七年级数学实际问题与一元一次方程2
初一【数学(人教版)】《解决实际问题与一元二次方程小结复习(二)》【教案匹配版】国家级中小学精品课程

大月饼
2 0.05
x
x 0.05
小月饼
4 0.02 4500-x
4500 x 0.02
初中数学
初中数学初一上册
二、典型例题
例1 某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小 月饼.制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.现共有面 粉4500kg,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?
解:设用xkg面粉生产大月饼,则用(4500-x)kg面粉生产小月饼.
4500 x 2x . 0.02 0.05
解方程得
4500 x 2x .
2
5
检验: x=2500是原方程的解且符
x=2500. 合实际意义.
4500-x=2000.
答:用2500kg面粉生产大月饼,用2000kg面粉生产小月饼,能
初中数学
初中数学初一上册
二、典型例题
例1 某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小 月饼.制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.现共有面 粉4500kg,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?
分析一: 每盒(块)
每块需面粉(kg) 面粉分配(kg)
分析:商店优惠方式 甲商店:一副乒乓球拍送一盒乒乓球; 乙商店:乒乓球拍和乒乓球全部九折.
初中数学
初中数学初一上册
二、典型例题
(1)若这个班计划购买6盒乒乓球,则在甲商店付款_5_2_5__元, 在乙商店付款__5_8_5_元;
分析:某班计划购买 乒乓球拍 乒乓球
商店优惠方式 甲商店:一副乒乓球拍送一盒乒乓球;
分析:某班计划购买
人教版七年级数学上《实际问题与一元一次方程》第2课时同步练习

《实际问题与一元一次方程》第2课时同步练习(销售中的盈亏问题)班级:___________姓名:___________得分:___________一、选择题(每小题6分,共30分)1.“十一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本价为x元,根据题意,下面所列方程正确的是()A.x·(1+30%)×80%=2 080B.x·30%·80%=2 080C.2 080×30%×80%=xD.x·30%=2 080×80%2.某商店销售一种玩具,每件售价92元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程正确的是()A.92xx=15% B.92x=15%C.92﹣x=15%D.x=92×15%3.服装店同时销售两种商品,销售价都是100元,结果一种赔了20%,另一种赚了20%,那么在这次销售中,该服装店()A.总体上是赚了B.总体上是赔了C.总体上不赔不赚D.没法判断是赚了还是赔了4.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元5.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“六一儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60﹣x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60﹣x)=87二、填空题(每小题6分,共30分)6.某商品原标价为165元,降价10%后,售价为元,若成本为110元,则利润为元.7.一种药品现在售价是每盒100元,比原来降低了20%,则原售价为元.8.某品牌手机降价20%后,又降低了100元,此时售价为1100元,则该手机的原价为__________元.9.某商店销售一批服装,每件售价150元,打8折后,仍可获利20%,设这种服装的成本价为x元,则x满足的方程是.10.去年暑假某同学为锻炼自己,通过了解市场行情,从批发市场购进若干件印有“设计未来”标志的文化衫到自由市场去销售。
人教版七年级上册数学教学课件 第3章 一元一次方程3.4实际问题与一元一次方程(第2课时)

解得x=400.
2.一件服装以120元销售,获利20%,则这件服装 的进价是( A ) A.100元 B.105元 C.108元 D.118元
【解析】解:设这件服装的进价为x元,依题意 得(1+20%)x=120,解得x=100,则这件服装 的进价是100元。
一件夹克衫先按成本提高50%标价,再以八折 (标价的80%)出售,获利28元,这件夹克衫的成 本是多少元?
(1)获利28元是怎么得来的? 利润=售价-进价
(2)设商品成本是x元,商品的标价是50%x 元, 商品售价是 50%×80%×x 元.
解:设商品的成本是x元 80%(1+50%)x-x=28 解得x=140 答:这件夹克衫的成本是140元。
盈利:售价>进价 利润=售价-进价>0
亏损:售价<进价 利润=售价-进价<0
解:设盈利25%的衣服的进价为x元
x+25%x=60
解得x=48
设亏损25%的衣服的进价为y元
y-25%y=60 解得y=80
两件衣服的进价和是x+y=128元,两件 衣服的售价和120元. 因为进价>售价 所以卖这两件衣服亏损了8元.
3.已知面包店的面包一个15元,小明去此店买面包, 结账时店员告诉小明:“如果你再多买一个面包就 可以打九折,价钱会比现在便宜45元”,小明说: “我买这些就好了,谢谢.”根据两人的对话,可 知结账时小明买的面包数是( B )
A.38 B.39 C.40 D.41 【解析】解:小明买了x个面包.则 15x﹣15 (x+1)×90%=45,解得x=39.
商店对某种商品调价,按原价的八折出售,此时 商品的利润率是10%,此商品的进价为1600元, 商品的原价是多少元?
人教版七年级上册实际问题与一元一次方程(七)-2课件

(3)已知速度为 千米/时,路程为(
)千米,
(2)相等关系:题目中隐含的时间、速度、路程关系,以及研究对象每个运动阶段的基本关系.
相轿遇车点 故C障与前A路的程距+离轿为车故障后路程=,卡一车全辆程③卡车从甲地匀速开往乙地,出发2小时后,一辆轿车
例:小刚和小强分别从 两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后 两人相遇,相遇时小刚比小强多行进 ,相遇后 小刚到达 地,两
时间 小刚 2 小强 2
相遇前 速度
2x 24 2
路程 2x 24
2x
时间 0.5
相遇后 速度
路程
2x 24 2
2x
2
24
0.5
初中数学
小刚
A
小强
C
4x 2x 24
0.5
小刚相遇前速度=小刚相遇后速度 ① √
24km 小刚相遇后路程=小强相遇前路程 ④ √ 小刚相遇前路程=小刚相遇前速度2 ⑤ √ 小强相遇前路程=小强相遇前速度 2 ⑥ √ 小刚相遇后路程=小刚相遇后速度 0.5 ⑦ √
卡车
甲
乙
轿车
轿车故障前路程+轿车故障后路程=卡车全程③
初中数学
一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车
从甲地出发去追这辆卡车,轿车的速度比卡车的速度快30千米
每小时,但轿车行驶一个小时后突遇故障,修理15分钟后,又 上路追这辆卡车,但速度减小了1 ,结果用两个小时才追上这
3
辆卡车,求卡车的速度,只列出方程.
