系统镇定受控系统通过状态反馈

合集下载

线性定常系统的综合

线性定常系统的综合

(5-17)
15
比较上述两种基本形式的反馈可以看出,输 出反馈中的 HC 与状态反馈中的 K 相当。但由于 m<n ,所以 H 可供选择的自由度远比 K 小,因而 输出反馈只能相当于一种部分状态反馈。只有当 C=I时,HC=K,才能等同于全状态反馈。
因此,在不增加补偿器的条件下,输出反馈 的效果显然不如状态反馈系统好。但输出反馈在 技术实现上的方便性则是其突出优点。
k A BK , B, C
可见,状态反馈阵 K 的引入,并不增加系统 的维数,但可通过 K 的选择自由地改变闭环系统 的特征值,从而使系统获得所要求的性能。
10
5.1.2 输出反馈
输出反馈是采用输出矢量 y 构成线性反馈律。 在经典控制理论中主要讨论这种反馈形式。
11
受控系统 0 A, B, C , D
可见引入状态反馈 K=[-1 0] 后,闭环系统保 持能控性不变,却破坏了系统的能观性 。
28
实际上这反映在传递函数上出现了零极点相 消现象。
因为
s 1 0 1 s W0 s csI A b 0 1 2 1 s 1 s 1
23
同理,第三块
A BK 2 B A2 B ABKB BKAB BKBKB
的列矢量可用[B AB A2B]的线性组合表示。 其余各分块类同。 因此 Qck可看作是由 Qc0经初等变换得到的, 而矩阵作初等变换并不改变矩阵的秩。所以Qck与 Qc0 的秩相同,定理得证。
u H Cx Du v HCx HDu v
(5-10)
整理得
u I HD1 HCx v
(5-11)
再把式(5-11)代入(5-7)求得

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法

第2章 状态反馈极点配置设计基本理论2.1引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。

反馈的基本类型包括状态反馈和输出反馈。

其中状态反馈能够提供更加丰富的状态信息。

状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。

图2.1是一个多输入多输出线性时不变系统状态反馈的基本结构:图2.1 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+= (2.1)由图2.1可知,加入状态反馈后,受控系统的输入为:u Fx v =+ (2.2)其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++= (2.3)闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦ (2.4)由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。

2.2极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。

(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。

(3) 矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ= (2.5a)FX G = (2.5b)(4) 特征向量法—先找到特征向量x j (等式(2.5)中矩阵X 的列向量),然后利用等式(2.5b)求解F 。

方法(1)一般难以应用或者数值不稳定。

方法(3)需要解(2.5a)方程,并且对于系统矩阵A 的特征值不能再分配。

最有效并且数值稳定的方法是方法(2)和方法(4)。

其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。

对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第2章 状态反馈极点配置设计基本理论引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。

反馈的基本类型包括状态反馈和输出反馈。

其中状态反馈能够提供更加丰富的状态信息。

状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。

图是一个多输入多输出线性时不变系统状态反馈的基本结构:图 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+=由图可知,加入状态反馈后,受控系统的输入为:u Fx v =+其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++=闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。

极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。

(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。

(3)矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ=FX G =(4)特征向量法—先找到特征向量x j (等式中矩阵X 的列向量),然后利用等式求解F 。

方法(1)一般难以应用或者数值不稳定。

方法(3)需要解方程,并且对于系统矩阵A 的特征值不能再分配。

最有效并且数值稳定的方法是方法(2)和方法(4)。

其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。

对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。

本文结合以上方法提出了一种新的设计方法:首先通过酉变换将状态方程化为一种控制规范形,然后利用最小二乘法解方程的得到最佳的状态反馈矩阵。

线性定常系统的反馈结构和状态观察器9[1].3(14,15,16)

