快的): 快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(1-2V)(此处为什么不提是什么材料?),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)(用这个方法可以判断出该器件)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。 这两种管子通常用于开关电源。 肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒~! 前者的优点还有低功耗,大电流,超高速~!电气特性当然都是二极管阿~! 快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 肖特基二极管:反向耐压值较低40V-50V,通态压降0.3-0.6V,小于10nS的反向恢复时间。它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。 快恢复二极管:有0.8-1.1V的正向导通压降,35-85nS的反向恢复时间,在导通和截止之间迅速转换,提高了器件的使用频率并改善了波形。快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 想问一下,为何会有反向恢复时间

稳压二极管系列

北京市半导体器件六厂稳压二极管系列 稳压二极管系列 符号说明 VZ 工作电压 IZ 测试电流 IR 反向电流 VR 反向电压 VF 正向压降 IF 正向电流 RZ 动态电阻 IZM 最大直流工作电流 αVZ 工作电压温度系数 Ptot 最大耗散功率

1/2W 2CW (ZW 、RLS )50~78系 列 稳 压 管 用途:在电子设备中用于对电压进行调整及稳 定电压的作用。 结构:硅外延平面工艺 机械性能: 封装形式: DO-35型玻璃轴向外引线封装 结构,引出端材料为杜美丝。LL-34表面贴装 极性:色环表示阴极 贮存温度:-55℃~150℃ 环境温度:-55℃~125℃ 最高结温:+150℃ 最大额定功率:500 mW (当TA>25℃时, ZW50~78按4mW/℃的速度线性地降额) 质量等级: 军品:J 、GS 、G 、G+、CASTC 民品:Ⅱ类(工业级) DO-35 执行标准: 军品:GJB33A-1997《半导体分立器件总规范》 QZJ840611《半导体二、三极管“七专”技术条件》 民品:GB4589.1-2006《半导体器件分立器件和集成电路总规范》

参 数 表 TA =25℃ 参 数 型 号 VZ (V ) 条件 IZ (mA ) RZ (Ω) 条件 IZ (mA ) IR (μA ) 条件 VR (V ) VF (V ) 条件 IF (mA ) IzM (mA ) 2CW50(ZW50、RLS50) 1.0~2.8 10 ≤50 10 ≤10 0.5 83 2CW51(ZW51、RLS51) 2.5~3.5 10 ≤60 10 ≤5 0.5 71 2CW52(ZW52、RLS52) 3.2~4.5 10 ≤70 10 ≤2 0.5 55 2CW53(ZW53、RLS53) 4.0~5.8 10 ≤57 10 ≤1 1 41 2CW54(ZW54、RLS54) 5.5~6.5 10 ≤30 10 ≤0.5 1 38 2CW55(ZW55、RLS55) 6.2~7.5 10 ≤15 10 ≤0.5 1 33 2CW56(ZW56、RLS56) 7.0~8.8 5 ≤15 5 ≤0.5 1 27 2CW57(ZW57、RLS57) 8.5~9.5 5 ≤20 5 ≤0.5 1 26 2CW58(ZW58、RLS58) 9.2~10.5 5 ≤25 5 ≤0.5 1 23 2CW59(ZW59、RLS59) 10~11.8 5 ≤30 5 ≤0.5 1 20 2CW60(ZW60、RLS60) 11.5~12.5 5 ≤40 5 ≤0.5 1 19 2CW61(ZW61、RLS61) 12.2~14 3 ≤50 3 ≤0.5 1 16 2CW62(ZW62、RLS62) 13.5~17 3 ≤60 3 ≤0.5 1 14 2CW63(ZW63、RLS63) 16~19 3 ≤70 3 ≤0.5 1 13 2CW64(ZW64、RLS64) 18~21 3 ≤75 3 ≤0.5 1 11 2CW65(ZW65、RLS65) 20~24 3 ≤80 3 ≤0.5 1 10 2CW66 (ZW66、RLS66) 23~26 3 ≤85 3 ≤0.5 1 9 2CW67(ZW67、RLS67) 25~28 3 ≤90 3 ≤0.5 1 9 2CW68 (ZW68、RLS68) 27~30 3 ≤95 3 ≤0.5 1 8 2CW69 (ZW69、RLS69) 29~33 3 ≤95 3 ≤0.5 1 7 2CW70 (ZW70、RLS70) 32~36 3 ≤100 3 ≤0.5 1 7 2CW71 (ZW71、RLS71) 35~40 3 ≤100 3 ≤0.5 1 ≤1 100 6 备 注 可根据用户具体要求,选定稳压范围 封装型式及逻辑图 尺寸见附图 DO-35: LL-34