(小2)刚已相知遇时后间路为程小=小时强,相路遇程前为路程 千④米 ,相遇后 小 (根1)据已“知小速刚度相为遇后千的米路/时程,=小时强间相为遇小前时的,路则程路”得程方为程__:___________千米;
人教版数学七年级上册《实际问题与一元二次方程》解答题巩固练习

人教版数学七年级上册 3.4实际问题与一元一次方程解答题巩固练习(一)1.双十一购物节.某网络商城推出了“每满300减40”的活动,某品牌微波炉按进价提高50%后标价,再按标价的八折销售,顾客在双十一期间购买该微波炉,最终付款640元.(1)将表格补充完整;应付金额(元)0≤x<300 600≤x<900 900≤x<1200 减免金额(元)0 40 120(2)商家卖一个微波炉赚多少元?2.为了培育和践行社会主义核心价值观,丰富学生生活,培养学生爱国主义情怀,学校某天组织七年级学生和带队教师共450人外出参加研学游活动,已知学生人数的一半比带队教师人数的10倍还多15人.求参加活动的七年级学生和带队教师各有多少人?3.某天,信美超市用360元钱按批发价从水果批发市场购买了苹果和香蕉共200kg,然后按零售价出售,苹果和香蕉当天的批发价和零售价如下表所示:品名苹果香蕉批发价(单位:元/kg) 2.0 1.5零售价(单位:元/kg) 2.4 1.8(1)这一天该超市购买苹果和香蕉各多少kg?(2)如果苹果和香蕉全部以零售价售出,该超市当天卖这些苹果和香蕉共赚了多少钱?4.如图,在数轴上有A、B两点,点C是线段AB的中点,AB=12,OA=8.(1)求点C所表示的数;(2)动点P、Q分别从A、B同时出发,沿着数轴的正方向运动,点P、Q的运动速度分别是每秒3个单位和每秒2个单位(当P与Q相遇,运动停止),点M是线段PQ的中点,设运动时间为t秒,请用含t的式子表示CM的长;(3)在(2)的条件下,试问t为何值时,CM=PC.5.已知数轴上两点A、B对应的数分别为﹣1、5,点P为数轴上一动点,其对应的数为X.(1)若点P到点A点B的距离相等,求点P对应的数是X=;(2)数轴上是否存在点P,使点P到点A,点B的距离之和为8?若存在,请求出X的值;若不存在,说明理由;(3)现在点A,点B分别以2个单位长度每分和1个单位长度每分的速度同时向右运动,点P以6个单位长度每分的速度从O点向左运动,当遇到A时,点P以原来的速度向右运动,并不停得往返于A与B之间,求当A遇到B重合时,P所经过的总路程.6.农历六月六日水龙节是土家族等少数民族重要的民俗文化活动之一,在今年水龙节即将到来之前,德江县城一商店用1200元购进甲、乙两种型号的儿童玩具水枪共100支,两种儿意玩具水枪的进价和售价如下表.型号进价(元/支)售价(元/支)甲型10 20乙型20 35 (1)求购进甲、乙两种儿童玩具水枪各为多少支?(2)若全部售完这100支儿童玩具水枪,该商场获利润多少元?7. 2020年在“抗击新冠,声援武汉”捐款活动中,某校六年级两个班级共85名学生积极参与,踊跃捐款,已知六年一班有30人每人捐了10元,其余每人捐了5元;六年二班有20人每人捐了10元,其余每人捐了4元,设六年一班共有x人.(1)用含x的整式表示该校六年级捐款总额,并进行化简;(2)若该校六年级捐款总额为655元,求六年二班共有多少名学生?8.甲、乙两地相距3千米,小王从甲地出发步行到乙地,小李从乙地出发步行到甲地.两人同时出发,20分钟后两人相遇.已知小王的速度比小李的速度每小时快1千米,求两人的速度.9.某新能源汽车生产车间有两条生产线,第一条生产线有20人,第二条生产线有28人,根据市场需求情况,要将第二条生产线的人数调整为第一条生产线人数的一半,问应从第二条生产线调多少人到第一条生产线?10.已知数轴上点A表示的数为12,点B表示的数为﹣8.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,同时动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)当点P与点Q关于原点O对称时,求t的值;(2)是否存在t的值,使得点P与点Q之间的距离为3个单位长度?若存在,请求出t 的值;若不存在,请说明理由.11.“今有善行者行一百步,不善行者行六十步”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步,假定两者步长相等,若不善行者先行200步,善行者追之,不善行者再行600步,请问谁在前面,两人相隔多少步?12.为了有效控制新型冠状病毒(世界卫生组织正式将其命名为2019﹣nCoV)的传播,某市在推广疫苗之前,利用网络调查的方式,对不同的医药集团生产的G、K两种生物新冠灭活疫苗进行了接受程度的匿名调查.在收集上来的有效调查的m人的数据中,能接受G 的市民占调查人数的60%,其余不接受G;且接受K的比接受G的多30人,其余不接受K.另外G、K都不接受的市民比对G、K都能接受的市民的还多10人.下面的表格是对m人调查的部分数据:疫苗种类都能接受不接受G集团a bK集团330人c(1)请你写出表中a、b、c的人数:a=,b=,c=;(2)求对G、K两个医药集团的疫苗都能接受的人数.13.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?14.已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,动点P从A 点出发,以每秒3个单位长度的速度沿数轴向左匀速运动.设运动时间为t秒.(1)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q 同时出发,当P、Q之间的距离恰好等于8个单位长度,求t的值;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,当P、Q之间的距离小于8个单位长度,求t的取值范围.15.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,点M是线段PA上靠近于点A的四等分点,点N为线段PB上靠近于点P的三等分点,求PM﹣BN的值.16.某商店对A,B两种商品开展促销活动,方案如下:商品A B标价(单位:元)200 400每件商品出售价格按标价降价20% 按标价降价a%(1)商品B降价后的标价为元.(用含a的式子表示)(2)小艺购买A商品20件,B商品10件,共花费6000元,试求a的值.17.在数轴上,已知点A表示的数是﹣20,点B表示的数是10,原点为O.机器人甲从点A 出发,速度为每秒3个单位长度,机器人乙从B点出发,速度为每秒1个单位长度,两机器人同时出发.(1)A、B两点的距离为;线段AB的中点表示的数为.(2)如果机器人甲、乙相向而行,假设它们在点C处相遇,求点C所表示的数;(3)如果机器人甲、乙同向向右而行,①用含t的代数式表示:t秒后,机器人甲所表示的数为;机器人乙所表示的数为.