线性定常系统的反馈结构和状态观察器9[1].3(14,15,16)

rank(Qo2 ) rank(Qo1)
0 C
I
CA
C
当n
3时,Qo1
CA
CA2
C
I
Qo2
C(A
BFC)
CBF
C( A BFC)2 CABF ABFBF
rank(Qo2 ) rank(Qo1)
n n, rank(Qo2 ) rank(Qo1)
0 I CBF
0
1
0
...
0
0
0
1
...
0
A bk
...
0
0
0
...
1
(a0 k0 ) (a1 k1) (a2 k2 ) ... (an1 kn1)
sI ( A b k ) sn (an1 kn1)sn1 (a1 k1)s (a0 k0 ) 0
通过选择 k0 , k1, k2 , , kn1 可以满足方程中 n 个任意待定的参数
传递函数: GH (s) C(sI A HC)-1B
(2)输出反馈到参考输入的反馈系统
u v Fy F : p q x (A BFC)x Bv y Cx
传递函数: GF (s) C(sI A BFC )-1B
vu
B
_
xI x S
A
F
y
C
输出反馈:x (A BFC)x Bv
1、利用状态反馈的极点可配置条件(P505)
定理5:用状态反馈任意配置闭环极点的充要条件:受控系统可控 证明: (a)充分性
设受控系统{A, b}是状态可控的,经非奇异变换 x P1x
将矩阵A、b可化为可控标准型,有 x PAP1x Pbu Ax bu
0 1 0 ... 0

线性系统能控性能控性与能观性

线性系统能控性能控性与能观性

时变系统
能达性定义及判据 能观性定义及判据
①Gram 判据 ①Gram 矩阵非奇异
离散时间线性
能控性判据 ①Gram 判据②秩判据
rank H GH G n 1 H n
时不变系统
能达性判据 能观性判据 ①Gram 判据②秩判据 ①Gram 判据②秩判据


三、连续时间线性时不变系统的结构分解
* * 于物理构成,问题的提法;取输出反馈控制律 u Fy v ,对任意给定期望极点组 1 , * 2 , n ,确定
一个反馈矩阵 F ,使导出的输出反馈闭环系统
x A BFC x Bv y Cx

的所有特征值实现期望的配置,即有 i A BFC * i , i 1,2, , n 。 输出反馈局限性: (1)对完全能控连续时间线性时不变受控系统,输出反馈一般不能任意配置系 统全部极点。 (2)对完全能控 n 维 SISO-LTIC 受控系统,输出反馈只能使闭环极点配置到根轨迹上。 扩大输出反馈配置功能的一个途径是采用动态输出反馈, 即在采用输出反馈同时附加引入补偿器。 可以证明,通过合理选取补偿器机构和特性,可对带补偿器输出反馈系统的全部极点进行任意配置。 4.2 状态反馈镇定问题 4.2.1 所谓的镇定问题就是,对给定的线性时不变受控系统,确定状态反馈控制律 u Kx v ,使 导出的状态反馈闭环系统 x A BK x Bv 为渐进稳定,即闭环系统特征值均具有负实部。 镇定问题实质上属于极点区域配置问题,对于镇定问题,系统闭环极点的综合目标,并不要求配 置于任意指定期望位置,而只要求配置于复平面的左半开平面上。 4.2.2 可镇定条件
4.1.2 极点配置问题的算法 [极点配置定理] 对 n 维连续时间线性时不变系统,系统可通过状态反馈任意配置全部 n 个极点 即特征值的充分必要条件是 A, B完全能控。 [多输入状态反馈阵算法] 给定 n 维多输入连续时间时不变受控系统 A, B 和一组任意的期望闭

