2019年高考数学一轮复习理科:数列等比数列及其前n项和学案
等比数列及其前n项和(高三一轮复习)

数学 N 必备知识 自主学习 关键能力 互动探究
— 18 —
思维点睛►
(1)等比数列的通项公式及前n项和公式共涉及五个量a1,n,q,an,Sn,一般可 以“知三求二”,通过列方程(组)便可迎刃而解.
(2)等比数列的前n项和公式涉及对公比q的分类讨论,分为q=1时与q≠1时的情 况.
数学 N 必备知识 自主学习 关键能力 互动探究
— 15 —
解法二:设等比数列{an}的公比为q,易知q≠1.由题意可得aa12+ -aa25+ =a432=,168,
即a111--qq3=168, a1q1-q3=42,
a1=96, 解得q=12,
所以a6=a1q5=3,故选D.
数学 N 必备知识 自主学习 关键能力 互动探究
(2)设等比数列{an}的公比为q, 由题意得2(12a3)=3a1+2a2, 即a1q2=3a1+2a1q. 因为数列{an}的各项均为正数,所以a1>0,且q>0,故A、B正确; 由q2-2q-3=0,解得q=3或q=-1(舍), 所以aa32=q=3,aa46=q2=9,故C错误,D正确,故选ABD.
第六章 数列
第3讲 等比数列及其前n项和
数学 N 必备知识 自主学习 关键能力 互动探究 课标解读
— 2—
1.通过生活中的实例,理解等比数列的概念和通项公式的意义;2.探索并掌握等 比数列的前n项和公式,理解等比数列的通项公式与前n项和公式的关系;3.能在具 体的问题情境中,发现数列的等比关系,并解决相应的问题;4.体会等比数列与指 数函数的关系.
数学 N 必备知识 自主学习 关键能力 互动探究
(2)由(1)可知 an-3n=(-1)n, 所以 an=3n+(-1)n, 所以 Sn=311--33n+-11·-[1--1- 1n] =3n+1-2-1n+1-2.
(全国通用)2019届高考数学大一轮复习第六章数列6.3等比数列及其前n项和课件

5.等比数列的前n项和公式 等比数列{an}的公比为q(q≠0),其前n项和为Sn, 当q=1时,Sn=na1;
5
6
1 1 ,则公比q=______. 2 2.[P51例3]已知{an}是等比数列,a2=2,a5= 4 a5 1 1 3 解析 由题意知 q =a =8,∴q=2. 2
题组二 教材改编
1
2
3
4
Hale Waihona Puke 56解析答案
3.[P54A组T8]在9与243中间插入两个数,使它们同这两个数成等比数
27,81 列,则这两个数为________. 解析 设该数列的公比为q,由题意知, 243=9×q3,q3=27,∴q=3. ∴插入的两个数分别为9×3=27,27×3=81.
q≠0)
.
3.等比中项
如果在a与b中插入一个数G,使得a,G,b成等比数列,那么根据等比 G b 数列的定义, = , G2=ab ,G= ± ab,称G为a,b的等比中项. a G
4.等比数列的常用性质 (1)通项公式的推广:an=am· qn-m (n,m∈N*). al=am· an . (2)若{an}为等比数列,且k+l=m+n(k,l,m,n∈N*),则 ak·
1
2
3
4
5
6
解析
答案
题型分类
深度剖析
题型一
等比数列基本量的运算
自主演练
1 1.(2018· 开封质检)已知等比数列{an}满足 a1=4,a3a5=4(a4-1),则 a2 等于 A.2 1 B.1 C.2 2 由{an}为等比数列,得 a3a5=a4,
2019版高考数学大一轮复习第七章数列与数学归纳法第3节等比数列及其前n项和课件理

(3)相隔等距离的项组成的数列仍是等比数列,即ak,ak+m,ak+2m,…仍是等比数列, qm 公比为_______.
(4)当q≠-1,或q=-1且n为奇数时,Sn,S2n-Sn,S3n-S2n,…仍成等比数列,其公
qn 比为_________.