②问几秒时机器人甲与原点的距离是机器人乙与原点的距离的2倍?18.某县2021以来受持续干旱影响,河道来水偏少,已严重影响生产和生活用水,自来水厂推行阶梯水价,引导人们节约用水,调整后的用水价格如下表:每月用水量(吨)单价(元/吨)不超过20的部分 1.5超过20不超过30的部分 2超过30的部分 3(1)小明家5月份的用水量为23吨,小明家5月份的水费是多少?(2)小明家1月份水费的均价为1.75元/吨,求小明家1月份的用水量?(3)小明家3、4两个月的总用水量为56吨(4月份用水较少),3、4两个月的水费合计93元,请问小明家3、4月份的用水量分别是多少?19.某店以一共500元进价购得甲、乙两件商品,然后将甲、乙两件商品分别按50%和40%的利润标定出售价.(1)如果按上述进价和售价进行交易,那么该店买卖这两件商品能否盈利260元?为什么?(2)如果该店按原定售价八折促销,某顾客同时购买了甲、乙两种商品,实际付款584元,那么甲、乙两商品原进价各多少元?20.新冠病毒爆发期间,武汉某医院住院部有27个重症病房和若干个普通病房,其中一个重症病房需要1名医生,1名护士,5个普通病房需要1名医生,2名护士,某省第三批援鄂医疗队126名医护人员刚好接管该医院住院部所有病房.(1)该批援鄂医疗队中医生、护士各有多少人?(2)该医院住院部普通病房有多少个?参考答案1.【解答】解:(1)∵商城推出了“每满300减40”的活动,∴当300≤x<600时,减免40元;当600≤x<900时,减免40×2=80(元).故答案为:300≤x<600;80.(2)设微波炉的进价为m元,则商家卖一个微波炉赚(640﹣m)元,依题意得:0.8×(1+50%)m﹣80=640,解得:m=600,∴640﹣m=640﹣600=40.答:商家卖一个微波炉赚40元.2.【解答】解:设带队教师人数为x人,则参加活动的七年级学生有2(10x+15)人,依题意有x+2(10x+15)=450,解得x=20,则2(10x+15)=2×(200+15)=430.故参加活动的七年级学生有430人,带队教师有20人.3.【解答】解:(1)设这一天该超市购买苹果xkg,则购买香蕉(200﹣x)kg,依题意得:2x+1.5(200﹣x)=360,解得:x=120,∴200﹣x=200﹣120=80.答:这一天该超市购买苹果120kg,香蕉80kg.(2)(2.4﹣2)×120+(1.8﹣1.5)×80=0.4×120+0.3×80=48+24=72(元).答:该超市当天卖这些苹果和香蕉共赚了72元钱.4.【解答】解:(1)∵点C是线段AB的中点,∴AC=BC=AB=6,∴OC=OA﹣AC=8﹣6=2,OB=BC﹣OC=6﹣2=4,∴点C所表示数为﹣2;(2)∵OA=8,OB=4,∴点A所表示的数为﹣8,点B所表示的数为4,设运动时间为t秒,由题意可得,点P在运动过程中所表示的数为﹣8+3t,点Q在运动过程中所表示的数为4+2t,又∵点M是PQ的中点,∴点M在运动过程中所表示的数为,∴CM=|﹣(﹣2)|=,即线段CM的长为;(3)①当点P位于C点左侧时,PC=﹣2﹣(﹣8+3t)=6﹣3t,,解得:t=;②当点P位于C点右侧时,PC=﹣8+3t﹣(﹣2)=3t﹣6,,解得:t=3,综上,当t=或3时,CM=.5.【解答】解:(1)∵点P到点A、点B的距离相等,∴点P是线段AB的中点,∵点A、B对应的数分别为﹣1、5,∴点P对应的数是2;故答案为:2;(2)存在修改为在数轴上存在点P,使点P到点A、点B的距离之和为8.理由如下:①当点P在A左边时,﹣1﹣x+5﹣x=8,解得:x=﹣2;②点P在B点右边时,x﹣5+x﹣(﹣1)=8,解得:x=6,即存在x的值,当x=﹣2或6时,满足点P到点A、点B的距离之和为8;(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得x=6,则6x=36,答:点P所经过的总路程是36个单位长度.6.【解答】解:(1)设购进甲种儿童玩具水枪x支,则购进乙种儿童玩具水枪(100﹣x)支,依题意得:10x+20(100﹣x)=1200,解得:x=80,∴100﹣x=100﹣80=20.答:购进甲种儿童玩具水枪80支,乙种儿童玩具水枪20支.(2)(20﹣10)×80+(35﹣20)×20=10×80+15×20=800+300=1100(元).答:全部售完这100支儿童玩具水枪,该商场获利润1100元.7.【解答】解:(1)根据题意知:10×30+5(x﹣30)+10×20+4(85﹣x﹣20)=x+610.(2)根据题意,得x+610=655.解得x=45.则85﹣45=40(名).答:六年二班共有40名学生.8.【解答】解:设小李的速度为每小时x千米,根据题意得:,解得:x=4,小王的速度为x+1=4+1=5(千米/小时).答:小李的速度为每小时4千米,小王的速度为每小时5千米.9.【解答】解:设应从第二条生产线调x人到第一条生产线,根据题意得,28﹣x=(20+x),解得x=12.答:应从第二条生产线调12人到第一条生产线.10.【解答】解:当运动时间为t秒时,点P表示的数为12﹣5t,点Q表示的数为﹣8﹣3t.(1)依题意得:12﹣5t+(﹣8﹣3t)=0,解得:t=.答:当点P与点Q关于原点O对称时,t的值为.(2)依题意得:|12﹣5t﹣(﹣8﹣3t)|=3,即20﹣2t=3或20﹣2t=﹣3,解得:t=或t=.答:存在t值,当t=或秒时,点P与点Q间的距离为3个单位长度.11.【解答】解:设当走路慢的人再走600步时,走路快的人走x步,由题意得x:600=100:60,解得x=1000,则1000﹣600﹣200=200(步)答:善行者在前面,两人相隔200步.12.【解答】解:(1)因为“接受K的比接受G的多30人”,所以a=330﹣30=300(人).因为“能接受G的市民占调查人数的60%”,所以m==500(人).因为“能接受G的市民占调查人数的60%,其余不接受G”,所以b=500﹣300=200(人).因为“接受K的比接受G的多30人,其余不接受K”,所以c=500﹣330=170(人).故答案是:300;200;170;(2)设对G、K两个医药集团的疫苗都能接受的人数为x人,根据题意,得,解得x=210.答:对G、K两个医药集团的疫苗都能接受的人数为210人.13.【解答】解:(1)设乙工程队每天能完成x平方米的绿化改造面积,则甲工程队每天能完成(x+200)平方米的绿化改造面积,依题意得:x+200+x=800,解得:x=300,∴x+200=300+200=500.答:甲工程队每天能完成500平方米的绿化改造面积,乙工程队每天能完成300平方米的绿化改造面积.(2)选择方案①所需施工费用为600×=14400(元);选择方案②所需施工费用为400×=16000(元);选择方案③所需施工费用为(600+400)×=15000(元).∵14400<15000<16000,∴选择方案①的施工费用最少.14.