现代控制理论-模拟题

现代控制理论-模拟题

《现代控制理论》模拟题一.单选题1.为一个n阶系统设计一个观测器,维数与受控系统维数相同的称为全维观测器.若系统有输出矩阵秩为m,那么()个状态分量可以用降维观测器进行重构.A.nB.mC.n-mD.n=m+1[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:2.若系统的所有实现维数都相同,该系统绝对().A.能观B.能控C.稳定D.最优[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:3.主对角线上方元素均为1,最后一行可取任意值,其余全为零,满足这些条件的矩阵为().A.约旦矩阵B.对角矩阵C.友矩阵D.变换矩阵[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:4.同一个系统的不同实现的()是不同的.A.状态变量的个数B.矩阵AC.特征根D.传递函数阵[答案]:B[二级属性]:[难度]:[公开度]:5.已知系统的状态空间表达式,建立框图时积分器的数目应该等于()的个数.A.输入变量B.状态变量C.输出变量D.反馈变量[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:6.状态空间表达式是对系统的一种()的描述.A.一般B.抽象C.假设D.完全[答案]:D[一级属性]:[二级属性]:[难度]:[公开度]:7.关于系统状态的稳定性,下列说法正确的是:().A.系统状态的稳定性与控制输入无关B.当控制输入的强度很大时,系统状态就有可能不稳定C.如果系统全局稳定,则系统只有唯一一个平衡点D.非线性系统不可能有渐进稳定平衡点[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:8.根据线性系统的叠加原理,非齐次线性状态方程的解由零输入响应分量与()响应分量的和构成.A.零初始状态B.输出C.稳态D.动态[一级属性]:[二级属性]:[难度]:[公开度]:9.一个线性连续系统的能控性等价于它的()系统的能观性.A.开环B.对偶C.精确离散化D.状态反馈闭环系统[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:10.降维观测器设计时,原系统初始状态为3,反馈矩阵增益为6,要使观测误差为零,则观测器的初始状态应为().A.3B.-6C.9D.15[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:11.基于能量的稳定性理论是由()构建的.A.LyapunovB.KalmanC.RouthD.Nyquist[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:12.下列语句中,正确的是().A.系统状态空间实现中选取状态变量是唯一的,其状态变量的个数也是唯一的B.系统状态空间实现中选取状态变量不是唯一的,其状态变量的个数也不是唯一的C.系统状态空间实现中选取状态变量是唯一的,其状态变量的个数不是唯一的D.系统状态空间实现中选取状态变量不是唯一的,其状态变量的个数是唯一的[答案]:D[一级属性]:[二级属性]:[难度]:[公开度]:13.受控系统采用状态反馈能解耦的充要条件是().A.系统能控能观B.传递函数矩阵满秩C.结构分解后子系统是渐近稳定的D.mXm维矩阵E非奇异[答案]:D[一级属性]:[二级属性]:[难度]:[公开度]:14.引入各种反馈构成闭环后,系统的能控性与能观性会影响系统的性能,对单输入-单输出系统而言,状态反馈会().A.改变系统的能控性B.改变系统的能观性C.改变系统的极点D.改变系统的零点[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:15.()问题的本质上其实是极点配置问题的一种特殊情况.A.极点配置B.系统解耦C.状态反馈D.最优控制[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:16.李雅普诺夫第二法的基本方法是通过()来判断系统的稳定性.A.系统状态方程的解B.李雅普诺夫函数C.特征方程跟的分布D.系统瞬态响应的质量[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:17.李雅普诺夫第一法的基本方法是通过()来判断系统的稳定性.A.系统状态方程的解B.李雅普诺夫函数C.特征方程跟的分布D.系统瞬态响应的质量[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:18.在经典控制理论,频域中的()是判定稳定性的通用方法.A.劳斯判据B.胡维茨判据C.奈奎斯特判据D.李雅普诺夫方法[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:19.在系统矩阵为约旦标准型的情况下,系统能观的()是输出矩阵C中,对于每个约旦块开头的一列元素不全为0.A.充分不必要B.必要不充分C.充分必要D.不充分不必要[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:20.系统的能控性是取决于状态方程中的系统矩阵A和控制矩阵b,其中控制矩阵b是与()有关的.A.系统的结构B.系统的内部参数C.控制作用的施加点D.外部扰动的施加点[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:21.一个系统可以通过选取许多种状态变量,可以具有不同的状态空间表达式,所选取的状态矢量之间,实际上是一种矢量的().A.旋转变换B.线性变换C.矢量D.坐标平移[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:22.一个系统可以具有多种不同的状态空间表达式,具有()的传递函数阵.A.相同个数B.唯一C.多种D.无数[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:23.对于能控能观的线性定常连续系统,采用静态输出反馈闭环系统的状态().A.能控且能观B.能观C.能控D.ABC三种情况都有可能[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:24.对SISO线性定常连续系统,传递函数存在零极点对消,则系统状态().A.不能控且不能观B.不能观C.不能控D.ABC三种情况都有可能[答案]:D[一级属性]:[二级属性]:[难度]:[公开度]:25.动态系统从参数随时间变化性来分,可分为().A.定常系统和时变系统B.线性系统与非线性系统C.开环系统和闭环系统D.