黄酮类化合物的提取与分离方法综述.总结

黄酮类化合物的提取与分离方法综述.总结
黄酮类化合物的提取与分离方法综述.总结

黄酮类化合物的提取和分离方法的综述

摘要

黄酮类化合物是广泛存在于自然界的一大类化合物,具有比较强的生物活性和生理作用,按结构可分为黄酮类和黄酮醇类、二氢黄酮类和二氢黄酮醇类、查尔酮类、双黄酮类、异黄酮类以及其它黄酮类等。目前,黄酮类化合物的提取方法主要有溶剂提取法、微波提取法、超声波提取法、酶解法、超临界流体萃取法、双水相萃取分离法、半仿生提取法等,各种提取方法都有它的优缺点。本文对上述几种提取方法近年来的应用及研究进展做了简单综述,旨在为黄酮类化合物的研究、开发、应用提借鉴

关键词:黄酮类化合物;性质;提取;分离;前景

黄酮类化合物又称黄碱素,广泛存在于自然界的植物中,属植物次生代谢产物,是一类具有种生物活性的多酷类化合物,其在植物体内大部分与糖结合成苷类,小部分以苷元的形式存在[1]。许多研究己表明黄酮类化合物安全、无毒,具有抗菌、消炎、清热解毒、镇静、利尿等作用外,它是大多数氧自由基的清除剂,对冠心病、心绞痛等疾病的治疗效果显著。特别是由基和抗癌、防癌的作用,使黄酮类化合物的研究进入了一个新的阶段。随着食品工业的发展与消费观念的改变,天然活性成分的保健食品成为现代人追逐的目标,其中黄酮类化合物以纯天然、高活性、见效快、作用广泛等特点日益受到人们的关注。

1.黄酮类化合物的概述

黄酮类化合物(flavonoids)指的是两个苯环(A-与B-环)通过中央三碳链相互联结而成的一系列化合物。根据中央三碳链的氧化程度、B-环联接位置(2-或3-位)以及三碳链是否构成环状等特点,可将重要的天然黄酮类化合物分为黄酮

类(flavone)、黄酮醇类(flavonol)、二氢黄酮类(dihy-droflavone)、二氢黄酮醇类(dihydroflavonol)、异黄酮类(isoflavone)等15种。大部分学者认为黄酮的基本骨架是由三个丙二酰辅酶A和一个桂皮酰辅酶A生物合成而产生的,经同位素标记实验证明了A环来自于三个丙二酰辅酶A,而B环则来自于桂皮酰辅酶A。三个丙二酰辅酶A和一个桂皮酰辅酶A在查尔酮合成酶的作用下生成查尔酮,再经过查尔酮异构化酶的作用形成二氢黄酮。其他黄酮类化合物大多是经过二氢酮在各种酶的作用下生物合成而得到。现已发现的黄酮类化合物中,以黄酮醇类最为常见,约占总数的三分之一,其次为黄酮类,占总数的四分之一以上,其余则较少见。黄酮类化合物广泛分布于植物界中,多与糖结合成苷类或以碳糖基的形式存在,也有以游离形式存在的。天然黄酮类化合物母核上常含有羟基、甲氧基烃氧基、异戊烯氧基等取代基,由于这些助色团的存在,使该类化合物多显黄色。黄酮类化合物具有心血管系统维护、抗菌及抗病毒、抗肿瘤、抗氧化、抗炎、镇痛、保肝等多种生物活性,并且大量研究表明黄酮类化合物还具有降压、降血脂、抗衰老、提高机体免疫力、雌性激素样、泻下、解痉等生物活性。因此黄酮类化合物的研究深受国内外学者的重视。

黄酮类化合物的分子特点是:相对分子质量较低,从几百到几千;具有一定的极性,可溶于许多有机溶剂中。活性成分的提取与精制是中药现代化的重要组成部分,除传统的有机溶剂提取之外,现代科技的发展也提供了超临界流体萃取、双水相萃取等技术。本文以黄酮类化合物现阶段的提取、精制方法,以及各种方法的优缺、发展现状作一综述。

2.黄酮类化合物的性质

黄酮类化合物具有以下性质

2.1黄酮类化合物多为晶形固体,少数化合物(如黄酮普类)为无定形粉末,有较高的熔点,分子结构中,大多带有酚性轻基,因此具有酚类化合物的通性。另外,分子中还常带有毗酮环或碳基,构成了生色团的基本结构,根据轻基的数目,结合的位置与交又共扼体系,构成了黄酮类化合物的呈色。一般来说,黄酮及黄酮醇和其昔类多呈灰黄到黄色。

2.2黄酮类化合物的溶解度,因结构及存在状态(普或营元,单糖普,双糖苷或三糖普)不同而有很大差异。一般游离普元难溶于水,易溶于甲醇、乙醇、乙酸乙酷等有机溶剂及稀碱液中;而黄酮营一般易溶于水、甲醇、乙醇等极性溶剂,难溶于或不溶于苯、氯仿等有机溶剂。

2.3黄酮类化合物大多具有强的荧光,在紫外灯照射下呈现亮黄、黄绿、亮蓝、暗棕等颜色。

2.4黄酮类化合物对盐酸镁粉或汞齐呈鲜红、紫色或黄色反应。结构中带有3一oH,5一OH或邻位轻基者,均能与金属盐类试剂,如铝盐、镁盐、镁盐和铁盐等形成颜色较深的络合物。天然黄酮类化合物多以着类形式存在,并且,由于糖的种类、数量、联接位置及联接方式不同,可以组成各种各样的黄酮

3.黄酮类化合物的提取

3.1热水提取法

热水提取法热水一般仅限于提取苷类,所以对黄酮苷类物质含量较高的原料,可以采取热水提取法。在提取过程中要考虑加水量、浸泡时间、煎煮时间及煎煮次数等因素。此工艺成本低、对环境及人类无毒害,可应用于工业化大规模生产。

郭京波等[2]以水做溶剂,同时提高浸提温度、延长浸提时间和增加液料比,可以明显提高丁的产率。金春雪等[3]在银杏叶中提取黄酮类化合物,先将银杏叶瞭干,用水浸泡一天、沸水煮半小时,文火焖蒸半小时,静置取上层黄绿液,蒸发、萃取、过滤即得。李冬菊等[4]用热水提取法从山梧叶中提取总黄酮,采用的是全物理过程无污染,但是具有提取杂质多,收率较低,提取液过滤、浓缩等操作困难且又费时等缺点。

3.2微波辅助提取法

微波是一种非电离的电磁辖射。微波提取法是利用不同结构的物质在微波场中吸收能力的差异,使基体物质中的某些区域或提取体系中的某些组分被选择性

加热,从而使被提取物质分离开来,微波辅助提取法具有选择性高、操作时间短、消耗溶剂量少、提取效率高、污染小等特点,可用于对热不稳定的物质的提取。张玉香等采用微波辅助提取法提取蓝萄叶中的总黄酮,结果表明提取率为4.2%。张国铭等[5]采用微波辅助提取法提取山竹夹层中黄酮类化合物,提取溶剂为90%甲醇,微波时间为15s,提取一次时提取率就可达8.8%。提取量是溶剂提取法的1.65倍,所用时间是后者的1/80;叶春等釆用微波辅助提取法提取鱼腥草叶中总黄酮,结果显示提取率可达95%以上,与传统乙醇提取法相比,微波辅助提取节省时间,提取率高。刘峙噪等[6]采用微波辅助提取法提取银杏叶中黄酮类物质,微波时间5min后,进行抽提L5h,效果显著利用微波提取所用时间短,提取率是传统提取的2.2倍。Weihuaxiao等[7]用微波辅助提取法快速提取紫云英根中的黄酮类物质,考察了微波功率、提取周期、乙醇浓度、提取温度、放射时间和固液比等因素对提取率的影响,结果表明当使用90%的乙醇,25mg/g的样品在ll(rC 萃取25min,黄酮类物质的产率最大

3.3双水相提取法

双水相体系是由两种水溶性高分子化合物或一种高分子化合物与一种盐类在水中所形成的互不相溶的两相体系,由于被分离物在两相中分配不同,便可实现分离。与传统的萃取方法相比,双水相提取法所形成的两相大部分为水,两相界面张力很小,为有效成分的溶解和萃取提供了适宜的环境,相际间的质量传递快、操作方便、时间短、条件温和、易于工程放大和连续操作。张春秀等将银杏叶浸提液加入双水相体系中,将黄酮类化合物分离,提取率可达98.2%。

3.4超临界提取

超临界流体萃取法是近十年来才发展起来的一种新型技术,它利用超临界流体作为萃取剂从液体和固体中提取某种高沸点的成分,以达到分离或提纯的目的瞬】。超临界流体是处于临界温度和压力以上的流体。在这种条件下,流体即使处于临界温度下,也不会浓缩为液体,但流体的密度随压力而增加,此时超临界流体相既不同于一般的液相,也有别于一般的气相。其密度接近于液体,粘度却接近于普通气体,扩散能力又比液体大100倍。与一般液体溶剂相比,在超临界流体中可

更快地进行传质,在短时间内达到平衡,从而高效地进行分离。尤其是对固体物质中的某些成分进行提取时,由于溶剂的扩散系数大,粘度小,渗透性能好,因此可以简化固体粉碎的预处理。超临界流体的密度接近于普通液体的密度,因此,超临界流体对液体、固体的溶解度也与液体相接近。由于超临界流体的溶解能力与密度有很大关系,因此温度和压力的变化会大大地改变其溶解能力。

黄酮类化合物的分离用于超临界萃体的流体,必须具备下列条件:

(l)化学性质稳定,对设备没有腐蚀性:

(2)临界温度接近室温或操作温度,不要太高或太低;

(3)操作温度应低于萃取组分的分解、变质温度;

(4)临界压力应该低(降低压缩动力);

(5)选择性高(易得到高纯制品);

(6)对萃取物质的溶解度高(可减少溶剂循环量);

(7)货源充沛,价格低廉;

(8)在医药食品工业使用时,必须对人体无毒害。

在工艺过程中,除要求超临界流体具有良好的溶解性能外,还要求有良好的选择性,以有效地去除杂质,提高溶剂选择性的基本原则是:

(l)操作温度与超临界流体的临界温度相近;

(2)超临界流体的化学性质与被萃取物质的化学性质相近,因此可以选取与被萃取溶质相近的气体作为萃取气体,进行选择性萃取。

到目前为止,作为超临界流体应用的萃取剂主要有:乙烷、乙烯、丙烷、丙烯、苯、氨、二氧化碳等,其中二氧化碳具有无毒、不易燃、不易爆、不腐蚀、价廉易得、临界温度接近常温、临界压力低、溶解能力好等优点,受到普遍的重视,是最常用的超临界萃取剂。与一些传统的分离方法相比,超临界流体萃取具有许多独特的优点:

(l)超临界流体的萃取能力取决于流体密度,因而很容易通过调节温度和压力来加以控制。由于超临界流体兼有液体和气体的特性,其萃取效率一般高于液体溶剂萃取;

(2)溶剂回收简单方便,节省能源。通过等温降压或等压升温被萃取物就可以与萃取剂分离;

(3)由于超临界萃取工艺可在较低温度下操作,故特别适合天然物质的分离,以保持其生物活性;

(4)可较快地达到平衡,过程无相变。采用该法制得银杏叶黄酮类化合物的黄绿色精提物,得率为4.1%,其中黄酮含量在35%以上。

随着超临界流体的迅速发展,用该技术提取天然植物中的药用有效成分也越来越广泛。与传统的提取工艺比较,超临界流体具有提取效率高,无溶剂残留毒性,天然植物中活性成分和热不稳定成分不易被分解破坏而保持其天然特性等优点,同时,还可以通过控制临界温度和压力的变化,来达到选择性提取和分离纯化的目的。但是超临界流体需要在较高的压力下操作,因此设备费用比较昂贵,而且需高压技术,在设备和过程设计上还缺乏基础数据和系统的方法,在我国的应用未普及[8-9]

4.黄酮类化合物的分离

由于黄酮化合物的性质不同,其分离原理有:(1)极性大小不同,利用吸附能力或分配原理进行分离;(2)酸性强弱不同,利用pH梯度萃取进行分离;(3)分子大小不同,利用葡聚糖凝胶分子筛进行分离;(4)分子中某些特殊结构,利用与金属盐络合能力的不同进行分离.

4.1 pH梯度萃取

pH梯度萃取适合分离酸性强弱不同的游离黄酮类化合物.将混合物溶于有机溶剂(如乙醚),依次用5%碳酸氢钠(萃取7,4′-二羟基黄酮)、5%的碳酸钠(萃取7-羟基黄酮或4′-羟基黄酮)、0.2%氢氧化钠(萃取一般酚羟基黄酮)、4%氢氧化钠(萃取5-羟基黄酮)萃取而使其分离[3].2.2 高效液相色谱分析(HPLC)法运用HPLC法分离黄酮类化合物的报道很多.有人对18种黄酮及黄酮苷类化合物在C8、C18和CN 3种固定相上洗脱的RP-HPLC法分离做了研究,结果表明C18基本可以使植物黄酮苷元和配基实现分离,但它对极性大的苷部分洗脱出峰快,分离效果不大理想.而C8介于C18和CN之间,因而对黄酮苷的分离比较理想,峰形和分离也最好[11].HPLC也可以用来测定黄酮的含量[12].

4.2高速逆流色谱分离法

高速逆流色谱分离法(high speed countercur-rent chromatography,HSCCC)是一种新的分离技术.其具有两大突出特点:(1)线圈中固定相不需要载体,因而清除了气液色谱中由于使用载体而带来的吸附现象;(2)特别运用于制备性分离,每次进样体积较大,进样量也较多.李彩侠等[13]提取荷叶中黄酮类化合物,经HSCCC分离纯化的效果很好,结合TLC分析、颜色反应鉴定得到两种纯度很高的黄酮醇类化合物.HSCCC对分离和制备黄酮类化合物有很大的优势,其应用前景越来越受到人们的关注.

4.3柱色谱

4.3.1娃胶色谱法

硅胶层析法是根据物质在硅胶上吸附能力的不同而得到分离,由于娃胶中有微孔,所以不同化合物的吸附能力不同,选用适当的洗脱剂进行洗脱从而达到分离。桂胶主要适用于分离异黄酮、二氢黄酮、二氢黄酮醇及高度甲基化(或乙醜化)的黄酮及黄酮醇类。有时加水活化后也可用于分离极性较大的化合物,如多经基黄酮醇及其苦类等。分离黄酮苷元时,可用氯仿-甲醇混合溶剂作流动相;分离黄酮苷时,可用氯仿-甲醇-水或乙酸乙酷-丙酮-水作流动相Ahmet Cakir等[14]用娃胶柱色谱从Hypericum hyssopifolium L.的地上部分提取物活性跟踪的活性部位分离得到了5个黄酮化合物:双序菜素、槲皮素、槲皮素3-O-a-L-阿拉伯糖苷、槲皮素3-0-P-D-半乳糖苷、槲皮動-0-P-D-半乳糖苷-7-0-P-D-葡萄糖苷。姜红芳等^1从毫菊花纯提物中取正丁醇萃取物30 g,拌以等量桂胶,装入600 g (160-200目)桂胶柱内,以石油醚-乙酸乙酯(3 : 1、1:1、1:4)梯度洗脱,得到三个黄酮类化合物。

4.3.2聚酷胺柱色谱法

聚酸胺是一类纤维树脂,分子链上的重复结构单元是醜胺基的聚合物。分离原理是因为其中含有酷胺基,黄酮类物质中含有酌经基,两者之间可形成氢键,其吸附强度主要取决于经基的数目与位置,以及形成氢键缔合能力的大小。聚酰胺

柱层析法分离效果好,样品容量大,适于在制备分离工艺中应用。但洗脱速度慢,死吸附较大(损失有时高达30%),常有低分子量酰胺的低聚物杂质混入,装柱时用5%甲醇或10%盐酸预洗除去低聚物。杨武英等进行了聚酰胺树脂精制青钱柳黄酮的研究,结果发现,青钱柳黄酮粗提物经过聚酰胺树脂的三次吸附和解吸后,黄酮含量由粗品的11.40%升高到81.34%,纯度提高了6,14倍。甘春丽等采用聚醜胺柱色谱分离手段成功分离了杨梅素和二氢杨梅素、槲皮素和二氢槲皮素。

4.3.3葡聚糖凝胶柱色谱法

葡聚糖凝胶在分离游离黄酮时,主要靠吸附作用,吸附程度取决于游离酷轻基的数目,游离盼轻基的数目越多越难以洗脱;在分离黄酮苷时,则分子蹄的属性起主导作用,相对分子质量的大小或含糖的多少决定化合物被洗脱的先后,分子量越大,连接的糖越多,越易洗脱。葡聚糖凝胶在溶剂中膨胀成球形颗粒,具有三维空间的网状结构;由于凝胶网孔半径的限制,小分子物质能进入其内部,故通过色谱柱阻力增大,洗脱下来的速度慢,而大分子物质却被排除在外部,洗脱下来的速度快,当混合溶液通过凝胶过滤层析柱时,溶液中的物质就按不同分子量蹄分开了Andersen等人[15]先用Amberlite XAD-7和Sephadex LH-20对草莓花色苷的粗提物层析分离后,再用HPLC进行鉴定,效果显著。王岩等[16]在分离显齿蛇葡萄的化学成分研究中,洗脱液最后经Sephadex LH-20柱层析纯化,分离得到二氧槲皮素。

4.3.4高效液相色谱法(HPLC)

高效液相色谱是已经广泛应用于天然化合物的分离纯化手段,其柱效高、分离迅速是分离纯化不可缺少的方法。正相固定相的HPLC主要用于分离无经基、甲基化或乙酷化的黄酮;反相固定相(如C18)的应用最为普遍。采用甲醇-水-乙酸(或磷酸缓冲液)或乙腈-水作流动相,既可用于黄酮苦元的分离,又适应于黄酮苷的分离。如果分离条件选择的适当,可一次性分离多种单体物质。李军[17]等用制备型高效液相色谱对曲克丁原料进行分离纯化制得曲克声丁对照品。田娜等[18]研究荷叶中黄酮类物质,利用HPLC法,以水-乙腈为流动相进行梯度洗脱,分离三种纯度较高的黄酮类物质。经鉴定,该三种物质分别为金丝桃苷、异槲皮

苷和紫云英苷。

5.黄酮类化合物的应用

黄酮类化合物是药用植物中主要活性成分之一,具有消除氧自由基、抗氧化、抗过敏、抗炎、抗菌、抗突变、抗肿瘤、保肝、雌激素样作用、泻下、保护心脑血管系统和抗病毒以及杀虫等广谱的生理活性,且毒性较低,因此还可用作食品、化妆品的天然添加剂,如甜味剂、抗氧化剂、食用色素等。

5.1 抗肝脏毒药物

水飞蓟是菊科水飞蓟属植物。紫花水飞蓟种子的总黄酮提取物,内含水飞蓟素(Silybin)、异水飞蓟素(silydianin)、次水飞蓟素(silychvistin),是常用抗肝炎药“益肝宁”、“利肝隆”及国外产品“silimarit”的主要有效成分,具有刺激新的肝细胞形成,抗脂质过氧化作用,用于治疗肝炎、肝硬化,并能支持肝的自愈能力,改善健康状况。

(+ )-儿茶素近来在欧州也用作抗肝脏毒药物。

5.2天然抗氧化剂

黄酮类化合物作为合成抗氧剂如BHT、BHA等的代用品具有高效、低毒、价廉、易得的优点,日益受到重视。中草药和茶叶是获取黄酮类抗氧剂的潜在资源。茶多酚中主成分为儿茶素类衍生物,约占其总量的60%~80%。其抗氧化能力优于BHT或dl-a-生育酚[19],是BHA的2. 4倍[20]。作者以槲皮素、异鼠李素为主的沙棘黄酮、银杏黄酮对沙棘油的抗氧化研究结果表明,其抗氧化效果与BHT相当,可能与多种抗氧化成分增效协调作用相关,大量研究表明,茶多酚可以有效地抑制油脂的过氧化物形成和多烯脂肪酸的分解,从而延长了油脂的货架期。茶多酚已在保健食品,保健鱼油、食用油中得到广泛应用。