【解答】解:(1)∵数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB =28,∴点B表示的数为﹣20,由题意可得:|8﹣3t﹣(﹣20+2t)|=8,解得:t=4或,∴t的值为4或;(2)由题意可得:|8﹣3t﹣(﹣20﹣2t)|<8,解得:20<t<36,∴t的取值范围为20<t<36.15.【解答】解:(1)t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.故答案为:﹣2+3t;8﹣2t;(2)根据题意得:|(﹣2+3t)﹣(8﹣2t)|=×10,|5t﹣10|=6,解得:t=或,∴当t=或时,PQ=AB;(3)根据题意得PM=,BN=BP=(AP﹣AB)=×(3t﹣10)=2t﹣,∴PM﹣BN=t﹣(2t﹣)=.16.【解答】解:(1)B商品标价是400元,出售价格按标价降低a%,那么降价后的标价是400×(1﹣a%)元,故答案为:400×(1﹣a%);(2)由题意得:20×200×(1﹣20%)+10×400(1﹣a%)=6000,化简:1﹣a%=0.7,解得:a=30,∴a的值是30.17.【解答】解:(1)A、B两点的距离为10﹣(﹣20)=30;线段AB的中点表示的数为.故答案为:30;﹣5;(2)设t秒时,两机器人相遇,由题意得,3t+t=30,解得t=7.5,所以点C在数轴上对应的数为:10﹣7.5=2.5;(3)①t秒后,机器人甲所表示的数为:3t﹣20;机器人乙所表示的数为:10+t;故答案为:3t﹣20;10+t;②设t秒时机器人甲与原点的距离是机器人乙与原点的距离的2倍.当甲位于原点左侧时,可得:2(10+t)=20﹣3t,解得t=0(舍去);当甲位于原点右侧时,可得,2(10+t)=3t﹣20,解得t=40.答:40秒时机器人甲与原点的距离是机器人乙与原点的距离的2倍.18.【解答】解:(1)20×1.5+3×2=36(元).答:小明家5月份的水费是36元.(2)设小明家1月份的用水量为x吨,用水量为30吨时的均价为(元).∵,∴x>30,∴20×1.5+10×2+(x﹣30)×3=1.75x.解方程,得x=32.答:小明家1月份的用水量为32吨.(3)设小明家4月份的用水量为y(0<y<28)吨,依题意则其3月份的用水量为(56﹣y)吨.①当0<y≤20时,则56﹣y>301.5y+[20×1.5+10×2+(56﹣y﹣30)×3]=93.化简得 1.5y=35,解得,这与0<y≤20矛盾.②当20<y<28时,则28<56﹣y<56.a.当28<56﹣y≤30时,[20×1.5+(y﹣20)×2]+[20×1.5+(56﹣y﹣20)×2]=93,化简得:(2y﹣10)+(102﹣2y)=93.该方程无解;b.当30<56﹣y<56时,[20×1.5+(y﹣20)×2]+[20×1.5+10×2+(56﹣y﹣30)×3]=93,化简得:(2y﹣10)+(128﹣3y)=93.解得y=25.y=25同时满足20<y<28和30<56﹣y<56.所以56﹣y=56﹣25=31.综上所述,小明家3、4月份的用水量分别为31吨和25吨.19.【解答】解:(1)500×50%=250(元),250<260,∴该店买卖这两件商品不可能盈利260元.(2)设甲商品的原进价为x元,则乙商品的原进价为(500﹣x)元,依题意得:80%×[(1+50%)x+(1+40%)(500﹣x)]=584,解得:x=300,∴500﹣x=200.答:甲商品的原进价为300元,乙商品的原进价为200元.20.【解答】解:(1)设该批援鄂医疗队中医生有x人,则护士有(126﹣x)人,根据题意得:2(x﹣27)=126﹣x﹣27,解得x=51,则126﹣x=126﹣51=75.答:该批援鄂医疗队中医生有51人,护士有75人;(2)∵负责普通病房的医生有51﹣27=24人,而5个普通病房需要1名医生,∴普通病房有24×5=120(个),答:该医院住院部普通病房有120个.。
人教版七年级数学上 册 3.4 实际问题与一元一次方程(含答案)

3.4 实际问题与一元一次方程1.王刚是某校的篮球明星,在一场篮球比赛中,他一人得21分,如果他投进的2分球比3分球多3个,那么他一共投进的2分球有( ) A.2个 B.3个 C.6个 D.7个2.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26-x)=800xB .1000(13-x)=800xC .1000(26-x)=2×800xD .1000(26-x)=800x 3.用铁皮做罐头盒,每张铁皮可制作15个盒身或42个盒底,一个盒身与两个盒底配成一套罐头盒.现有108张铁皮,怎样分配材料可以正好制成整套罐头盒?若设用x 张铁皮做盒身,根据题意可列方程( )A .2×15(108-x)=42xB .15x =2×42(108-x)C .15(108-x)=2×42x D.2×15x=42(108-x)4.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的鸦 为 只,树为 棵. 5.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( ) A .10天 B .20天 C .30天 D .25天6.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%.设把x 公顷旱地改造为林地,则可列方程( ) A .60-x =20%(120+x) B .60+x =20%×120 C .180-x =20%(60+x) D .60-x =20%×1207.我校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢一场得2分,输一场得1分.可是小谭忘记了输赢各多少场了,请你根据上面提供的信息分别求出输、赢各多少场.8.整理一批数据,由一人做需80小时完成,现在计划先由一些人做2小时,再增加5人做8小时,完成这项工作的34,应该怎样安排参与整理数据的具体人数?9. 打扫本班清洁区域卫生,1个人打扫需要30 min 完成,生活委员计划由一部分人先打扫5 min ,然后增加2人与他们一起打扫3 min 完成打扫任务.假设同学们打扫清洁区域卫生的效率相同,那么生活委员应先安排多少人打扫?10.现有甲、乙两家商店出售茶瓶和茶杯,茶瓶每只价格为20元,茶杯每只5元.已知甲店制定的优惠方法是买一只茶瓶送一只茶杯;乙店按总价的92%付款.某单位办公室需购茶瓶4只,茶杯若干只(不少于4只).(1)当需购买40只茶杯时,若让你去办这件事,你将打算去哪家商店购买,为什么?(2)当购买茶杯多少只时,两种优惠方法的效果是一样的?11.某工厂现有15 m3木料,准备制作圆桌或方桌(用部分木料制作桌面,其余木料制作桌腿).