连续系统与离散系统[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:26.一个线性系统可控性反映的是控制作用能否对系统的所有()产生影响.一个线性系统可观性反映的是能否在有限的时间内通过观测输出量,识别出系统的所有().A.输出,输出B.输出,状态C.状态,状态D.状态,输出[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:27.SISO线性定常系统的状态反馈系统与原系统的零点是()的.A.相同B.不同C.视情况而定D.无法判断[答案]:A[一级属性]:[二级属性]:[难度]:[公开度]:28.一个R-L-C串联网络,一般选取()作为此系统的状态变量(uc.ul.ur表示电容.电感.电阻两端电压,i表示回路电流)A.uc和urB.uc和ulC.uc和iD.ul和i[答案]:C[一级属性]:[二级属性]:[难度]:[公开度]:29.关于lyapunov稳定性分析下列说法错误的是().A.Lyapunov稳定是工程上的临界稳定B.Lyapunov渐近稳定是与工程上的稳定是不等价的C.Lyapunov工程上的一致渐近稳定比稳定更实用D.Lyapunov不稳定等同于工程意义下的发散性不稳定[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:30.已知x'=-5x+3u,y=4x,t≥0,则该系统是().A.能控不能观的B.能控能观的C.不能控能观的D.不能控不能观的[答案]:B[一级属性]:[二级属性]:[难度]:[公开度]:二.判断题1.系统1和系统2是互为对偶的两个系统,则系统1能控能观,则系统2也能控能观.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:2.镇定问题是系统极点配置的一种特殊情况.它要求将极点严格的配置在期望的位置上. [答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:3.状态稳定一定输出稳定,但输出稳定不一定状态稳定[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:4.所有的微分方程或传递函数都能求得其实现[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:5.系统中含有非线性元件的系统一定是非线性系统.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:6.在反馈连接中,两个系统(前向通道和反馈通道)都是正则的,则反馈连接是正则或非奇异的. [答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:7.对线性连续定常系统,渐近稳定等价于大范围渐近稳定.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:8.采样是将时间上连续的信号转换成时间上离散的脉冲或数字序列的过程;保持是将离散的采样信号恢复到连续信号的过程[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:9.在状态空间建模中,选择不同的状态变量,得到的系统特征值不同的.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:10.通过特征分解,提取的特征值表示特征的重要程度,而特征向量则表示这个特征是什么. [答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:11.线性变换的目的是为得到较为简洁且在一定程度上消除变量间耦合关系的形式.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:12.线性映射与线性变换的区别是前者是两个相同空间之间映射,而后者则是两个不同空间之间的映射[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:13.对线性定常系统基于观测器构成的状态反馈系统和状态直接反馈系统,它们的传递函数矩阵是相同的.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:14.某系统有两个平衡点,在其中一个平衡点稳定,另一个平衡点不稳定,这样的系统不存在.[一级属性]:[二级属性]:[难度]:[公开度]:15.由状态转移矩阵可以决定系统状态方程的状态矩阵,进而决定系统的动态特性[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:16.具有对角型状态矩阵的状态空间模型描述的系统可以看成是由多个一阶环节串联组成的系统[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:17.若线性二次型最优控制问题有解,则可以得到一个稳定化状态反馈控制器[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:18.状态变量是用于完全描述系统动态行为的一组变量,因此都是具有物理意义.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:19.要使得观测器估计的状态尽可能快地逼近系统的实际状态,观测器的极点应该比系统极点快10倍以上.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:20.反馈控制可改变系统的稳定性.动态性能,但不改变系统的能控性和能观性.[一级属性]:[二级属性]:[难度]:[公开度]:21.互为对偶的状态空间模型具有相同的能控性.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:22.传递函数的状态空间实现不唯一的一个主要原因是状态变量选取不唯一.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:23.输出变量是状态变量的部分信息,因此一个系统状态能控意味着系统输出能控.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:24.等价的状态空间模型具有相同的传递函数.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:25.相比于经典控制理论,现代控制理论的一个显著优点是可以用时域法直接进行系统的分析和设计.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:26.若线性系统是李雅普诺夫意义下稳定的,则它是大范围渐近稳定的;[答案]:T[二级属性]:[难度]:[公开度]:27.