5.3天然甜味剂

黄酮类化合物作为非糖类甜味剂并非多见,但扩大了甜味剂新资源,目前发现主要为二氢查尔酮含氧甙。芸香科柑桔类的幼果及果皮中,含有二氢黄酮类化合

物,其本身无甜味,但在适当条件下转化成二氢查尔酮糖甙,则可显甜味。如新橙皮甙二氢查尔酮,其甜度为蔗糖的950倍,从构效关系可知, 7位新橙皮糖基是二氢查尔酮甜度必须的,如失去或换成芸香糖则无甜味; 4′位引入烷氧基如乙氧基或丙氧基可分别增加甜度约10或20倍。壳斗科多穗柯(Lithocarpus polystachyus)和多穗稠(L.litseifolius)嫩叶、叶中二氢查尔酮葡萄糖甙以及胡桃科黄杞(Engelhardtia roxburghiana)叶中二氢黄酮醇鼠李糖甙都有一定甜味。寻找完全无毒、低热量、口味好的天然保健性甜味剂是当前植物资源利用的方向之一。

6.前景

近几年来,科学家对黄酮进行了广泛而深入的研究,发现了黄酮不少令人感兴趣的新用途,黄酮类天然产物是近年来天然药物和人类健康产品研究开发的热点.从药用植物和经济植物中提取具有生理活性的黄酮作为天然药物、保健品和化妆品等行业的原料,已日益引起重视,其应用前景无限广阔.随着科学技术的不断进步和发展,黄酮类化合物的独特效能将得到不断的发掘及应用.因此,黄酮类化合物的提取和分离方法也将得到更加深层的研究和开发,已有的方法将会日趋成熟和完善,各种高效、方便快捷的新方法将会不断涌现$

7.结语

黄酮类化合物不但分布范围广,种类多,而且生物活性广泛,并且毒性小,因此人们对他的研究越来越感兴趣,使得其分离提纯技术得以快速发展。近年来虽然分离、提取了大量的新的黄酮类化合物,掀起了黄酮类化合物的研究热潮,但对其吸收、代谢机制、活性机理,具有生理功能的活性基团、稳定性等方面仍缺乏全面的认识,因此应加强此方面的工作,弄清其生理功能从而进行有效地分离和提取,为黄酮类化合物在医药、食品工作中的应用提供理论依据,加速植物资源的有效开发利用,生产出具有治疗和预防多种疾病的药品和天然保健品。每种方法都有它各自的优缺点,只要根据提取物的性质及其杂质、提取成本、工艺设备等条件,选择合适的提取工艺,就可以提高黄酮类化合物的得率,从而降低生产成本,提高原料的利用率。相信随着研究的不断深入,黄酮类化合物的提取分

离技术必将进一步得到完善。

参考文献

[1]张海慧.黑穗醋栗中黄酮类物质的提取、纯化及性质的研究[D].东北农业大学,2009.

[2]郭京波,王向东,张燕,等.不同提取方法对苦荞类黄酮提纯得率的影响分析食品学,2006 ,27(10):433-436.

[3]金春雪,上官进,刘政,等.黄酮苷类化合物的提取与初步分析[J].信阳师范学院学报,1998( 2):186-187.

[4]李冬菊,林阳.山桔总黄酮的提取及鉴定[J].辽宁中医杂志,2003,30(7):578-579.

[5]张国铭,高虹.微波辅助提取山竹夹层中黄酮化合物的研究[J].广东化工,2007,39(7):49~51.

[6]刘峙噪,俞自由,方裕励,等.微波萃取银杏叶黄酮类化合物[J].东华理工学院学报,2005,28 (2) :151 ?154

[7] Weihua Xiao,Lujia Han,Bo Shi.Microwave-assisted extraction of flavonoids from RadixAstragali[J].Separation and Purification Technology,2008,(62); 616?620

[8].JianchunXie,LiliZhu,HongPengLuo.DirectextractionofsPeeifiePharmae oPhorieflavonoidsfromgingkoleavesusingamolecularlyPrintedPolymerforqu ercetin【J].JournalofChromatograPhyA,2001,(934):1一11

[9].游海,陶秉莹,张立麒.超临界萃取法从银杏叶中提取黄酮类化合物、菇内酷的工艺研究[J].南昌大学学报(工科版),2000(04):34一38

[10]宋晓凯.天然药物化学[M].北京:化学工业出版社,2004:8.

[11]董文庚,邓晓丽.HPLC法测定银杏叶中黄酮的含量[J].理化检验:化学分册,2005 41(8):563-565.

[12]周文华,杨辉荣,岳庆磊.生物碱提取和分离方法的研究新进展[J].当代化工,2003,32(2):111-113.

[13]李彩侠,张赟彬,黄国纲.荷叶提取物的分离和纯化[J].食品工

业,2006(1):40-41.

[14] Ahmet Cakir,Ahmet Mavi,etal. Isolation and characterization of antioxidant phenoliccompounds from the aerial parts of Hypericum hyssopifolium L.by activity-guidedfractionation [J].J Ethnopharmacol,2003,87(l):73-83.

[15] Andersen M, Fossen T, Torskangerpoll K. Anthocyanin from strawberry(Fragariaananassa)with the novel aglycone, 5-carboxypyranopelargonidin [J]. Phyto-chemistiy, 2004,65(4); 405-410 [16]王岩,周莉玲,李锐,等.显齿蛇葡萄化学成分的研究[J]中药材,2002,25(4)

254-256.

[17]李军,徐本明,刘坷,曲克丁对照品的制备液相色谱法分离[J].中国医药工业杂志,2004,35(5):285-287.

[18]田娜,刘仲华,黄建安.高效制备液相色谱法从荷叶中分离制备黄酮类化合物[J].色谱,2007,25(1):88-92.

[19]胡春.黄酮类化合物的抗氧化性质[J].中国油脂, 1996, 21(4): 18~21

[20] 谷利伟,翁新楚.食用天然抗氧化剂研究进展[J].中国油脂, 1997, 22(3): 37~39

书是我们时代的生命——别林斯基

书籍是巨大的力量——列宁

书是人类进步的阶梯———高尔基

书籍是人类知识的总统——莎士比亚

书籍是人类思想的宝库——乌申斯基

书籍——举世之宝——梭罗

好的书籍是最贵重的珍宝——别林斯基

书是唯一不死的东西——丘特

书籍使人们成为宇宙的主人——巴甫连柯

书中横卧着整个过去的灵魂——卡莱尔

人的影响短暂而微弱,书的影响则广泛而深远——普希金

人离开了书,如同离开空气一样不能生活——科洛廖夫

书不仅是生活,而且是现在、过去和未来文化生活的源泉——库法耶夫

书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者

———史美尔斯

书籍便是这种改造灵魂的工具。人类所需要的,是富有启发性的养料。而阅读,则正是这种养料———雨果

常见物质的分离、提纯和鉴别方法总结

常见物质的分离、提纯和鉴别方法总结 一、物质的分离与提纯方法 1.混合物的物理分离方法 易溶物与难溶物分开漏斗、烧杯碰;②沉淀要洗涤; ③定量实验要“无损” 在互不相溶的溶 剂里,溶解度的不同,把溶质分离出来分液漏斗 ①先查漏;②对萃 取剂的要求;③使 漏斗内外 通;④上层 上口倒出 分离互不相溶液体分液漏斗2.混合物的化学分离法

二、物质的检验 物质的检验通常有鉴定、鉴别和推断三类,它们的共同点是:依据物质的特殊性质和特征反应,选择适当的试剂和方法,准确观察反应中的明显现象,如颜色的变化、沉淀的生成和溶解、气体的产生和气味、火焰的颜色等,进行判断、推理。 1.常见气体的检验 有水。不是只有氢气才产生爆鸣声;可点燃的气体不一定是氢气 可使带火星的木条复燃 黄绿色,能使湿润的碘化钾淀粉试纸变蓝(O 3.NO 2 也能使湿润的碘化钾淀粉试 无色有刺激性气味的气体。在潮湿的空气中形成白雾,能使湿润的蓝色石蓝试纸变红;用蘸有浓氨水的玻璃棒靠近时冒白烟;将气体通入 有白色沉淀生成。 无色有刺激性气味的气体。能使品红溶液褪色,加热后又显红色。能使酸性高锰酸钾溶液褪色。

2.几种重要阳离子的检验 (l)H+能使紫色石蕊试液或橙色的甲基橙试液变为红色。 (2)Na+、K+用焰色反应来检验时,它们的火焰分别呈黄色、浅紫色(通过钴玻片)。 (3)Ba2+能使稀硫酸或可溶性硫酸盐溶液产生白色BaSO 4 沉淀,且沉淀不溶于稀硝酸。 (4)Mg2+能与NaOH溶液反应生成白色Mg(OH) 2沉淀,该沉淀能溶于NH 4 Cl溶液。 (5)Al3+能与适量的NaOH溶液反应生成白色Al(OH) 3 絮状沉淀,该沉淀能溶于盐酸或过量的NaOH溶液。 (6)Ag+能与稀盐酸或可溶性盐酸盐反应,生成白色AgCl沉淀,不溶于稀 HNO 3 ,但 溶于氨水,生成[Ag(NH 3) 2 ]+。 (7)NH 4 +铵盐(或浓溶液)与NaOH浓溶液反应,并加热,放出使湿润的红色石蓝试纸 变蓝的有刺激性气味NH 3 气体。 (8)Fe2+能与少量NaOH溶液反应,先生成白色Fe(OH) 2 沉淀,迅速变成灰绿色,最 后变成红褐色Fe(OH) 3 沉淀。或向亚铁盐的溶液里加入KSCN溶液,不显红色,加入少量新 制的氯水后,立即显红色。2Fe2++Cl 2 =2Fe3++2Cl- (9)Fe3+能与 KSCN溶液反应,变成血红色 Fe(SCN) 3 溶液,能与 NaOH溶液反应, 生成红褐色Fe(OH) 3 沉淀。 (10)Cu2+蓝色水溶液(浓的CuCl 2 溶液显绿色),能与NaOH溶液反应,生成蓝色的 Cu(OH) 2 沉淀,加热后可转变为黑色的 CuO沉淀。含Cu2+溶液能与Fe、Zn片等反应,在金属片上有红色的铜生成。 3.几种重要的阴离子的检验 (1)OH-能使无色酚酞、紫色石蕊、橙色的甲基橙等指示剂分别变为红色、蓝色、黄色。 (2)Cl-能与硝酸银反应,生成白色的AgCl沉淀,沉淀不溶于稀硝酸,能溶于氨水, 生成[Ag(NH 3) 2 ]+。 (3)Br-能与硝酸银反应,生成淡黄色AgBr沉淀,不溶于稀硝酸。 (4)I-能与硝酸银反应,生成黄色AgI沉淀,不溶于稀硝酸;也能与氯水反应,生成I 2 ,使淀粉溶液变蓝。 (5)SO 42-能与含Ba2+溶液反应,生成白色BaSO 4 沉淀,不溶于硝酸。 (6)SO 32-浓溶液能与强酸反应,产生无色有刺激性气味的SO 2 气体,该气体能使品红 溶液褪色。能与BaCl 2溶液反应,生成白色BaSO 3 沉淀,该沉淀溶于盐酸,生成无色有刺激 性气味的SO 2 气体。