(1)已知一张圆桌由一个桌面和一条桌腿组成,如果1 m3木料可制作40个桌面或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少立方米.(2)已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题.①如果1 m3木料可制作50个桌面或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套?②如果3 m3木料可制作20个桌面或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子?12.某公司新建办公楼需要装修,若由甲工程队单独完成需要18周,由乙工程队单独完成需要12周.现在招标的结果是由甲工程队先做3周,再由甲、乙两队合做,共需装修费40000元.若按两队完成的工作量支付装修费,该如何分配?13.某市为节约用水,制定了如下标准:每月用水量不超过20吨,按每吨1.2元收费;超过20吨,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费( )A.20元 B.24元 C.30元 D.36元14.北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如图所示.比如6口以下的家庭年天然气用量在第二档时,其中350立方米按2.28元/米3收费,超过350立方米的部分按2.5元/米3收费.小冬一家有5口人,他想帮父母计算一下实行阶梯价格收费后,家里天然气费的支出情况.(1)如果他家2017年全年使用300立方米天然气,需要交天然气费________元;如果他家2017年全年使用500立方米天然气,需要交天然气费________元.(2)如果他家2017年需要交1563元天然气费,那么他家2017年用了多少立方米天然气?15.某牛奶加工厂现有鲜奶8吨,若直接销售鲜奶,每吨可获取利润500元;若制成酸奶销售,每吨可获取利润1200元;若制成奶片销售,每吨可获取利润2000元.该工厂的生产能力如下:制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批鲜奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多地制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利较多?为什么?答案1. C2. C3.D4. 20 55. D6.A7. 解设球队赢了x场,则输了(16-x)场.由题意,得2x+(16-x)×1=28,解得x=12,答:球队赢了12场,输了4场.8.解:设开始安排x人做.依题意,得2×180x+8×180(x+5)=34.解得x=2.答:应该先安排2人做2小时后,再增加5人做8小时.9.解:设生活委员应先安排x人打扫.根据题意,得130x×5+130×3(x+2)=1,解得x=3.答:生活委员应先安排3人打扫.10. 解(1)当购买40只茶杯时,则甲商店需付:4×20+5(40-4)=260(元). 则乙商店需付:(4×20+5×40)×92%=257.6(元).因此应去乙商店买.(2)设购买茶杯x 只,由题意列方程,得4×20+(x -4)×5=(4×20+5x)×92%, 即5x+60=73.6+4.6x, 解得x=34.所以当购买茶杯34只时,两种优惠方法的效果是一样的.11. 解:(1)设用x m 3木料制作桌面,则用(15-x)m 3木料制作桌腿恰好配套. 由题意,得40x =20(15-x).解得x =5.答:制作桌面的木料为5 m 3.(2)①设用a m 3木料制作桌面,则用(15-a)m 3木料制作桌腿恰好配套.由题意,得4×50a=300(15-a).解得a =9.所以制作桌腿的木料为15-9=6(m 3).答:用9 m 3木料制作桌面,用6 m 3木料制作桌腿恰好配套.②设用y m 3木料制作桌面,则用(15-y) m 3木料制作桌腿能制作尽可能多的桌子.由题意,得4×20×y 3=320×15-y3.解得y =12.所以制作桌腿的木料为15-12=3(m 3).答:用12 m 3木料制作桌面,用3 m 3木料制作桌腿能制作尽可能多的桌子. 12.解:设甲工程队先做3周后还需x 周完成.由题意,得118(x +3)+112x =1,解得x =6.即甲工程队做了9周,乙工程队做了6周,甲工程队的工作量为118×9=12,乙工程队的工作量为112×6=12. 因为两队完成的工作量相同,所以装修费40000元应平分,两队各得20000元.13.C14. 解:(1)如果他家2017年全年使用300立方米天然气,那么需要交天然气费2.28×300=684(元);如果他家2017年全年使用500立方米天然气,那么需要交天然气费 2.28×350+2.5×(500-350)=798+375=1173(元). 故答案为684,1173.(2)设小冬家2017年用了x 立方米天然气.因为1563>1173,所以小冬家2017年所用天然气超过了500立方米. 根据题意,得2.28×350+2.5×(500-350)+3.9(x -500)=1563, 解得x =600.答:小冬家2017年用了600立方米天然气.15.解:选择方案二获利最多.理由:方案一:最多生产4吨奶片,其余的鲜奶直接销售,其利润为4×2000+(8-4)×500=10000(元);方案二:设x 天生产奶片,(4-x)天生产酸奶.根据题意,得x +3(4-x)=8,解得x =2,则4-x =2,所以2天生产酸奶加工的鲜奶是2×3=6(吨),则方案二的利润为2×2000+6×1200=4000+7200=11200(元). 因为11200>10000,所以选择方案二获利较多。
人教版初一数学一元一次方程与实际问题
人教版初一数学一元一次方程与实际问题本文涉及到的格式错误已经被删除。
一元一次方程解应用题(1)——路程问题教学目标:1.掌握行程问题,能够熟练地利用路程、速度、时间的关系列方程。
2.提高学生分析实际问题中数量关系的能力。
研究过程:基本等量关系:1.路程 = 速度 ×时间,时间 = 路程 ÷速度,速度 = 路程 ÷时间。
2.相向而行相遇时的等量关系:快者的路程 - 慢者的路程= 两人初相距的路程;同向而行追击时的等量关系:快者的路程 + 慢者的路程 = 两人初相距的路程。
新课探究:例1:甲、乙两站间的路程为360 km,一列慢车从甲站开出,每小时行驶48 km;一列快车从乙站开出,每小时行驶72 km。
⑴两列火车同时开出,相向而行,经过多少小时相遇?⑵快车先开25分钟,两车相向而行,慢车行驶了多少小时相遇?练一:1.甲、乙两人骑自行车同时从相距65 km的两地相向而行,2小时相遇,甲比乙每小时多骑2.5 km,求乙的速度?2.甲、乙两人在运动场上进行慢跑晨练,甲跑一圈3分钟,乙跑一圈2分钟,两人同时同地反向慢跑,求两人几分钟后第一次相遇?例2:一队学生去校外进行野外长跑训练。