稳压二极管原理及应用

什么是稳压二极管稳压二极管(又叫齐纳二极管)它的电路符号是:,稳压二极管是一种用于稳定电压的单PN结二极管。此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。 稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 稳压管的应用: 1、浪涌保护电路(如图2):稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜。图中的稳压二极管D是作为过压保护器件。只要电源电压VS超过二极管的稳压值D就导通。使继电器J吸合负载RL就与电源分开。 2、电视机里的过压保护电路(如图3):EC是电视机主供电压,当EC电压过高时,D导通,三极管BG导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态。 3、电弧抑制电路如图4:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了。这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到 它。

4、串联型稳压电路(如图5):在此电路中。串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发 射极就输出恒定的12V电压了。这个电路在很多场合下都有应用 国产稳压二极管产品的分类 二极管的击穿通常有三种情况,即雪崩击穿、齐纳击穿和热击穿。 (1)雪崩击穿 对于掺杂浓度较低的PN结,结较厚,当外加反向电压高到一定数值时,因外电场过强,使PN结内少数载流子获得很大的动能而直接与原子碰撞,将原子电离,产生新的电子空穴对,由于链锁反应的结果,使少数载流子数目急剧增多,反向电流雪崩式地迅速增大,这种现象叫雪崩击穿。雪崩击穿通常发生在高反压、低掺杂的情况下。 (2)齐纳击穿 对于采用高掺杂(即杂质浓度很大)形成的PN结,由于结很薄(如0.04μm)即使外加电压并不高(如4V),就可产生很强的电场(如)将结内共价键中的价电子拉出来,产生大量的电子一空穴对,使反向电流剧增,这种现象叫齐纳击穿(因齐纳研究而得名)。齐纳击穿一般发生在低反压、高掺杂的情况下。(3)热击穿 在使用二极管的过程中,如由于PN结功耗(反向电流与反向电压之积)过大,使结温升高,电流变大,循环反复的结果,超过PN结的允许功耗,使PN结击穿的现象叫热击穿。热击穿后二极管将发生永久性损坏。

肖特基二极管讲解

肖特基二极管简介 肖特基二极管(SBD)是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称,是以其发明人肖特基博士(Schottky)命名的半导体器件。肖特基二极管是低功耗、大电流、超高速半导体器件,它不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 Schottky diode (SBD) is the Schottky barrier diode , is the inventor of the Schottky named semiconductor device. Schottky barrier diode is a low power, high current, super high speed semiconductor devices, instead of using P type semiconductor and the n-type semiconductor contact formation PN junction theory to make, but the use of metal semiconductor contact formation of metal semiconductor junction with the principle of making the. Therefore, SBD is also known as a metal semiconductor (contact) diode or a surface barrier diode, which is a hot carrier diode. 肖特基二极管是半导体器件,以其发明人博士(1886年7月23日—1976年3月4日)命名的,SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。 SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。