黄酮类化合物提取方法的研究

黄酮类化合物提取方法的研究 发表时间:2019-07-23T09:36:27.620Z 来源:《医师在线(学术版)》2019年第10期作者:鲍兴隆[导读] 旨在研究黄酮类化合物的提取分离工艺,为选择合适的方法提供参考依据。 浙江大学校医院浙江杭州310000 摘要:近年来,随着对黄酮研究的深入,国内外对黄酮的研究也越来越重视,本文旨在研究黄酮类化合物的提取分离工艺,为选择合适的方法提供参考依据。通过对比黄酮类化合物传统及新型方法的总黄酮提取率发现,新型提取方法相对于传统提取法而言提取率具有明显优势,但新型提取技术对原料、设备、处理要求也相应提高,目前国内外研究相对偏少。 关键词:黄酮类化合物;微波提取;超临界流体萃取法 黄酮类化合物是一类存在于自然界的、具有2-苯基色原酮结构的化合物,泛指两个苯环通过三个碳原子或一个吡喃环或吡喃环连接而成的化合物,主要包括:黄酮和黄酮醇类、二氢黄酮和二氢黄酮醇、异黄酮类及二氢异黄酮类、查尔酮和二氢查耳酮类及花青素类等[1]。黄酮类化合物属植物次生代谢产物,在植物体内大部分与糖结合成苷类,小部分以苷元的形式存在,具有多种生物活性,有抗炎、抗氧化、抗肿瘤、抗衰老等药理活性,在医药、保健食品等行业中均有广泛的开发利用。对黄酮类化合物的提取有传统的超声波提取法等;以及新型的:微波提取法、超临界流体萃取法、双水相萃取法等。 1传统提取方法 1.1超声波提取法 超声波空化作用使植物细胞壁及整个生物体破裂,这样有利于黄酮类化合物的释放和溶出,另一方面可加速提取液的分子运动,使得提取液和苎麻叶中的黄酮类化合物快速接触,相互溶合、混合,此外超声波热效应也有利于水溶作用,有效缩短了提取时间。贺波[2]以“华苎4号”苎麻叶为原料,采用超声辅助提取法,通过单因素及正交实验,得出最佳的提取工艺条件是:液固比30:1,乙醇浓度70%,超声功率60W,超声时间30min,超声温度60℃,提取一次。在此工艺条件下苎麻叶中黄酮类化合物得率为4.94%。2新型提取方法 2.1微波提取法 微波提取法是微波转化成热能使细胞内部温度上升,当细胞内部压力超过细胞壁的承受能力,细胞破裂,其有效成分流出,在较低的温度条件下萃取介质捕获并溶解。此外,微波产生的电磁场还能加速被萃取部分成分向萃取溶剂界面扩散速率,缩短萃取组成的分子由物料内部扩散到萃取溶剂界面的时间。张海慧等[3]以黑穗醋栗为试材,进行单因素实验,在此基础上设计了四因素三水平正交试验。最后确定了微波辅助法提取黑穗醋栗黄酮的最佳条件为:以95%乙醇为溶剂,微波功率500W,微波65℃,提取8min,液料比10:1,此时提取率可达到0.738mg/g。张鹏等[4]通过实验得出银杏黄酮微波提取的最佳条件为乙醇浓度50%,料液比1:25,回流温度70℃,微波时间120s,在此条件下总黄酮提取率为11.02%。与传统方法相比,微波提取法具有省时、节约溶剂、提取率高等优点,有较大的推广价值。 2.2超临界流体萃取法 超临界流体萃取分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。余青等[5]采用单因素与正交试验对超临界CO2萃取具乌饭树叶总黄酮的工艺进行了研究,结果表明,最佳提取条件为:萃取压力18MPa,萃取时间1.5h,萃取温度50℃,夹带剂乙醇浓度75%,CO2流量20kg/h,夹带剂添加量5mL/g在此条件下乌饭树叶总黄酮平均提取率为73.10%(n=3,RSD=3.58%)。谢建华等[6]利用响应面发优化超临界CO2萃取苦瓜总黄酮的工艺参数,在实验的基础上,确定最佳工艺条件:以无水乙醇为夹带剂1.0mL/g,萃取压力33.4MPa,萃取温度46℃,萃取时间53.2min。此条件下苦瓜总黄酮提取率达到84.3%。超临界流体萃取技术萃取速度快,提取率高,流程简单,且对生物活性保留较好,具有一定的应用价值。 除以上的提取方法外,还有双水相萃取分离、双水相—超声耦合、超声—酶法耦合、酶法—高压脉冲电场耦合等技术。总的来说,传统提取方法的总黄酮提取率基本在5%左右,而新型提取方法的提取率在10%以上(有的甚至可达80%-90%),相对于传统提取法而言,新型提取方法的提取率具有明显优势,但对新型提取技术对原料、设备、处理要求也相应提高,目前国内外研究相对偏少。3展望 黄酮类化合物分布范围广、种类多,黄酮类化合物的保健品也早在二十世纪八十年代末就引起国际医药界的注意,而且大部分毒理学研究提示其一般无毒,近年来此类化合物一直是生化制药、保健品生产方面的热门之一,在最近上市的保健产品中也有很大一部分其主要功效成分就属于黄酮类化合物,其涉及的功能食品也很多。最近由于心血管疾病、癌症等疾病死亡人数呈快速增长,而黄酮对心血管系统及防癌抗癌有一定的作用,许多国家和地区正在开发相关的产品,前景较好。由于黄酮类化合物可能存在几种不同的作用机制与合成途径,有些实验结果的解释可能依然存在不足之处。因此今后黄酮类化合物的研究还需要关注的是生物利用度、代谢动力学、体内的氧化损伤及长期服用产生的慢性后果等方面[7]。开发出更加可靠、令人信服的模型或系统,以此来精确评估黄酮类化合物在人体内的代谢作用是非常必要的。 参考文献 [1] TAYLOR L P,GROTEWOLD E. Flavonoids as developmental regulatoes [J].Current Opinion in Plant Biology,2005,3(8):317-323. [2] 贺波.苎麻叶中黄酮的提取、分离纯化、结构及抗氧化活性研究[D].武汉:华中农业大学硕士学位论文,2010. [3] 张海慧.微波辅助法提取黑穗醋栗中黄酮类物质的研究[J].东北农业大学学报,2008.39(9):32-35. [4] 张鹏.银杏叶黄酮的微波提取及抗氧化性研究[J].安徽农业科学,2009,37(12):5496-5497,5730. [5] 余青,郑小严,黄红霞,等.超临界CO2萃取乌饭树叶总黄酮的工艺[J].2009,38(01):97-102. [6] 谢建华,单斌,彭云.超临界CO2流体萃取苦瓜总黄酮工艺及其抗氧化活性[J].2010,08(1):66-71. [7] 佟永薇.黄酮类化合物提取方法的研究及展望[J].食品研究与开发,2008,29(7):188-190.

有机物分离和提纯的常用方法(实用)

有机物分离和提纯的常用方法 分离和提纯有机物的一般原则是:根据混合物中各成分的化学性质和物理性质的差异进行化学和物理处理,以达到处理和提纯的目的,其中化学处理往往是为物理处理作准备,最后均要用物理方法进行分离和提纯。 方法和操作简述如下: 1. 分液法��常用于两种均不溶于水或一种溶于水,而另一种不溶于水的有机物的分离和提纯。步骤如下: 分液前所加试剂必须与其中一种有机物反应生成溶于水的物质或溶解其中一种有机物,使其分层。如分离溴乙烷与乙醇(一种溶于水,另一种不溶于水): 又如分离苯和苯酚: 2. 蒸馏法��适用于均溶于水或均不溶于水的几种液态有机混合物的分离和提纯。步骤为: 蒸馏前所加化学试剂必须与其中部分有机物反应生成难挥发的化合物,且本身也难挥发。如分离乙酸和乙醇(均溶于水):