如果一个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定的. [答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:28.若系统状态完全能控,则对非渐近稳定系统通过引入状态反馈实现渐近稳定,称为镇定问题.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:29.系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:30.由一个状态空间模型可以确定惟一一个传递函数.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:31.系统的状态观测器存在的充分必要条件是:系统能观测,或者系统虽然不能观测,但是其不能观测的子系统的特征值具有负实部.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:32.如果系统不能控,就不能通过状态反馈使其镇定.[答案]:T[二级属性]:[难度]:[公开度]:33.经典控制理论用于研究线性系统,现代控制理论用来研究非线性系统.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:34.引入状态反馈后,系统的能控性和能观性一定会发生改变.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:35.李亚普诺夫稳定性与系统受干扰前所处得平衡位置有关.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:36.状态变量的选取是唯一的.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:37.对一个线性定常的单输入单输出5阶系统,假定系统可控可观测,通过设计输出至输入的反馈矩阵H的参数能任意配置系统的闭环极点.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:38.通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时可控和可观测.[答案]:F[二级属性]:[难度]:[公开度]:39.用状态反馈进行系统极点配置可能会改变系统的可观测性.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:40.线性定常系统经过非奇异线性变换后,系统的可控性不变.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:41.李雅普诺夫函数是正定函数,李雅普诺夫稳定性是关于系统平衡状态的稳定性. [答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:42.李雅普诺夫直接法的四个判定定理中所述的条件都是充分条件.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:43.用独立变量描述的系统状态向量的维数不是唯一的.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:44.描述系统的状态方程不是唯一的.[答案]:F[一级属性]:[二级属性]:[公开度]:45.对于线性连续定常系统,状态反馈不改变系统的能观性,但不能保证系统的能控性不变. [答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:46.对线性连续定常系统,极点配置法与线性二次型最优控制采用的反馈方式是一样的,而反馈系数矩阵的构造方法不一样.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:47.对不能观测的系统状态可以设计全维观测器对其观测.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:48.线性连续定常系统的最小实现的维数是唯一的.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:49.采用理想采样保持器进行分析较实际采样保持器方便.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:50.在反馈连接中,两个系统(前向通道和反馈通道中)都是正则的,则反馈连接也是正则的. [答案]:T[一级属性]:[二级属性]:[难度]:51..对于线性系统有系统特征值和传递函数(阵)的不变性以及特征多项式的系数这一不变量. [答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:52.非线性系统在有些情况下也满足叠加定律.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:53.对于线性连续定常系统的输出最优调节器问题的,采用的是输出反馈方式构造控制器. [答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:54.对于线性连续定常系统,状态反馈的极点配置法与线性二次型最优控制采用的反馈方式是一样的,而反馈系数矩阵的构造方法不一样.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:55.动态规划方法给出的是最优控制的充分条件而非必要条件.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:56.动态规划方法保证了全过程性能指标最小,但并不能保证每一段性能指标最小.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:57.对于线性定常连续系统,就传递特征而言,带状态观测器的反馈闭环系统完全等效于同时带串联补偿和反馈补偿的输出反馈系统.[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:58.基于状态观测器的反馈闭环系统与直接状态反馈闭环系统的响应在每一时刻都是相等的. [答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:59.对于任一线性定常连续系统,若其不可观,则用观测器构成的状态反馈系统和状态直接反馈系统是不具有相同的传递函数矩阵的.[答案]:F[一级属性]:[二级属性]:[难度]:[公开度]:60.对于一个n维的线性定常连续系统,若其完全能观,则利用状态观测器实现的状态反馈闭环系统是2n维的[答案]:T[一级属性]:[二级属性]:[难度]:[公开度]:。