[常用结论与微点提醒] 1.等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组) 求关键量a1和q.
n-1 a q 1 (1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=__________;Байду номын сангаас
a1(1-qn) 1-q (2)等比数列的前 n 项和公式:当 q=1 时,Sn=na1;当 q≠1 时,Sn=___________
通项公式的推广:an=amqn-m.
a1-anq = . 1-q
A.1盏
解析
B.3盏
C.5盏
D.9盏
设塔的顶层的灯数为 a1, 七层塔的总灯数为 S7, 公比为 q, 则依题意 S7=381,
a1(1-27) 公比 q=2.∴ =381,解得 a1=3. 1-2
答案 B
4. 在 数 列 {an} 中 , a1 = 2 , an + 1 = 2an , Sn 为 {an} 的 前 n 项 和 . 若 Sn = 126 , 则 n = ________.
an+1 an q 数学语言表达式: =______(n≥2,q 为非零常数),或 a =q(n∈N*,q 为非零 an-1 n 常数). 等比中项 ,其中 G= (2)如果三个数 a,G,b 成等比数列,那么 G 叫做 a 与 b 的__________ ± ab ________.
2. 等比数列的通项公式及前n项和公式
2019高考数学一轮复习第6章数列第3讲等比数列及其前n项和课件文

【解析】 (1)因为 a1=3,a1+a3+a5=21, 所以 3+3q2+3q4=21. 所以 1+q2+q4=7. 解得 q2=2 或 q2=-3(舍去). 所以 a3+a5+a7=q2(a1+a3+a5)=2×21=42.
(2)由题意得 a1+a3+…=85,a2+a4+…=170, 所以数列{an}的公比 q=2, 由数列{an}的前 n 项和公式 Sn=a1(11--qqn),得 85+170= 11--22n,解得 n=8. 【答案】 (1)B (2)8
第六章 数 列
第3讲 等比数列及其前n项和
1.等比数列的定义 如果一个数列从第 2 项起,每一项与它的前一项的比等于同一 个非零常数,那么这个数列叫做等比数列,这个常数叫做等比 数列的__公__比__,公比通常用字母 q(q≠0)表示. aan-n1=_q_(n≥2,q 为非零常数),或aan+n1=q(n∈N*,q 为非零常 数)⇔{an}是等比数列.
则{an}的前 5 项和为( )
A.93
B.96
C.189
D.192
解析:选 A.设{an}的公比为 q,由 a3=12,a4=24 得aa11qq23= =1242,.
解得 a1=3,q=2,所以 S5=3(11--225)=93.
(必修 5 P53 练习 T3 改编)设{an}是由正数组成的等比数列, 公比为 q,则下列结论正确的是( ) A.{a2n}是公比为 q 的等比数列 B.{ an}是公比为 q 的等比数列 C.{a2n}是公比为 q2 的等比数列 D.{ an}是公比为 q2 的等比数列
+1)=1,整理得 2cn+1=cn,
故ccn+n 1=21(常数). 所以数列{cn}是一个首项 c1=a1-1=21-1=-12,公比为12的等
【2019年高考一轮课程】理科数学 全国通用版等比数列 教案

一、自我诊断 知己知彼1.已知等比数列{a n }为递增数列.若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =( ). A .2B.12C .2或12D .3【答案】A【解析】∵2(a n +a n +2)=5a n +1,∴2a n +2a n q 2=5a n q ,化简得,2q 2-5q +2=0,由题意知,q >1.∴q =2.2.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( ) A.(3n -1)2 B.12(9n -1) C.9n -1 D.14(3n -1)【答案】B【解析】∵a 1+a 2+…+a n =3n -1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列. 因此a 21+a 22+…+a 2n =4(1-9n)1-9=12(9n-1). 3.在正项等比数列{a n }中,S n 是其前n 项和.若a 1=1,a 2a 6=8,则S 8= ( ). A .8 B .15(2+1) C .15(2-1) D .15(1-2)【答案】B【解析】∵a 2a 6=a 24=8,∴a 21q 6=8,∴q =2,∴S 8=1-q 81-q=15(2+1).4.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A.8B.9C.10D.11【答案】C【解析】由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10,故选C.5.已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( )A .40B .60C .32D .50 【答案】 B【解析】由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,因此S 9-S 6=16,S 6=12,S 12-S 9=32,S 12=32+16+12=60.6.已知数列{a n }的前n 项和为S n ,满足S n =4a n -p ,其中p 为非零常数.(1)求证:数列{a n }为等比数列; (2)若a 2=43,求{a n }的通项公式.【答案】(1)略 (2) λ=-1.【解析】(1)证明:当n =1时,S 1=4a 1-p ,得a 1=p3≠0.当n ≥2时,a n =S n -S n -1=(4a n -p )-(4a n -1-p )=4a n -4a n -1, 得3a n =4a n -1,即a n a n -1=43,所以数列{a n }是首项为p 3,公比为43的等比数列.(2)由(1)知,数列{a n }的通项公式为a n =p 3×⎪⎭⎫ ⎝⎛34n -1,又a 2=43,可知p =3,于是a n =⎪⎭⎫ ⎝⎛34n -1.二、温故知新 夯实基础1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.3.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎭⎬⎫⎩⎨⎧n a 1,{a 2n },{a n ·b n },⎭⎬⎫⎩⎨⎧n n b a 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .三、典例剖析 思维拓展考点一 等比数列基本量的运算例1.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12 B .-2 C .2D.12【答案】 C【解析】由题意知q 3=a 5a 2=18,∴q =12.【易错点】解题过程中,要注意择适当的公式.