3. 洗气法��适用于气体混合物的分离提纯。步骤为: 例如: 此外,蛋白质的提纯和分离,用渗析法;肥皂与甘油的分离,用盐析法。 有机物分离和提纯的常用方法 1,洗气 2,萃取分液溴苯(Br2),硝基苯(NO2),苯(苯酚),乙酸乙酯(乙酸) 3, a,制无水酒精:加新制生石灰蒸馏 b,酒精(羧酸)加新制生石灰(或NaOH固体)蒸馏c,乙醚中混有乙醇:加Na,蒸馏 d,液态烃:分馏 4,渗析 a,蛋白质中含有Na2SO4 b,淀粉中KI 5,升华奈(NaCl) 鉴别有机物的常用试剂 所谓鉴别,就是根据给定的两种或两种以上的被检物质的性质,用物理方法或化学方法,通过必要的化学实验,根据产生的不同现象,把它们一一区别开来.有机物的鉴别主要是利用官能团的特征反应进行鉴别.鉴别有机物常用的试剂及特征反应有以下几种: 1. 水 适用于不溶于水,且密度不同的有机物的鉴别.例如:苯与硝基苯. 2. 溴水 (1)与分子结构中含有C=C键或键的有机物发生加成反应而褪色.例如:烯烃,炔烃和二烯烃等. (2)与含有醛基的物质发生氧化还原反应而褪色.例如:醛类,甲酸. (3)与苯酚发生取代反应而褪色,且生成白色沉淀. 3. 酸性溶液 (1)与分子结构中含有C=C键或键的不饱和有机物发生氧化还原反应而褪色.例如:烯烃,炔烃和二烯烃等. (2)苯的同系物的侧链被氧化而褪色.例如:甲苯,二甲苯等. (3)与含有羟基,醛基的物质发生氧化还原反应而使褪色.例如:醇类,醛类,单糖等. 4. 银氨溶液(托伦试剂) 与含有醛基的物质水浴加热发生银镜反应.例如:醛类,甲酸,甲酸酯和葡萄糖等. 5. 新制悬浊液(费林试剂) (1)与较强酸性的有机酸反应,混合液澄清.例如:甲酸,乙酸等. (2)与多元醇生成绛蓝色溶液.如丙三醇. (3)与含有醛基的物质混合加热,产生砖红色沉淀.例如:醛类,甲酸,甲酸酯和葡萄糖等. 6. 金属钠 与含有羟基的物质发生置换反应产生无色气体.例如:醇类,酸类等. 7. 溶液 与苯酚反应生成紫色溶液. 8. 碘水 遇到淀粉生成蓝色溶液. 9. 溶液 与酸性较强的羧酸反应产生气体.如:乙酸和苯甲酸等.

最新物质的分离与提纯知识总结

高考化学实验专题复习(二) 常见物质的分离、提纯和鉴别 1.常用的物理方法——根据物质的物理性质上差异来分离。 混合物的物理分离方法 i、蒸发和结晶蒸发是将溶液浓缩、溶剂气化或溶质以晶体析出的方法。结晶是溶质从溶液中析出晶体的过程,可以用来分离和提纯几种可溶性固体的混合物(原理是根据混合物中各成分在某种溶剂里的溶解度的不同,通过蒸发减少溶剂或降低温度使溶解度变小,从而使晶体析出)。加热蒸发皿使溶液蒸发时,要用玻璃棒不断搅动(防止局部温度过高,造成液滴飞溅)。当蒸发皿中出现较多的固体时,停止加热,如用结晶的方法分离NaCl和KNO3。 ii、蒸馏蒸馏是提纯或分离沸点不同的液体混合物的方法。用蒸馏原理进行多种混合液体的分离,叫分馏。 操作时要注意:①在蒸馏烧瓶中放少量碎瓷片,防止液体暴沸。 ②温度计水银球的位置应与支管底口下缘位于同一水平线上。 ③蒸馏烧瓶中所盛放液体不能超过其容积的2/3,也不能少于l/3。 ④冷凝管中冷却水从下口进,从上口出。 ⑤加热温度不能超过混合物中沸点最高物质的沸点,例如用分馏的方法进行石油的分馏。 iii、分液和萃取分液是把两种互不相溶、密度也不相同的液体分离开的方法。萃取是利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质从它与另一种溶剂所组成的溶液中提取出来的方法。选择的萃取剂应符合下列要求:和原溶液中的溶剂互不相溶;对溶质的溶解度要远大于原溶剂,并且溶剂易挥发。 在萃取过程中要注意:①将要萃取的溶液和萃取溶剂依次从上口倒入分液漏斗,其量不能超过漏斗容积的2/3,塞好塞子进行振荡。

②振荡时右手捏住漏斗上口的颈部,并用食指根部压紧塞子,以左手握住旋塞,同时用手指控制活塞,将漏斗倒转过来用力振荡。 ③然后将分液漏斗静置,待液体分层后进行分液,分液时下层液体从漏斗口放出,上层液体从上口倒出。例如用四氯化碳萃取溴水里的溴。 iv、升华升华是指固态物质吸热后不经过液态直接变成气态的过程。利用某些物质具有升华的特性,将这种物质和其它受热不升华的物质分离开。如分离I2和SiO2,加热使碘升华。 v、过滤过滤是除去溶液里混有不溶于溶剂的杂质的方法。 过滤时应注意:①一贴:将滤纸折叠好放入漏斗,加少量蒸馏水润湿,使滤纸紧贴漏斗内壁。 ②二低:滤纸边缘应略低于漏斗边缘,加入漏斗中液体的液面应略低于滤纸的边缘。 ③三靠:向漏斗中倾倒液体时,烧杯的夹嘴应与玻璃棒接触;玻璃棒的底端应和过滤器有三层滤纸处轻轻接触;漏斗颈末端应与接受器的内壁接触。如用过滤法除粗盐中少量的泥沙。 ①常见气体的检验 (l)H+能使紫色石蕊试液或橙色的甲基橙试液变为红色。 (2)Na+、K+用焰色反应来检验时,它们的火焰分别呈黄色、浅紫色(通过钴玻片)。

黄酮类化合物的提取纯化方法

黄酮类化合物的提取、药用价值和产品开发应用前景 任红丽2009090141 摘要:对黄酮类化合物的药用价值、提取工艺、分离方法等方面进行综述。在 药用价值方面,讨论了其抗抑郁作用、抗氧化与自由基消除活性作用、对化学性肝损伤的保护作用、抗肿瘤作用、抗骨质疏松作用、抗心肌缺血作用;在提取工艺方面,讨论了溶剂提取法、超声提取法、酶法、微波法等;及其开发应用,为今后黄酮类化合物的深入研究提供理论基础。 关键词:黄酮类化合物提取工艺药用价值 黄酮类物质是一类低分子天然植物成分,是自然界中存在的酚类物质[14],又称生物黄酮或植物黄酮,属植物次级代谢产物,广泛存在于各种植物的各个部位,尤其是花、叶,主要存在于芸香科、唇形科、豆科、伞形科、银杏科与菊科中。迄今,已有数百种不同类型的黄酮类化合物在植物中被发现,人工合成的黄酮类化合物也不断问世。最初这类物质仅用于染料方面,自20世纪20年代,槲皮素、芦丁等黄酮类物质用于临床后,才开始引起人们的关注,研究发现其中相当一部分具有显著的生理及药理活性,例如抗氧化、抗病毒、抗炎、调节血管渗透性,改善记忆,抗抑郁、抗焦虑、中枢抑制、神经保护等功能[2,12]诸多生理和药理特性使其广泛应用于食品、医药等领域。 1.提取纯化方法 1.1 传统提取方法 1.1.1 热水提取法 水是最廉价的提取溶剂,是地球最丰富的物质,无色无味无毒,对人体和环境无害,挥发性不大,具有真正的绿色环保意义。但用水作为提取溶剂时,从中药材中提取的黄酮类化合物中杂质含量较多,往往因泡沫或粘液很多,给进一步分离带来许多麻烦,而且浓缩也会很困难。此外,水提取物容易发霉发酵[22]。1.1.2 碱性水、碱性稀醇浸提法 中草药中黄酮类成分多为多酚类化合物,因其结构中具有酚羟基[7],故可用碱性水或碱性稀醇液来提取中草药中的黄酮类化合物。黄酮母核的多样性主要是由黄酮本身骨架、环系的变化、氧化程度和数量而定,当碱的浓度过高,加热时便破坏黄酮类化合物的母核。 1.1.3 有机溶剂热回流及冷浸提取法 根据杂质极性不同,可选用不同的有机溶剂(如石油醚、乙酸乙酯、氯仿、乙醇、甲醇、丙酮等),一般采取乙醇为提取溶剂[15]。

物质的常用十种分离提纯方法及其强化练习

物质的分离提纯中常用的十种方法 一、过滤 1、原理:根据固体的溶解度不同,将不溶性固体从溶液中分离出来的方法。 2、条件:一种固体不溶,一种固体可溶。 3、范围:适用于不溶固体和液体的分离。 4、仪器:漏斗、铁架台、烧杯、玻璃棒、滤纸 5、注意:一贴二低三靠;对于有些溶液温度下降,会有晶体析出,应该趁热过滤。 6、列举:氯化铜溶液中混有氯化铁,加入过量的氧化铜,采用过滤的方法除去。 二、洗气或通气法 1、原理:利用气体的溶解性或者化学性质不同,将混合气体分离开来的方法。 2、条件:一种气体不溶或不反应,一种气体可溶或可反应。 3、范围:适合于混合气体的分离。 4、仪器:洗气瓶、导管 5、注意:不要引进新的气体杂质,最后能够产生被提纯的气体。 6、列举:二氧化碳中混有二氧化硫,可把混合气体,通入盛有饱和的碳酸氢钠溶液的洗气 瓶中,洗去二氧化硫;碳酸氢钠溶液中混有碳酸钠,可向混合溶液通入二氧化碳,使碳酸钠转变成碳酸氢钠。 三、蒸发 1、原理:把可溶性固体从溶剂中分离出来的方法。 2、条件:固体可溶,固体溶解度随温度升高而降低或者变化不大。 3、范围:适合于把可溶性固体从溶剂中分离出来。 4、仪器:铁架台、蒸发皿、酒精灯、玻璃棒 5、注意:玻璃棒作用;溶剂易挥发或易燃烧,采用水浴加热。 6、列举:从氯化钠溶液中提取氯化钠,采用蒸发的方式除去水。 四、结晶 1、原理:通过蒸发溶剂或者降低温度使溶质的溶解度变小,从而使晶体析出的方法。 2、条件:固体的溶解度小或者固体的溶解度随温度升高变化较大。 3、范围:固体的溶解度小一般用蒸发结晶法;固体的溶解度随温度升高变化较大,一般用 冷却结晶法或者重结晶法。 4、仪器:过滤、蒸发仪器。 5、注意:基本环节:溶解→蒸发浓缩→趁热过滤→冷却结晶→过滤→洗涤干燥 6、列举:硝酸钾中混有氯化钠,采用加水溶解,蒸发浓缩,冷却结晶的方法除去氯化钠。 五、分液 1、原理:把互不相溶的液体分离开来的方法。 2、条件:液体互不相溶 3、范围:适合于互不相溶的液体分离。 4、仪器:分液漏斗、烧杯 5、注意:分液漏斗的基本操作 6、列举:苯中混有甲苯,可向混合溶液中加入酸性高锰酸钾溶液,振荡后用分液漏斗分离。 六、萃取 1、原理:利用溶质在互不相溶的溶剂中溶解度的不同,选择萃取剂将溶质从一种溶剂中转 移到另一种溶剂中的方法。 2、条件:萃取剂与原溶剂互不相溶;溶质在萃取剂中的溶解度大于在原溶剂中的溶解度。