《现代控制理论》复习题

《现代控制理论》复习题

《现代控制理论》复习题一、填空题1.动态系统的状态是一个可以确定该系统 的信息集合。

这些信息对于确定系统 的行为是充分且必要的。

2.以所选择的一组状态变量为坐标轴而构成的正交 空间,称之为 。

3. 定义: 线性定常系统的状态方程为()()()x t Ax t Bu t =+&,给定系统一个初始状态00()x t x =,如果在10t t >的有限时间区间10[,]t t 内,存在容许控制()u t ,使1()0x t =,则称系统状态在0t时刻是的;如果系统对任意一个初始状态都 , 称系统是状态完全 的。

4.系统的状态方程和输出方程联立,写为⎩⎨⎧+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x &,称为系统的 ,或称为系统动态方程,或称系统方程。

5.当系统用状态方程Bu Ax x+=&表示时,系统的特征多项式为 。

6.设有如下两个线性定常系统7002()05000019I x x u -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦&则系统(I ),(II )70001()0504000175II x x u -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦&的能控性为,系统(I ) ,系统(II ) 。

7.非线性系统()xf x =&在平衡状态e x 处一次近似的线性化方程为x Ax =&,若A 的所有特征值 ,那么非线性系统()x f x =&在平衡状态e x 处是一致渐近稳定的。

8.状态反馈可以改善系统性能,但有时不便于检测。

解决这个问题的方法是: 一个系统,用这个系统的状态来实现状态反馈。

9.线性定常系统齐次状态方程解)()(0)(0t x e t x t t A -=是在没有输入向量作用下,由系统初始状态0)(x t x =激励下产生的状态响应,因而称为 运动。

10.系统方程()()()()()x t Ax t bu ty t cx t=+⎧⎨=⎩&为传递函数()G s的一个最小实现的充分必要条件是系统。

非线性控制系统的状态反馈全局镇定问题

非线性控制系统的状态反馈全局镇定问题

非线性控制系统的状态反馈全局镇定问题
蒋丹墀
【期刊名称】《贵州大学学报:自然科学版》
【年(卷),期】1994(011)004
【摘要】本文对于由部分线性化递推算法所获得的结构研究其全局渐近稳定性问题,证明了"不受控制"的非线性部分的全局渐近稳定性可以导出整个系统能用状态反馈使之全局渐近稳定,该结论不同于Sussmann对与"零动态"有关的部分线性化结构所得出的结论且能导出他的结论。

【总页数】4页(P199-202)
【作者】蒋丹墀
【作者单位】无
【正文语种】中文
【中图分类】O231
【相关文献】
1.一类非线性控制系统的输出反馈半局镇定 [J], 李彪;翟景春;张勇
2.系统的增速依赖于不可测状态非线性系统全局输出反馈渐近镇定 [J], 尚芳;刘允刚;张承慧
3.非线性控制系统的全局可镇定 [J], 王连圭;田太心
4.非线性控制系统的全局镇定 [J], 王连圭
5.一类非线性控制系统的局部反馈镇定问题 [J], 陈贤峰;李杰;张伟江
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

状态反馈镇定(5/12)
| sI (A BK) || sI1 (A11 B1K1) | | sI2 A22 |
(6 20)
比较式(6-18)与式(6-20),可以发现:
引入状态反馈阵 K [K1 K2 ]后,只能通过选择 K1 来
使得 (A11 B1K1) 的特征值具有负实部,从而使能控子 系统 c 渐近稳定。
证明 (1) 若系统(A,B,C)不完全能控,可以通过线性变换将其 按能控性分解为:
A~