【方法点拨】等比数列可以由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行.例2等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.【解析】:设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.【答案】:32【易错点】要注意选择适当的公式以及计算的准确性.【方法点拨】在等比数列{a n }中,首项a 1与公比q 是两个最基本的元素;有关等比数列的问题,均可化成关于a 1,q 的方程或方程组求解.例3.设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2.a 3+4构成等差数列,则a n =________.【解析】 在等比数列{a n }中,首项a 1与公比q 是两个最基本的元素;有关等比数列的问题,均可化成关于a 1,q 的方程或方程组求解. 由已知得:⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2.解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q .又S 3=7,可知2q +2+2q=7,即2q 2-5q +2=0,解得q 1=2,q 2=12.由题意得q >1,所以q =2,所以a 1=1.故数列{a n }的通项为a n =2n -1.【答案】 2n -1【易错点】本题需注意题干中给出了q >1. 【方法点拨】等比数列的基本运算方法(1)等比数列可以由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行.(2)对于等比数列问题,一般给出两个条件,就可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a 1,n ,q ,a n ,S n 的“知三求二”问题.考点二 等比数列的判定与证明例1.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式. 【答案】(1)略 (2) a n =(3n -1)·2n -2.【解析】 (1)证明 由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+n , ② 由①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2).∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列. (2)解 由(1)知b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34,故{a n 2n }是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)·34=3n -14, 故a n =(3n -1)·2n -2.【易错点】注意讨论n 的范围.【方法点拨】证明新构造数列的一般方法是按照题目中给出的模型进行构造.例2.已知数列{a n }中,a 1=1,a n ·a n +1=)21(n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .【答案】(1)证明过程略,b n =32n (2) T 2n =3-32n .【解析】 (1)∵a n ·a n +1=)21(n ,∴a n +1·a n +2=)21(n +1,∴a n +2a n =12,即a n +2=12a n .∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,∵a 1=1,a 1·a 2=12,∴a 2=12⇒b 1=a 1+a 2=32.∴{b n }是首项为32,公比为12的等比数列.∴b n =32×)21(n -1=32n .(2)由(1)可知,a n +2=12a n ,∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=211)21(121211)21(1-⎥⎦⎤⎢⎣⎡-+--n n =3-32n .【易错点】本题第二问应注意进行分组求和.【方法点拨】证明数列是否为等比数列一般常用定义法证明.例3.已知数列{a n }的前n 项和为S n ,在数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n=n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. 【答案】(1)略 (2) b n =)21(n . 【解析】(1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1,②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12. ∵首项c 1=a 1-1,又a 1+a 1=1. ∴a 1=12,∴c 1=-12,公比q =12.∴{c n }是以-12为首项,公比为12的等比数列.(2)解 由(1)可知c n =)21(-·)21(n -1=-)21(n , ∴a n =c n +1=1-)21(n .∴当n ≥2时,b n =a n -a n -1=1-)21(n -⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--1211n=)21(n -1-)21(n =)21(n .又b 1=a 1=12代入上式也符合,∴b n =)21(n .【易错点】利用递推关系时要注意对n =1时的情况进行验证.【方法点拨】若a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列考点三 等比数列的性质及前n 项和例1.设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6等于( ) A .31 B .32 C .63 D .64【答案】 C【解析】 根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C.【易错点】没有注意到S 2,S 4-S 2,S 6-S 4成等比数列这个性质.【方法点拨】若公比不为1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .例2. 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________. 【答案】 50【解析】 因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.【易错点】没有注意到a 10a 11+a 9a 12=2a 10a 11=2e 5,从而无从下手.【方法点拨】若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n . 例3.设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________.