物质分离提纯方法总结

物质分离提纯方法总结 导读:分离提纯是指将混合物中的杂质分离出来以此提高其纯度。分离提纯作为一种重要的化学方法,为大家分享了物质分离提纯方法,一起来看看吧! 一、结晶和重结晶 溶质从溶液中析出的过程(即晶体在溶液中形成的过程)称为结晶。而重结晶是指将晶体溶于溶剂(或熔融)以后,又重新从溶液(或熔体)中结晶的过程,又称再结晶。 重结晶主要针对固态晶体物质的分离提纯,效果与溶剂选择大有关系。溶剂最好满足以下任一条件: (1)、对主要化合物是可溶性的,对杂质是微溶或不溶的溶剂。滤去杂质后,将溶液浓缩、冷却结晶,即得较纯的物质。 (2)、物质的溶解度在该溶剂中受温度影响较为显著。 中学阶段最常见的实例是KNO3和NaCl的混合物。对于该混合物的分离,主要是利用它们在同一种溶剂中的溶解度随温度的变化差别很大。则可在较高温度下将混合物溶液蒸发、浓缩,首先析出的是溶解度升高不大的NaCl晶体,除去NaCl以后的母液再浓缩和冷却后,可得较纯KNO3。另一个实际例子就是选修5第一章提到的苯甲酸的重结晶实验。重结晶往往需要进行多次,才能获得较好的纯化效果。 二、蒸馏法 蒸馏是利用混合液体或液-固体系中各组分沸点不同,使低沸点

组分蒸发,再冷凝以分离整个组分的操作过程,是蒸发和冷凝两种单元操作的联合。与其它的分离手段,它的优点在于不需使用系统组分以外的其它溶剂,从而保证不会引入新的杂质。蒸馏是分离和提纯液态化合物常用的方法之一,是重要的基本操作。但蒸馏主要针对组分沸点相差大于30℃以上时,才有理想的分离效果。对于组分沸点相差不大的混合体系则采用分馏。而分馏装置由于要使用分馏柱,高中并不常见,故高中实际教学中很少提及。一个变通的思路,是“固定组分蒸馏法”。比如,乙醇-水混合物,单纯用蒸馏分离效果很不理想,可以先加入生石灰与水反应,将水“固定”住,然后蒸馏,可以得到较纯的乙醇。 三、萃取法 萃取是利用溶质在互不相溶的溶剂里溶解度的不同,用一种溶剂把溶质从另一溶剂所组成的溶液里提取出来的操作方法。萃取分离物质时,必须用分液漏斗。萃取的`关键是找到一个合适的萃取剂,被萃取的物质在两个溶剂中的溶解度差距越大,则萃取的效果就越好。萃取法在化工制药等领域属于常用手段,但高中阶段常见的是利用有机溶剂萃取水溶液中的物质,比如利用CCl4萃取碘水中的碘。萃取完得到的CCl4-I2混合体系,可以采用蒸馏的方法进行分离,从而得到较纯的碘单质。 四、升华法 某些物质固态时就有较高的蒸气压,因此受热后不经熔化就可直

银杏叶黄酮类化合物的提取研究进展

银杏叶黄酮类化合物的提取研究进展 银杏树Ginkgo biloba L.又称白果树、公孙树,是我国古老的树种之一,具有“活化石”的美称。由于其生长规律特殊,抗病能力强而受到国内外的重视。有关银杏叶的有效成分及疗效的研究日益受到重视,已开发出保健品、化妆品、药品等多达100多种,形成国际市场上销售额20多亿美元的新兴产业。银杏叶的化学成分有黄酮类、萜类、内酯类、酚酸类以及生物碱、聚异戊二烯等化合物。黄酮类为银杏叶的主要有效成分之一,含量随品种、产地、树龄、不同的采摘时间而不同。黄酮类化合物优异的抗氧化、抗病毒、防治心血管疾病、增强免疫力等作用而受世人瞩目。 药学研究表明,有38种银杏黄酮类化合物从银杏叶中分离出来,其中黄酮类化合物主要有3类:黄酮(醇)及其昔28种:如槲皮黄酮等;黄烷醇类:如儿茶素等4种;双黄酮:如白果双黄酮等6种(儿茶素)。 1 银杏叶黄酮的提取分离 1.1 溶剂提取法目前国内外掀起了研究开发银杏叶热。国内银杏叶常用溶剂例如乙醇、丙酮、醋酸乙酯、水以及某些极性较大的混合溶剂浸泡银杏叶进行提取,溶剂提取方法一般有:煎煮、冷浸、回流、渗施等经典方法。 1.1.1 水提取树脂分离法有关水浸提银杏黄酮苷的文献报道不多。肖顺昌等报道了用l 6倍量沸水分3次浸提银杏叶,得到的水溶液,经冷藏、分离杂质得溶液,然后用D101型吸附树脂吸附得到浓度达38%的黄酮苷。胡敏等研究水浸提银杏叶黄酮苷并用树脂精制的工艺,探讨了影响黄酮苷浸出的主要因素以及最适的精制方法,结果表明:水为提取剂,在9 0℃水溶回流浸提银杏叶2次,4h/次,经沉淀,过滤,浓缩后,用树脂精制、冷冻干燥后,制得总黄酮苷含量高的提取物、产品得率为银杏叶干重的 1.2%-1.5%。 水提取成本低,没有任何环境污染,产品安全性高,但是水对有效成分的选择性差,提取率低。

分离定律特殊题型总结

基因分离定律的题型专项训练 题型一:孟德尔遗传实验的操作技术 1、(2009 江苏·高考)下列有关孟德尔豌豆杂交实验的叙述,正确的是() A.孟德尔在豌豆开花时进行去雄和授粉,实现亲本的杂交 B.孟德尔研究豌豆花的构造,但无需考虑雌蕊、雄蕊的发育程度C.孟德尔根据亲本中不同个体表现型来判断亲本是否纯合D.孟德尔利用了豌豆自花传粉、闭花受粉的特性 题型二:交配类型及应用 2、依次解决①--④中的遗传问题可采用的方法是() ①鉴定一只白羊是否是纯种②在一对相对性状中区分显隐性③不断提高小麦抗病品种的纯度④检验杂种F1基因型 A.杂交、自交、测交、测交 B.测交、杂交、自交、测交 C.杂交、测交、杂交、自交 D.杂交、杂交、杂交、测交 题型三:分离定律的实质:等位基因随同源染色体的分离而分离 3、基因型为Dd 的细胞进行有丝分裂时,一条染色体上的一条染色单体上有D 基因,那么与其共用一个着丝点的另一条染色单体上的基因应是() A.d B.D C.D 或d D.D 和d 4、基因型为Dd 的个体,在生殖细胞形成过程中,基因DD、dd、Dd 的分离分别发生在① 减数第一次分裂过程中②减数第二次分裂过程中③有丝分裂过程中() A .①①② B.③③① C.②②①D.③③③ 题型四:相对性状的区分 5、下列各组中属于相对性状的是() A.兔的长毛和短毛 B.玉米的黄粒与圆粒 C.棉纤维的长和粗 D.马的白毛和鼠的褐毛 6、下列不属于相对性状的是() A.水稻的早熟与晚熟 B.豌豆的紫花和红花 C.绵羊的长毛和细毛 D.小麦的抗病和易染病题型五:显、隐性状的判别 7、纯种甜玉米和纯种非甜玉米间行种植,收获时发现甜玉米果穗上有非甜玉米子粒,而非甜玉米果穗上却无甜玉米子粒,原因是() A.甜是显性 B.非甜是显性 C.相互混杂 D.相互选择 小结:显隐性确定有“三法” (1)根据子代性状判断①具有一对相对性状的亲本杂交→子代只出现一种性状→子代所出现的性状为显性状。若子代出现两种表现型,则可进一步应用自交法或回交法判断。 ②相同性状的亲本杂交→子代出现不同性状→子代所出现的新的性状为隐性性状。 (2)根据子代性状分离比判断:具有一对相对性状的亲本杂交→F2性状分离比为3∶1→分离比占3/4 的性状为显性性状。 (3)假设推证法

黄酮类化合物的提取分离方法

一.黄酮类化合物的提取分离方法 按所用溶剂不同分类 (1)热水提取法(以水作溶剂)---------- 灵芝多糖热水提取 (2)有机溶剂萃取法-----------生产茶多酚工业试验、乳酸 (3)碱提取酸沉淀法.---------- 橙皮苷、黄芩苷、芦丁等都可用此法提取. 2.按提取条件不同分类 (1)回流提取法----------从苦楝树皮中提取苦楝素 (2)索式提取法----------柑橘属类黄酮 (3)微波辅助提取法----------采用微波辅助法从黎蒿中提取黄酮类化合物 (4)超声提取法----------提取山楂中黄酮类物质 (5)超滤法----------黄岑甙 (6)酶提取法----------采用纤维素酶对红景天进行酶解处理,可提高黄酮类物质的浸出率 (7)超临界流体提取法----------竹叶黄酮、从干姜片中提取挥发油 PH 梯度萃取法:石榴果皮褐变产物、葛花总异黄酮 高效液相色谱分析法:五味子、葛根 高速逆流色谱分离法:甘草、分离蜜环菌发酵液乙醇提取部位 柱色谱法 (1)硅胶柱色谱:姜黄素 (2)聚酰胺柱色谱:紫锥菊 (3)葡聚糖凝胶柱色谱:回心草、茵陈蒿 (4)大孔吸附树脂分离法:川草乌、三七总皂甙 二. 槐米中芸香苷(芦丁)的提取方法有哪些(设计) 方法:渗漉法、煎煮法、回流提取法 (1) 槐米粗粉20g 加约120ml 的%硼砂水溶液, 搅拌下加入石灰乳至pH8-9, 并保持该pH 值煮沸20分钟,四层纱布 趁热滤过,反复2次 提取液 药渣 浓盐酸调pH2~3 搅拌,静置放冷,滤过。 滤液 沉淀 热水或乙醇重结晶 芸香苷结晶 碱溶酸沉法提取分离槐米中芸香苷的流程图 (2)取30g 槐花米,置于250mL 烧杯中,加入%硼砂沸水200ml ,在搅拌下缓缓加入石灰乳调节pH=8~9,在此pH 下保持微沸20~30min ,趁热用棉花滤过,残渣再加水,同上法再煎一次,趁热抽滤。合并滤液,在60~70℃下用浓盐酸调至pH=4—5,静置。 提 碱 取 溶 分 酸 离 沉