他们以5 km/h 的速度行进,跑了18分钟的时候,学校要将一个紧急通知传给队长。
一名老师从学校出发,骑自行车以14 km/h的速度按原路追上去。
这名老师用多少时间可以追上学生队伍?练二:1.甲的步行速度是每小时5 km,乙的步行速度是每小时7.5 km,乙在甲的后面同时同向出发,120分钟后追上甲,那么开始时甲、乙两人相距多少千米?2.某班学生以每小时4 km的速度从学校步行到校办农场参加活动,走了1.5小时后,XXX奉命回学校取一件物品,他以每小时6 km的速度回校取了物品后,立即又以同样的速度追赶队伍,结果在距农场2 km处追上了队伍,求学校到农场的距离。
巩固练:1.在800米圆形跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米。
人教版数学七年级上册第10周 3.3解一元一次方程(二)——3.4实际问题与一元一次方程同步测试
【人教版七年级(上)数学周周测】第10周测试卷(测试范围:3.3解一元一次方程(二)——3.4实际问题与一元一次方程)班级:___________ 姓名:___________ 得分:___________一、选择题(每小题3分,共30分)1.方程3x+2(1-x)=4的解是()A.x=25B.x=56C.x=2D.x=12.在解方程123123x x-+-=时,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1B.3(x﹣1)+2(2x+3)=1C.3(x﹣1)+2(2+3x)=6D.3(x﹣1)﹣2(2x+3)=63.下列方程的变形中正确的是()A.由x+5=6x﹣7得x﹣6x=7﹣5B.由﹣2(x﹣1)=3得﹣2x﹣2=3C.由310.7x-=得1030107x-=D.由139322x x+=--得2x=﹣124.解方程3132x x+-=时,去分母后可以得到()A.1﹣x﹣3=3xB.6﹣2x﹣6=3xC.6﹣x+3=3xD.1﹣x+3=3x5.解方程:4(x﹣1)﹣x=2(x+12),步骤如下:①去括号,得4x﹣4﹣x=2x+1②移项,得4x﹣x+2x=1+4③合并同类项,得3x=5④系数化1,得x=5 3经检验知x=53不是原方程的解,证明解题的四个步骤中有错,其中做错的一步是()A.①B.②C.③D.④6.某书上有一道解方程的题:13xx+=,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字()A.72B.52C.2D.﹣27.关于x的方程5x-a=0的解比关于y的方程3y+a=0的解小2,则a的值是()A.154B.-154C.415D.-4158.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x天相遇,可列方程为()A.(9﹣7)x=1B.(9+7)x=1C.11()179x-=D.11()179x+=9.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800xB.1000(13﹣x)=800xC.1000(26﹣x)=2×800xD.1000(26﹣x)=800x10.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为()A .26元B .27元C .28元D .29元二、填空题(每小题3分,共30分)11.当x = 时,代数式453x -的值是-1. 12.将方程4(2x -5)=3(x -3)-1变形为8x -20=3x -9-1的变形步骤是 . 13.已知x =2是关于x 的方程a (x +1)=12a +x 的解,则a 的值是 . 14.已知方程2x ﹣3=3和方程3103m x--=有相同的解,则m 的值为 . 15.已知关于x 的方程3a ﹣x =2x+3的解为2,则代数式a 2﹣2a +1的值是 . 16.如图,点A 、B 在数轴上,它们所对应的数分别是12x -和5,且点A 、B 到原点的距离相等,则x 的值为 .17.a ,b 互为相反数,c ,d 互为倒数,则关于x 的方程2()3(1)20a b x cd x x ++--=的解为x = .18.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元.若设这件衣服的成本是x 元,根据题意,可得到的方程是 .19.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的方程为 .20.学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调 人到甲队. 三、解答题(共40分)21.(12分)解下列方程:(1)4x +3=2(x -1)+1(2)246231xx x -=+--22.(8分)按要求完成下面题目:323221+-=--x x x 解:去分母,得424136+-=+-x x x ……①即 8213+-=+-x x ………………② 移项,得 1823-=+-x x …… ③ 合并同类项,得 7=-x …………④ ∴ 7-=x ………… ………………⑤ 上述解方程的过程中,是否有错误?答: ;如果有错误,则错在________步.如果上述解方程有错误,请你给出正确的解题过程:23.(8分)张新和李明到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.24.(12分)我市某景区原定门票售价为50元/人.为发展旅游经济,风景区决定采取优惠售票方法吸引游客,优惠方法如下表:时间优惠方法非节假日每位游客票价一律打6折节假日根据游团人数分段售票:10人以下(含10人)的游团按原价售票;超过10人的游团,其中10人仍按原价售票,超出部分游客票价打8折.(1)某旅游团共有20名游客,若在节假日到该景区旅游,则需购票款为元.(2)市青年旅行社某导游于5月1日(节假日)和5月20日(非节假日)分别带A团和B团都到该景区旅游,已知A、B两个游团合计游客人数为50名,两团共付购票款2000元,则A、B两个旅游团各有游客多少名?参考答案1.C2.D3.D4.B【解析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:方程两边乘以6得:6﹣2(x+3)=3x,去括号得:6﹣2x﹣6=3x,故选B5.B【解析】移项要变号,②没有变号.解:①去括号,得4x﹣4﹣x=2x+1②移项,得4x﹣x﹣2x=1+4③合并同类项,得x =5 故选B . 6.A【解析】□处用数字a 表示,把x =﹣2代入方程即可得到一个关于a 的方程,解方程求得a 的值.解:□处用数字a 表示, 把x =﹣2代入方程得1223a-=-, 解得:a =72. 