【答案】 34【解析】 方法一 ∵S 6∶S 3=1∶2,∴{a n }的公比q ≠1.由()()qq a q q a --÷--11113161=12,得q 3=-12, ∴S 9S 3=1-q 91-q 3=34. 方法二 ∵{a n }是等比数列,且S 6S 3=12,∴公比q ≠-1,∴S 3,S 6-S 3,S 9-S 6也成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.【易错点】在等比数列的基本运算问题中,一般是列出a 1,q 满足的方程组求解,但有时运算量较大,如果可利用等比数列的性质,便可减少运算量,提高解题的速度,要注意挖掘已知和隐含的条件.【方法点拨】由于等比数列中,无论是通项公式还是前n 项和公式,均与q 的若干次幂有关,所以在解决等比数列问题时,经常出现高次方程,为达到降幂的目的,在解方程组时经常利用两式相除,达到整体消元的目的.四、举一反三 成果巩固考点一 等比数列基本量的运算1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( ) A .21 B .42 C .63 D .84 【答案】 B【解析】 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21,得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B.2.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A.152 B.314 C.334 D.172 【答案】 B【解析】 显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1-q 31-q =7,解得⎩⎪⎨⎪⎧ a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9q =-13(舍去),∴S 5=a 1-q 51-q=-1251-12=314. 3.设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 【答案】 3n -1【解析】 由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3,可得a 3=3a 2,所以公比q =3, 故等比数列通项a n =a 1q n -1=3n -1.4.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( ) A.32 B.23 C .-23 D.23或-23【答案】 C【解析】 由⎩⎪⎨⎪⎧a 1q =18,a 1q 3=8解得⎩⎪⎨⎪⎧a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23. 又a 1<0,因此q =-23. 考点二 等比数列的判定与证明1.数列{a n }的前n 项和为S n ,若a n +S n =n ,c n =a n -1.求证:数列{c n }是等比数列. 【答案】略【解析】当n =1时,a 1=S 1. 由a n +S n =n , ①得a 1+S 1=1,即2a 1=1,解得a 1=12. 又a n +1+S n +1=n +1,②②-①得a n +1-a n +(S n +1-S n )=1, 即2a n +1-a n =1,③因为c n =a n -1, 所以a n =c n +1,a n +1=c n +1+1, 代入③式,得2(c n +1+1)-(c n +1)=1, 整理得2c n +1=c n , 故c n +1c n =12(常数).所以数列{c n }是一个首项c 1=a 1-1=-12,公比为12的等比数列.2.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:{a n +12}是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.【答案】(1)略 (2) 略证明 (1)由a n +1=3a n +1,得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n )<32, 所以1a 1+1a 2+…+1a n <32.3.数列{a n }的前n 项和记为S n ,a 1=t ,点(S n ,a n +1)在直线y =3x +1上,n ∈N *.(1)当实数t 为何值时,数列{a n }是等比数列.(2)在(1)的结论下,设b n =log 4a n +1,c n =a n +b n ,T n 是数列{c n }的前n 项和,求T n .【答案】(1)t =1(2) T n ==4n -13+2)1(+n n .【解析】 (1)∵点(S n ,a n +1)在直线y =3x +1上, ∴a n +1=3S n +1,a n =3S n -1+1(n >1,且n ∈N *).∴a n +1-a n =3(S n -S n -1)=3a n ,∴a n +1=4a n (n >1,n ∈N *),a 2=3S 1+1=3a 1+1=3t +1, ∴当t =1时,a 2=4a 1,数列{a n }是等比数列.(2)在(1)的结论下,a n +1=4a n ,a n +1=4n ,b n =log 4a n +1=n ,c n =a n +b n =4n -1+n ,∴T n =c 1+c 2+…+c n =(40+1)+(41+2)+…+(4n -1+n )=(1+4+42+…+4n -1)+(1+2+3+…+n )=4n -13+2)1(+n n . 考点三 等比数列的性质及前n 项和1.已知在等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于( ) A .4 B .3 C .2 D .1 【答案】 C【解析】 前4项和S 4=lg a 1+lg a 2+lg a 3+lg a 4=lg(a 1a 2a 3a 4),又∵等比数列{a n }中,a 2a 3=a 1a 4=10, ∴S 4=lg 100=2.2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18 C.578 D.558 【答案】 A【解析】 因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列, 即8,-1,S 9-S 6成等比数列, 所以有8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18.3.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n =( ) A .80 B .30 C .26 D .16【答案】B【解析】由等比数列的性质可知,S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n 仍为等比数列,故2,S 2n -2,14-S 2n 成等比数列,则有(S 2n -2)2=2(14-S 2n ), ∴S 2n =6或S 2n =-4,由于{a n }的各项均为正数,故S 2n =6,则S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,即2,4,8,16为等比数列, ∴S 4n -S 3n =16,∴S 4n =30,故选B.4.