化学分离与提纯的常用方法

化学分离与提纯的常用方法 提纯是指将混合物净化除去其杂质,得到混合物中的主体物质,提纯后的杂质不必考虑其化学成分和物理状态。混合物的分离方法有许多种,但根据其分离本质可分为两大类,一类:化学分离法,另一类:物理法,下面就混合物化学分离及提纯方法归纳如下: 分离与提纯的原则 1.引入的试剂一般只跟杂质反应。 2.后续的试剂应除去过量的前加的试剂。 3.不能引进新物质。 4.杂质与试剂反应生成的物质易与被提纯物质分离。 5.过程简单,现象明显,纯度要高。 6.尽可能将杂质转化为所需物质。 7.除去多种杂质时要考虑加入试剂的合理顺序。 8.如遇到极易溶于水的气体时,要防止倒吸现象的发生。 概念区分 清洗:从液体中分离密度较大且不溶的固体,分离沙和水; 过滤:从液体中分离不溶的固体,净化食用水; 溶解和过滤:分离两种固体,一种能溶于某溶剂,另一种则不溶,分离盐和沙; 离心分离法:从液体中分离不溶的固体,分离泥和水; 结晶法:从溶液中分离已溶解的溶质,从海水中提取食盐; 分液:分离两种不互溶的液体,分离油和水; 萃取:入适当溶剂把混合物中某成分溶解及分离,庚烷,取水溶液中的碘; 蒸馏:溶液中分离溶剂和非挥发性溶质,海水中取得纯水;

分馏:离两种互溶而沸点差别较大的液体,液态空气中分离氧和氮;石油的精炼; 升华:离两种固体,其中只有一种可以升华,离碘和沙; 吸附:去混合物中的气态或固态杂质,活性炭除去黄糖中的有色杂质; 分离和提纯常用的化学方法 1.加热法: 当混合物中混有热稳定性差的物质时,可直接加热,使热稳定性差的物质分解而分离出去。如,NaCl中混有NH4Cl,Na2CO3中混有NaHCO3等均可直接加热除去杂质。 2.沉淀法: 在混合物中加入某种试剂,使其中一种以沉淀的形式分离出去的方法。使用该方法一定要注意不能引入新的杂质。若使用多种试剂将溶液中不同微粒逐步沉淀时,应注意后加试剂的过量部分除去,最后加的试剂不引入新的杂质。如,加适量的BaCl2溶液可除去NaCl中混有的Na2SO4。

黄酮类化合物的提取

一、溶剂提取法:国内外使用最广泛的方法,步骤多、周期长、产率低、产品中有机溶剂易残留。溶剂系统主要有乙醇,水溶液、丙酮-水溶液、NaOH-水溶液、NaOH-乙醇等。精提物常在粗提物制备基础上精制,常用液-液提取法、沉淀法和吸附.洗脱法。以60%丙酮为起始溶剂粗提取,再脱脂、去银杏酚酸等15道工艺制成提取物。NaOH-水溶液提取效果最好,NaOH-乙醇溶液次之,正丁醇萃取水溶液中银杏黄酮苷,获得最佳萃取条件为萃取5 min温度60℃4次,萃取物中黄酮苷含量为57%。V水:V正丙醇=1:25最佳。银杏叶精提物树脂吸附纯化法以石油醚回流提取,再以80%乙醇回流提取,减压浓缩,新型澄清剂沉降,树脂分级吸附,pH值为3—4酸水和酸性25%乙醇洗涤,75%乙醇洗脱,喷雾干燥将银杏叶洗净,于60℃烘干至恒重,粉碎,过50目筛。称取粉末25 g,置于索氏提取器中恒重,粉碎,过50目筛。称取粉末25 g,置于索氏提取器中加入60%乙醇至250.0 ml,80℃下回流提取3.0 h,蒸馏回收乙醇,并用活性炭脱色,得银杏叶黄酮提取物。乙醇浓度为50%一70%时,提取率随浓度增加提高,当浓度70%时提取率达最大。随水浴温度升高总黄酮提取率快速增加。当温度80℃时提取率达最大。提取时间为三小时为佳。 黄酮类化合物(英语:Flavonoid,又称类黄酮[1])是指基本母核为2-苯基色原酮类化合物,现在则泛指两个具有酚羟基的苯环通过中央三碳原子相互连接的一系列化合物。他们来自于水果、蔬菜、茶、葡萄酒、种子或是植物根。虽然他们不被认为是维生素,但是在生物体内的反应里,被认为有营养功能,曾被称为“维生素P”: 黄酮类(英语:Flavones)是一类基于2-苯基色原酮-4-酮(2-苯基-1-苯并吡喃-4-酮)骨架的黄酮类化合物,如右图所示。 银杏叶黄酮的研究程序 溶剂提取法:国内外使用最广泛的方法,步骤多、周期长、产率低、产品中有机

常见物质的分离提纯和鉴别方法总结

常见物质的分离提纯和鉴别方法总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

常见物质的分离、提纯和鉴别方法总结 一、物质的分离与提纯方法 1.混合物的物理分离方法

2.混合物的化学分离法 二、物质的检验 物质的检验通常有鉴定、鉴别和推断三类,它们的共同点是:依据物质的特殊性质和特征反应,选择适当的试剂和方法,准确观察反应中的明显现象,如颜色的变化、沉淀的生成和溶解、气体的产生和气味、火焰的颜色等,进行判断、推理。

2.几种重要阳离子的检验 (l)H+能使紫色石蕊试液或橙色的甲基橙试液变为红色。 (2)Na+、K+用焰色反应来检验时,它们的火焰分别呈黄色、浅紫色(通过钴玻片)。 (3)Ba2+能使稀硫酸或可溶性硫酸盐溶液产生白色BaSO 4 沉淀,且沉淀不溶于稀硝酸。 (4)Mg2+能与NaOH溶液反应生成白色Mg(OH) 2沉淀,该沉淀能溶于NH 4 Cl 溶液。 (5)Al3+能与适量的NaOH溶液反应生成白色Al(OH) 3 絮状沉淀,该沉淀能溶于盐酸或过量的NaOH溶液。 (6)Ag+能与稀盐酸或可溶性盐酸盐反应,生成白色AgCl沉淀,不溶于稀 HNO3,但溶于氨水,生成[Ag(NH3)2]+。 (7)NH 4 +铵盐(或浓溶液)与NaOH浓溶液反应,并加热,放出使湿润的红色石蓝试纸变蓝的有刺激性气味NH3气体。 (8)Fe2+能与少量NaOH溶液反应,先生成白色Fe(OH) 2 沉淀,迅速变成灰绿色,最后变成红褐色Fe(OH)3沉淀。或向亚铁盐的溶液里加入KSCN溶液,不显红色,加入少量新制的氯水后,立即显红色。2Fe2++Cl2=2Fe3++2Cl- (9)Fe3+能与 KSCN溶液反应,变成血红色 Fe(SCN) 3 溶液,能与 NaOH 溶液反应,生成红褐色Fe(OH)3沉淀。

高三化学一轮复习物质的分离和提纯考点全归纳

物质的分离和提纯 [考纲要求] 1.了解物质分离、提纯的意义和方法;掌握过滤、分液、蒸馏等操作步骤及要求。2.能对常见的物质进行检验、分离和提纯。3.绘制和识别典型的实验仪器装置图。 考点一物质分离、提纯的常用物理方法 1.物质分离、提纯的区别 (1)物质的分离 将混合物的各组分分离开来,获得几种纯净物的过程。 (2)物质的提纯 将混合物中的杂质除去而得到纯净物的过程,又叫物质的净化或除杂。 2.物质分离、提纯的常用物理方法 试根据所学的知识填写操作方法及相关内容。 图1 图2 图3 图4 图5 (1)如图1,方法、装置的名称:过滤。 适用范围:把不溶性固体与液体进行分离。 注意事项:①一贴:滤纸紧贴漏斗内壁;二低:滤纸上缘低于漏斗边缘,液面低于滤纸边缘;三靠:烧杯紧靠玻璃棒,玻璃棒轻靠三层滤纸处,漏斗下端紧靠烧杯内壁。②若滤液浑浊,需更换滤纸,重新过滤。浑浊的原因可能是滤纸破损、滤液超过滤纸边缘。 (2)结晶是晶体从饱和溶液中析出的过程,对溶解度受温度变化影响不大的固态溶质,采用蒸发溶剂的方法,而对溶解度受温度变化影响相当大的固态溶质,采用冷却饱和溶液的方法。如图2,方法、装置的名称:蒸发结晶。 适用范围:溶解度随温度变化较小的物质。 注意事项:①玻璃棒的作用:搅拌,防止液体局部过热而飞溅;②当有大量晶体析出时,停止加热,利用余热蒸干而不能直接蒸干。 (3)如图3,方法、装置的名称:分液。