故选A . 7.B .【解析】∵5x -a =0, ∴x =5a , ∵3y +a =0, ∴y =-3a , ∴-3a -5a=2, 去分母得:-5a -3a =30, 合并得:-8a =30, 解得:a =-154. 故选B . 8.D .【解析】设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11()179x +=.故选D .【解析】设分配x名工人生产螺母,则(26-x)人生产螺钉,根据每天生产的螺钉和螺母刚好配套可列出方程1000(26-x)=2×800x.10.C【解析】根据题意,设电子产品的标价为x元,按照等量关系“标价×0.9﹣进价=进价×20%”,列出一元一次方程得:0.9x﹣21=21×20%解得:x=28所以这种电子产品的标价为28元.故选C.11.1/212.去括号13.4/514.2【解析】先求出方程2x﹣3=3的解,然后把x的值代入方程,求解m的值.解:解方程2x﹣3=3得:x=3,把x=3,代入方程,得,1﹣=0,解得:m=2.故答案为:2.15.1.【解析】先把x=2代入方程求出a的值,再把a的值代入代数式进行计算即可.解:∵关于x的方程3a﹣x=+3的解为2,∴3a﹣2=+3,解得a=2,∴原式=4﹣4+1=1.故答案为:1.【解析】根据题意得到两数互为相反数,利用相反数的定义列出方程,求出方程的解即可得到x 的值. 解:根据题意得:+5=0,去分母得:x ﹣1+10=0, 解得:x =﹣9. 故答案为:﹣9. 17.3【解析】因为a ,b 互为相反数,所以a +b =0,又c ,d 互为倒数,所以cd =1,所以方程2()3(1)20a b x cd x x ++--=即3(x -1)-2x =0,所以3x -2x -3=0,所以x =3. 18.(1+50%)x ·80%-x =28【解析】根据题意可得衣服的标价为:(1+50%)x 元,售价为:(1+50%)x ·80%,根据售价-进价=28列出一元一次方程. 19.12x (x ﹣1)=2×5 【解析】每支球队都需要与其他球队赛(x ﹣1)场,但2队之间只有1场比赛, 所以可列方程为:12x (x ﹣1)=2×5. 20.3【解析】设从乙队调x 人到甲队,则27+x =2(18-x ),解得:x =3. 21.(1)x =-2;(2)x =4.【解析】 (1)首先进行去括号,然后进行移项合并同类项,求出x 的值;(2)首先进行去分母,然后去括号,移项合并同类项,求出x 的值. 解:(1) 4x +3=2x -2+1 4x -2x =-2+1-3 2x =-4 解得:x =-2(2)2(x-1)-(x+2)=3(4-x) 2x-2-x-2=12-3xx+3x=12+44x=16解得:x=4.22.有;①;x=-3 5【解析】根据解方程的方法进行判定,可以发现在去括号的时候没有变号,而且常数项也没有乘.解:有,第①步6x-3(x-1)=4-2(x+2)6x-3x+3=4-2x-43x+3=-2x5x=-3解得:x=-3 523.李明上次所买书籍的原价为100元【解析】假设原价为x元,即可得出等式方程70%x+20=x﹣10,求出即可.解:设原价为x元,根据题意得:70%x+20=x﹣10,。
2024年新人教版七年级数学上册教学课件 第五章 5.3实际问题与一元一次方程(第4课时)
列 方 程
费 用 相 同
更 优 惠
如何比较两个代 数式的大小
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
上制作的,可以在Windows环境下独立运行,
集文字、符号、图形、图像、动画、声音于
一体,交互性强,信息量大,能多路刺激学
生的视觉、听觉等器官,使课堂教育更加直 样,也可能因讨厌一位老师而讨厌学习。一个被学生喜欢的老师,其教育效果总是超出一般教师。 无 论中学 生还 是小 学生, 他们 对自己 喜欢 的老 师都会 有一些 普遍 认同的 标准, 诸如 尊重和 理解学 生, 宽容、 不伤害 学 生自尊心,平等待人、说话办事公道 、有耐 心、不 轻易发 脾气等 。 教师 要放 下架子 ,把学 生放 在心上 。“蹲 下身 子和学 生说话 ,走下 讲台给 学生讲 课”;关 心学生 情感体 验,让 学生感 受 到被关怀的温暖;自觉接受学生的评价 ,努力 做学生 喜欢的 老师。 教 师要学 会宽 容, 宽容学 生的 错误和 过失 ,宽 容学生 一时没 有取 得很大 的进步 。苏 霍姆林 斯基说 过: 有时宽 容引起 的 道德震 动,比 惩罚 更强 烈。每 当想 起叶圣 陶先 生的 话:你 这糊涂 的先 生,在 你教鞭 下有 瓦特, 在你的 冷眼 里有牛 顿,在 你 的讥笑里有爱迪生。身为教师,就更 加感受 到自己 职责的 神圣和 一言一 行的重 要。 善 待每一 个学 生, 做学生 喜欢 的老师 ,师 生双 方才会 有愉快 的情 感体验 。一个 教师 ,只有 当他受 到学 生喜爱 时,才 能 真正实现自己的最大价值。 义务教育课程方案和课程标准(2022 年版) 简介 新课标 的全名 叫做 《义 务教育 课程 方案和 课程 标准 (2022 年版) 》, 文件包 括义务 教育 课程方 案和16 个课 程标准 (2022 年 版),不仅有语文数学等主要科目, 连劳动 、道德 这些, 也有非 常详细 的课程 标准。 现行义 务教育 课程 标准 ,是201 1年 制定的 ,离 现在已 经十 多年了 ;而 课程方 案最早 ,要 追溯到 2001年 ,已 经二十 多年没 更 新过了,很多内容,确实需要根据现 实情况 更新。 所以这 次新标 准的 实施 ,首先 是对 老课标 的一 次升 级完善 。另外 ,在 双减的 大背景 下颁 布,也 能体现 出, 国家对 未来教 育 改革方向的规划。 课程方 案课程 标准 是啥 ?课程 方案 是对某 一学 科课 程的总 体设计 ,或 者说, 是对教 学过 程的计 划安排 。简 单说, 每个年 级 上什么课,每周上几节,老师上课怎 么讲, 课程方 案就是 依据。 课程标 准是规 定某 一学 科的课 程性 质、课 程目 标、 内容目 标、实 施建 议的教 学指导 性文 件,也 就是说 ,它 规定了 ,老师 上 课都要讲什么内容。 课程方 案和课 程标 准, 就像是 一面 旗帜, 学校 里所 有具体 的课程 设计 ,都要 朝它无 限靠 近。所 以,这 份文 件的出 台,其 实 给学校教育定了一个总基调,决定了 我们孩 子成长 的走向 。 各门课 程基于 培养 目标 ,将党 的教 育方针 具体 化细 化为学 生核心 素养 发展要 求,明 确本 课程应 着力培 养的 正确价 值观、 必 备品格 和关键 能力 。进 一步优 化了 课程设 置, 九年 一体化 设计, 注重 幼小衔 接、小 学初 中衔接 ,独立 设置 劳动课 程。与 时 俱进, 更新课 程内 容, 改进课 程内 容组织 与呈 现形 式,注 重学科 内知 识关联 、学科 间关 联。结 合课程 内容 ,依据 核心素 养 发展水 平,提 出学 业质 量标准 ,引 导和帮 助教 师把 握教学 深度与 广度 。通过 增加学 业要 求、教 学提示 、评 价案例 等,增 强 了指导性。 教育部 将组织 宣传 解读 、培训 等工 作,指 导地 方和 学校细 化课程 实施 要求, 部署教 材修 订工作 ,启动 一批 课程改 革项目 , 推动新修订的义务教育课程有效落实 。