Pc1 APc


A~11
A~12 ~

0 A22
B~

Pc1 B


B~1
0

C~ CPc [C~1 C~2 ]
其中,c (A11, B1,C1) 为完全能控子系统; nc (A22 ,0,C2 )为完全不 能控子系统。
1

1 0 1
状态反馈镇定(9/12)
于是可得
1 0 0
A

Pc1 APc

1
2
1 ,
0 0 1
1 0
B

Pc1B

0
1
0 0
原系统的能控性分解为
1 0 0
1 0

x1 x2


1 0
2 0
因此,也就肯定可以通过状态反馈矩阵K将系统的闭环极 点配置在s平面的左半开平面之内,即闭环系统是镇定的。
故证明了,完全能控的系统,必定是可镇定的。
状态反馈镇定(3/12)
定理4-4 若系统(A,B,C)是不完全能控的,则线性状态反馈使 系统镇定的充要条件是系统的完全不能控部分是渐近稳定的, 即系统(A,B,C)不稳定的极点只分布在系统的能控部分。
状态反馈镇定(4/12)
(2) 由于线性变换不改变系统的特征值,故有:
| sI A || sI A | sI1 A11 0
A12 sI2 A22
| sI1 A11 | | sI2 A22 |
(3) 由于原系统(A,B,C)与结构分解后的系统 (A, B,C) 在稳定 性和能控性上等价,假设K为系统的任意状态反馈矩阵,对 引入状态反馈阵 K~ KPc [K~1 K~2],可得闭环系统的系统矩阵 为
具有一组稳定特征值。
步3: 计算原系统(A,B,C)可镇定的状态反馈矩阵
K [K1 0] Pc1
例4-6 给定线性定常系统
0 1 2 0 1 x 0 1 0 x 1 0u
1 1 1 0 1
试设计状态反馈矩阵K,使系统镇定.
状态反馈镇定(8/12)
u Kx v
使得闭环系统状态方程
x (A BK)x Bu
是镇定的,其中K为状态反馈矩阵,v为参考输入。
状态反馈镇定(2/12)
对是否可经状态反馈进行系统镇定问题,有如下2个定理。
定理4-3 状态完全能控的系统(A,B,C)可经状态反馈矩阵镇
定。

证明 根据状态反馈极点配置定理4-1,对状态完全能控的系 统,可以进行任意极点配置。
A
Pc1 APc


A11
0
A12

,
A22
B

Pc1B


B1 0

其中,
(
~ A11,
B~1Biblioteka )为完全能控部分,
(A22,0) 为完全不能控部分但
渐近稳定。
状态反馈镇定(7/12)—例6-6
步2:
利用极点配置算法求取状态反馈矩阵 K1
,使得
~ A11

B~1K~1
系统镇定(2/3)
最后,稳定性往往还是确保控制系统具有其它性能 和条件,如渐近跟踪控制问题等。
镇定问题是系统极点配置问题的一种特殊情况,它只要求把
闭环极点配置在s平面的左侧,而并不要求将极点严格配置
在期望的极点上。
为了使系统稳定,只需将那些不稳定因子,即具有非负实 部的极点,配置到s平面的左半开平面即可。
(
A11
,
B1
)


1
2 , 0
1


设A*
为具有期望特征值的闭环系统矩阵且 A*

~ A11

B~1K~1,
解: 1) 对系统进行能控性分解。
0 1 1 2
rankB AB rank1 0 1 0 2 n 3
0 1 1 2
表明系统不完全能控.
取能控性分解变换矩阵Pc为:
0 1 1 Pc 1 0 0 ,
0 1 0
0 1 0
Pc1 0 0


K 的选择并不能影响不能控子系统的

特征值
nc
分布。
因此,当且仅当渐近稳定时(的特征值均具有负实部), 整个系统是状态反馈能镇定的。
从而定理得证。

状态反馈镇定(6/12)
基于线性系统能控结构分解方法和状态反馈极点配置方法, 可得到如下状态反馈镇定算法。
状态反馈镇定算法:
步1: 将可镇定的系统(A,B,C)进行能控性分解,获得变换矩 阵Pc,并可得到
A

BK


A11
0
A12 A22



B1 0


K1
K2



A11
B1K1 0
A12

B1K2

A22

| sI A || sI1 A11 | | sI2 A22 | (6 18)
进而可得闭环系统特征多项式为:
因此,通过状态(输出)反馈矩阵使系统的特征值得到相 应配置,把系统的特征值(即的特征值)配置在平面的左 半开平面就可以实现系统镇定。
下面分别介绍基于 状态反馈 输出反馈
的2种镇定方法。
系统镇定(3/3)
状态反馈镇定(1/12)
4.3.1 状态反馈镇定
线性定常连续系统状态反馈镇定问题可以描述为: 对于给定的线性定常连续系统(A,B,C),找到一个状态反 馈控制律:
1 1

x1 x


0 0
1 u 0
由于该系统的不能控部分只有一个具有负实部的极点-1, 因此不能控子系统是稳定的,系统是可镇定的。
状态反馈镇定(10/12)
2) 对能控部分进行极点配置 由上可知,系统的能控部分为
1 0 1 0
相关文档
最新文档