稳压二极管的作用及工作原理

稳压二极管的作用及工作原理 稳压二极管工作原理一种用于稳定电压的单伪结二极管。它的伏安特性,电路符号如图所示。结构同整流二极管。加在稳压二极管的反向电压增加到一定数值时,将可能有大量载流子隧穿伪结的位垒,形成大的反向电流,此时电压基本不变,称为隧道击穿。当反向电压比较高时,在位垒区内将可能产生大量载流子,受强电场作用形成大的反向电流,而电压亦基本不变,为雪崩击穿。因此,反向电压临近击穿电压时,反向电流迅速增加,而反向电压几乎不变。这个近似不变的电压称为齐纳电压(隧道击穿)或雪崩电压(雪崩击穿)。 稳压二极管的主要参数 1.Vz—稳定电压。 指稳压管通过额定电流时两端产生的稳定电压值。该值随工作电流和温度的不同而略有改变。由于制造工艺的差别,同一型号稳压管的稳压值也不完全一致。例如,2CW51型稳压管的Vzmin为3.0V, Vzmax则为3.6V。 2.Iz—稳定电流。 指稳压管产生稳定电压时通过该管的电流值。低于此值时,稳压管虽并非不能稳压,但稳压效果会变差;高于此值时,只要不超过额定功率损耗,也是允许的,而且稳压性能会好一些,但要多消耗电能。 3.Rz—动态电阻。 指稳压管两端电压变化与电流变化的比值。该比值随工作电流的不同而改变,一般是工作电流愈大,动态电阻则愈小。例如,2CW7C稳压管的工作电流为5mA时,Rz为18Ω;工作电流为1OmA时,Rz为8Ω;为20mA时,Rz为2Ω ; > 20mA则基本维持此数值。 4.Pz—额定功耗。 由芯片允许温升决定,其数值为稳定电压Vz和允许最大电流Izm的乘积。例如2CW51稳压管的Vz为3V,Izm为20mA,则该管的Pz为60mWo 5.Ctv—电压温度系数。

【硬件设计】稳压管工作原理

【硬件设计】稳压二极管工作原理介绍 现在常用的稳压管的主要材料是半导体硅。 在硅稳压管的反向电压击穿区内,电流变化很大,而其电压基本不变。 在小于5V的稳压管,主要是齐纳击穿,大于7V的稳压管,主要是雪崩击穿,在5—7V间,两种击穿同时存在。 要理解稳压二极管的工作原理,只要了解二极管的反向特性就行了。所有的晶体二极管,其基本特性是单向导通。就是说,正向加压导通,反向加压不通。这里有个条件就是反向加压不超过管子的反向耐压值。那么超过耐压值后是什么结果呢?一个简单的答案就是管子烧毁。但这不是全部答案。试验发现,只要限制反向电流值(例如,在管子与电源之间串联一个电阻),管子虽然被击穿却不会烧毁。而且还发现,管子反向击穿后,电流从大往小变,电压只有很微小的下降,一直降到某个电流值后电压才随电流的下降急剧下降。正是利用了这个特性人们才造出了稳压二极管。使用稳压二极管的关键是设计好它的电流值。 稳压二极管(齐纳二极管,Zener diode): 是一种专门工作于反向(崩溃,Breakdown)区域的二极管,如有一适量的电流流经此二极管,则其两端点间产生一固定不变的电压,名为:”稳压电压”,由于其电压稳定,故被广泛用于稳压电路或用作参考电压源。 崩溃现象: 在PN结上,加以反向电压时,反向电流很小,叫反向饱和电流,当反向电压加大到一定值时,反向电流会突然增加,这现象叫PN结的击穿。 电路符号和曲线图: 理想的等效实际的等效

工作原理: 稳压二极管特性曲线中,当反向电压达到击穿电压后,二极管由截止转为导通,此时的电流为最低稳压电流IZ(Min),而形成的电压为最低稳压电压VZ(Min),如继续加大反向电压,则电流便急速变大,但稳压二极管有一定的最大可通过电流IZ(Max),若通过的电流超过IZ(Max),会损坏此二极管。(简单来说:反向电压到达VZ后,相对电流不断增加,电压变化却很少。),如下图: 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、 什么是稳压二极管稳压二极管(又叫齐纳二极管)它的电路符号是:,稳压二极管是一种用于稳定电压的单PN结二极管。此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。 稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 稳压管的应用: 1、浪涌保护电路(如图2):稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜。图中的稳压二极管D是作为过压保护器件。只要电源电压VS超过二极管的稳压值D就导通。使继电器J吸合负载RL就与电源分开。

相关文档
最新文档