人教版数学七年级上学期3.4 实际问题与一元一次方程(原卷+解析版)
第三章一元一次方程3.4实际问题与一元一次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知甲数是18,甲数比乙数的13还少1,设乙数为x,则可列方程为A.3(x–1)=18 B.3x–1=18C.13x–1=18 D.13(x+1)=182.一件标价为300元的运动服,按九折销售仍可获利20元,设这件上衣的成本价为x元,根据题意,下面所列的方程.正确的是A.300×0.9–x=20 B.300×9–x=20C.300×0.9=x–20 D.300×9=x–203.某组女生占全组人数的13,再加上5名女生后就占全组人数的一半,设原来全组有x名同学,则可列方程为A.13x+5=12B.13x+5=12xC.13x+5=12(x+5) D.13x=12(x+5)4.实验中学七年级(2)班有学生56人,已知男生人数比女生人数的2倍少11人,求男生和女生各多少人.下面设未知数的方法,合适的是A.设总人数为x人B.设男生比女生多x人C.设男生人数是女生人数的x倍D.设女生人数为x人5.甲商品的进价是1400元,按标价1700元的9折出售;乙商品的进价是400元,按标价520元的8折出售,则A.甲商品获利多B.乙商品获利多C.甲,乙一样多D.无法比较二、填空题:请将答案填在题中横线上.6.一只签字笔进价0.8元,售价1元,销售这种笔的利润的百分比是__________.7.七(1)班学生开展义务植树活动,参加者是未参加者的3倍,若班里共有48人,则参加者有__________人,未参加者有__________人.8.某项工作,甲单独做需20h完成,乙单独做需12h完成,现在先由甲单独做4h,剩下的部分由甲、乙合做一段时间后,乙再单独做2h全部完成,则甲、乙合做的时间为__________h.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.一艘船从甲码头顺流而下到乙码头,用了2小时;逆流返回到甲码头时,用了2.5小时,已知水流速度是3千米/时,求船在静水中的平均速度.10.一个两位数,十位上的数字比个位上的数字大2,如果个位数字与十位数字交换,比原数小18,求这个两位数.可是儿子只活了他全部年龄的一半;儿子死后,他在极度痛苦中度过了4年,与世长辞了.”第三章一元一次方程3.4实际问题与一元一次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知甲数是18,甲数比乙数的13还少1,设乙数为x,则可列方程为A.3(x–1)=18 B.3x–1=18C.13x–1=18 D.13(x+1)=18【答案】C【解析】由题意可得,13x−1=18,故选C.2.一件标价为300元的运动服,按九折销售仍可获利20元,设这件上衣的成本价为x元,根据题意,下面所列的方程.正确的是A.300×0.9–x=20 B.300×9–x=20C.300×0.9=x–20 D.300×9=x–20【答案】A3.某组女生占全组人数的13,再加上5名女生后就占全组人数的一半,设原来全组有x名同学,则可列方程为A.13x+5=12B.13x+5=12xC.13x+5=12(x+5) D.13x=12(x+5)【答案】C【解析】设原来全组有x名同学,则可列方程为:13x+5=12(x+5).故选C.4.实验中学七年级(2)班有学生56人,已知男生人数比女生人数的2倍少11人,求男生和女生各多少人.下面设未知数的方法,合适的是A.设总人数为x人B.设男生比女生多x人C.设男生人数是女生人数的x倍D.设女生人数为x人【答案】D【解析】∵男生人数比女生人数的2倍少11人,∴设女生为x人更为合适,故选D.5.甲商品的进价是1400元,按标价1700元的9折出售;乙商品的进价是400元,按标价520元的8折出售,则A.甲商品获利多B.乙商品获利多C.甲,乙一样多D.无法比较【答案】A【解析】甲商品获利为:1700×90%–1400=130(元),乙商品获利为:520×80%–400=16(元),∴甲商品获利多,故选A.二、填空题:请将答案填在题中横线上.6.一只签字笔进价0.8元,售价1元,销售这种笔的利润的百分比是__________.【答案】25%【解析】设销售这种笔的利润的百分比是x.根据题意,得0.8×(1+x)=1,解得x=25%.故答案为:25%.学#@科网7.七(1)班学生开展义务植树活动,参加者是未参加者的3倍,若班里共有48人,则参加者有__________人,未参加者有__________人.【答案】36,128.某项工作,甲单独做需20h完成,乙单独做需12h完成,现在先由甲单独做4h,剩下的部分由甲、乙合做一段时间后,乙再单独做2h全部完成,则甲、乙合做的时间为__________h.【答案】19 4【解析】设甲、乙合做的时间为x小时,由题意得:1 20(4+x)+112(x+2)=1,解得:x=194,故答案为:194.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.一艘船从甲码头顺流而下到乙码头,用了2小时;逆流返回到甲码头时,用了2.5小时,已知水流速度是3千米/时,求船在静水中的平均速度.【答案】27千米/小时10.一个两位数,十位上的数字比个位上的数字大2,如果个位数字与十位数字交换,比原数小18,求这个两位数.【答案】42【解析】设原两位数的个位数字为x,则十位数字为(x+2),依题意有:10x+(x+2)=10(x+2)+x–18,整理,得11x+2=11x+2,即该等式恒成立,当x=1时,x+2=3,则原来的两位数是32,新两位数是23,32–23=9,不合题意,舍去;当x=2时,x+2=4,则原来的两位数是42,新两位数是24,42–24=18,符合题意;当x=3时,x+2=5,则原来的两位数是52,新两位数是25,52–25=27,不合题意,舍去;同理,当x=4、5、6、7、8、9时,均不合题意.综上所述,该两位数是42.11.希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他生命的16是幸福的童年;再活了他生命的1 12,两颊长起了细细的胡须;又度过了一生的17,他结婚了;再过5年,他有了儿子,感到很幸福;可是儿子只活了他全部年龄的一半;儿子死后,他在极度痛苦中度过了4年,与世长辞了.”【答案】丢番图的年龄为84岁。