适用范围:①萃取:利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质从它与另一种溶剂组成的溶液里提取出来;②分液:两种液体互不相溶且易分层。 注意事项:①溶质在萃取剂中的溶解度比在原溶剂中大;②萃取剂与原溶剂不反应、不相溶; ③萃取剂与溶质不反应。 (4)如图4,方法、装置的名称:蒸馏。 适用范围:沸点相差较大的液体混合物 注意事项:①温度计的水银球放在蒸馏烧瓶的支管口处; ②蒸馏烧瓶内要加沸石;③冷凝管水流方向应为“逆流”。 (5)如图5,方法、装置的名称:升华。 适用范围:某种组分易升华的混合物,利用物质升华的性质在加热条件下分离的方法。 深度思考 分液漏斗是萃取、分液操作中必须用到的仪器,在使用前必须检查是否漏液,如何检查分液漏斗是否漏液? 答案关闭活塞,向分液漏斗中加入一定量的水倒置,观察是否漏水,若不漏水再将活塞旋转180°,然后倒置观察是否漏水。 题组一分离、提纯原理和方法的考查 1.下列分离物质的方法中,利用了物质的沸点的是( ) A.蒸馏B.萃取C.重结晶D.蒸发 答案 A 解析萃取、重结晶是利用物质溶解度的不同而分离,蒸发是通过加热将溶剂蒸发掉;蒸馏则是利用物质沸点不同将物质进行分离。 2.物质的分离、提纯是中学化学的重要操作,请应用物质分离、提纯知识,分离下列 各组混合物。 答案

(word完整版)初中化学物质分离与提纯的常用方法小结

初中化学物质分离与提纯的常用方法小结 物质的分离是将几种物质通过物理或化学方法分开,提纯则要求把不纯物质中的杂质除去。提纯的原则是: ①不增:即在除掉杂质时不增加新杂质。 ②不减:即被提纯的物质不能减少或改变。 ③易分:即操作简便易行,杂质易分离除去。 ④最佳:即最好在除去杂质的同时能增加被提纯物质的量。 一、常用的物理方法 1. 过滤法:适用于固体与液体的混合物进行分离。 ①先将混合物溶于水。 ②过滤。 ③将滤液蒸发得某溶质。 2、蒸发:适用于可溶性固体溶质与溶剂的分离。 3、降温结晶(重结晶)法:适用于两种可溶性固体的溶解度受温度影响变化明显不同的混合物进行分离。溶解度变化大的那种物质被提纯出来。 可按如下步骤:①在高温下制成饱和溶液,②结晶,③过滤。 4、特殊性质法:利用混合物中某些物质的特性进行物质分离。如:Cu粉中混有Fe粉,可用磁铁吸出铁粉。 二、常用的化学方法 原理:所用试剂能与杂质反应,不能与提纯物反应,把杂质转化

成水;气体;沉淀除去,又不能引入新的杂质。 1、沉淀法:即加入一种试剂和杂质反应生成沉淀经过滤而除去。 如:HNO3中混有H2SO4,可加入适量的Ba(NO3)2溶液: 2、化气法:即加入一种试剂和杂质反应,使其生成气体而除去。如一般某盐中混有少量碳酸盐、碳酸氢盐等常用此法除去。 如NaCl溶液中混有Na2CO3,可加入适量的稀盐酸: 3、置换法:即在某盐溶液中加入某金属,把盐溶液中的金属置换出来,从而把杂质除去。 如Zn SO4溶液中含有CuSO4,可加入过量的锌: 4、转化法:即通过某种方法,把杂质转化为被提纯的物质。 如CO2气体中混有少量的CO,可将混合气体通过盛有足量灼热的CuO的试管:

黄酮类化合物提取分离纯化及其活性的研究进展

黄酮类化合物提取分离纯化及其活性的研究进展姓名常姣专业微生物学 摘要文章综述了黄酮类化合物的结构特征及提取、分离纯化技术介绍了黄酮类化合物的生物活性,并对其开发利用进行了展望。旨在为黄酮类化合物的研究、开发以及应用提供参考。 关键词黄酮;提取;分离纯化;生物活性 民以黄酮类化合物也称黄碱素, 是广泛存在于自然界的一大类化合物, 在植物体内大多与糖结合成甙的形式存在, 也有部分以游离状态的甙元存在。由于最先发现的黄酮类化合物都具有一个酮式羰基 结构, 又呈黄色或淡黄色, 故称黄酮[ 1]。 目前对天然黄酮类化合物的提取方法较多,如溶剂提取法、微波提取法、超声波提取法、酶解法、超临界流体萃取法、双水相萃取分离法及半仿生提取法等, 每种方法都有它各自的优点和点。用上述方法提取的黄酮类化合物仍然是一个混合物, 不仅是含有其它杂质的粗品, 而且是几种黄酮类成分的混合物, 需进一步分离纯化, 常用的方法有柱层析法、重结晶法、铅盐沉淀法和高效液相色谱法等。 黄酮类化合物具有降低血管脆性及异常的通透性、降血脂、降血压、抑制血小板聚集及血栓形成、抗肝脏病毒、抗炎、抗菌、解栓、抗氧化、清除自由基、抗衰老、抗癌、防癌、降血糖、镇痛和免疫等生理活性[ 2-5]。这些生理活性已被关注,对该类化合物的研究成为医药界的热门课题。人体自身不能合成黄酮类化合物而只能从食物中摄取,因此多年来科学家都在积极研究探讨从植物体中分离 纯度高、活性强的黄酮类化合物[6]。 1黄酮类化合物的理化性质 黄酮类化合物是以2-苯基色原酮为母核而衍生的一类通过三碳链相互连接而成的大多具有基本碳 架的一系列化合物,且母核上常有羟基、甲氧基、甲基、异戊烯基等助色取代基团。黄酮类化合物多为晶体固体,多数具有颜色,少数(如黄酮苷类)为无定形粉末,除二氢黄酮、二氢黄酮醇、黄烷及黄烷醇有旋光性外,其余则无旋光性) 黄酮类化合物的溶解度因结构及存在状态(苷或苷元、单糖苷、双糖苷或三糖苷)不同而有很大差异) 一般游离态苷元难溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚等有机溶剂) 其中,黄酮、黄酮醇、查儿酮等平面型分子,因堆砌较紧密,分子间引力较大,故更难溶于水;而二氢黄酮及二氢黄酮醇等,因系非平面型分子,故排列不紧密,分子间引力降低,有利于水分子进入,水中溶解度稍大。 2黄酮类化合物的提取分离及纯化 黄酮类化合物在花、叶、果等组织中多以苷元的形式存在,而在根部坚硬组织中,则多以游离苷元形式存在。因此,不同来源、部位、种类黄酮提取所采取的方法不同[6]。分离黄酮类化合物的方法很多,根据黄酮类化合物与混入其他化合物的极性不同可采用溶剂萃取法,根据黄酮化合物在酸性水中难溶、碱性水中易溶的特点可采用碱提酸沉法等。 2.1溶剂法 2.1.1 热水提取法

物质分离和提纯的方法与技巧

物质分离和提纯的方法与技巧 物质的分离是通过适当的方法,把混合物中各组成物质彼此分开,并且恢复到各种物质原来的状态,分别得到纯净物;而物质的提纯是通过适当的方法把混入某物质的少量杂质除去,以便获得相对纯净的物质,又称除杂。 物质的除杂从内容上看,它包含着常见酸碱盐及其他重要物质的性质及特殊化学反应的知识;从过程上看,它是一个原理确定、试剂选择与实验方案确定、操作实施的过程,其考查热点和趋势是化学知识与实验操作的结合,理论与生产实践的结合。 1、主要方法 物质的分离和提纯常用方法有物理方法和化学方法两种,见下表: 2、用化学方法分离和提纯物质的原则 不增:在除杂的过程中不能引入新的杂质; 不减:在除杂的过程中,不能减少或损耗被提纯物质的质量; 不变:在除杂过程中,除杂剂不能使被提纯物质改变; 易分:被提纯物质与杂质或杂质转化成的新物质易于分离; 务尽:选择除杂剂要注意反应进行的程度,除杂越彻底越好。

3、酸、碱、盐溶液中的除杂技巧 ①被提纯物质与杂质所含阳离子相同时,选取与杂质中的阴离子不共存的阳离子,再与被提纯物中的阴离子组合出除杂试剂,如Na2SO4(NaOH):可选用稀H2SO4为除杂剂(生成物为Na2SO4和H2O,达到目的)。KCl(K2SO4):可选用BaCl2溶液为除杂试剂(生成物为BaSO KCl,达到目的)。 4和 ②被提纯物质与杂质所含阴离子相同时,选取与杂质中的阳离子不共存的阴离子,再与被提纯物中的阳离子组合出除杂试剂,如NaCl(BaCl2):可选用Na2SO4溶液为除杂试剂(生成物为BaSO4和NaCl,达到目的)。KNO3(AgNO3):可选用KCl2溶液为除杂试剂(生成物为AgCl和KNO3 ,达到目的)。 ③被提纯物质与杂质所含阴、阳离子都不相同时,选取与杂质中的阴、阳离子都不共存的阴、阳离子组合出除杂试剂。如NaNO3(CuSO4):可选用Ba(OH)2溶液为除杂试剂(生成物为 Cu(OH)2沉淀和BaSO4沉淀,达到目的)。 4、除杂方法的几个优化原则: ①若同时有多种方法能除去杂质,要选择那些简单易行、除杂彻底的方法; ②应尽量选择既可除去杂质,又可增加保留物质的方法,即“一举两得”; ③先考虑物理方法,再用化学方法。 5、除去食盐中可溶性杂质的方法 重结晶后的食盐中还含有硫酸钠、氯化镁、氯化钙等可溶性杂质,它们在溶液中主要以SO42-、 Ca2+、Mg2+ 的形式存在,为将这些杂质离子除净,应注意所加试剂要过量,过量试剂要除去,所以除杂时所加试剂顺序要求是:a、Na2CO3必须在BaCl2之后加;b、过滤之后再加适量盐酸。 试剂加入顺序有多种选择,如: (a)BaCl2、NaOH、Na2CO3、过滤、HCl (b)BaCl2、Na2CO3、NaOH、过滤、HCl (c)NaOH、BaCl2、Na2CO3、过滤、HCl

相关文档
最新文档