已知等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=________. 【答案】30【解析】由题意得,2(a 1+a 2+a 3)=8a 1+3a 2,所以2a 3-a 2-6a 1=0. 设{a n }的公比为q (q >0),则2a 1q 2-a 1q -6a 1=0,即2q 2-q -6=0, 解得q =2或q =-32(舍去).因为a 4=16,所以a 1=2,则S 4=2(1-24)1-2=30.5.已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.【答案】(1)a n =2n -1. (2) T 2n 2n2.【解析】(1)设数列{a n }的公比为q .由已知,有1a 1-1a 1q =2a 1q 2,解得q =2,或q =-1.又由S 6=a 1·1-q 61-q =63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1,所以a n =2n -1.(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n )=n -12,即{b n }是首项为12,公差为1的等差数列. 设数列{(-1)n b 2n }的前n 项和为T n ,则 T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2nb 1+b 2n2=2n 2.五、分层训练 能力进阶【基础达标】1.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.【答案】 -11【解析】 设等比数列{a n }的公比为q ,∵8a 2+a 5=0,∴8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2, ∴S 5S2=a 1-q 51-q ·1-q a 1-q 2 =1-q 51-q 2=1--51-4=-11.2.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7等于( ) A .4 B .6 C .8 D .8-4 2【答案】 C【解析】 在等比数列中,a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8.3.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 【答案】12n【解析】 ∵a n +S n =1,① ∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2),∴数列{a n }是首项为12,公比为12的等比数列,则a n =12×(12)n -1=12n .4.等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n (n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1=________. 【答案】2n 2-n【解析】由等比数列的性质,得a 3·a 2n -3=a 2n =22n ,从而得a n =2n,∴log 2a 1+log 2a 2+…+log 2a 2n -1=log 2[(a 1a 2n -1)·(a 2a 2n -2)·…·(a n -1a n +1)a n ]=log 22n (2n -1)=n (2n-1)=2n 2-n .5.在各项均为正数的等比数列{a n }中,已知a 2a 4=16,a 6=32,记b n =a n +a n +1,则数列{b n }的前5项和S 5为________. 【答案】93.【解析】设数列{a n }的公比为q ,由a 23=a 2a 4=16得,a 3=4,即a 1q 2=4,又a 6=a 1q 5=32,解得a 1=1,q =2,所以a n =a 1q n -1=2n -1,b n =a n +a n +1=2n -1+2n =3·2n -1,所以数列{b n }是首项为3,公比为2的等比数列,所以S 5=-251-2=93. 【能力提升】1.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14 D .15【答案】 C【解析】 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14,故选C.2.数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )A .1B .-1 C.12D .2【答案】D【解析】由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎪⎭⎫⎝⎛-λ2n a .由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.3.设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于( ) A.150 B.-200 C.150或-200 D.400或-50【答案】 A【解析】 依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20).即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30, 又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40, 故S 40-S 30=80. S 40=150.故选A.4.已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n <t ,则实数t 的取值范围为( )A. ⎪⎭⎫⎝⎛∞+,31B. ⎪⎭⎫⎢⎣⎡∞+,31C. ⎪⎭⎫⎝⎛∞+,32D.⎪⎭⎫⎢⎣⎡∞+,32【答案】 D【解析】依题意得,当n ≥2时,a n =a 1a 2a 3…a na 1a 2a 3…a n -1=2n 2n -2=2n2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1,数列⎭⎬⎫⎩⎨⎧na1是以12为首项,14为公比的等比数列,等比数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和等于41141121-⎪⎭⎫⎝⎛-n =23⎪⎭⎫ ⎝⎛-n 411<23,因此实数t 的取值范围是⎪⎭⎫⎢⎣⎡∞+,32. 5.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式;(3)设3n b n =n (3n -a n ),求|b 1|+|b 2|+…+|b n |.【答案】(1)略 (2) a n =2×(-2)n -1+3n .(3)T n =6-2(n +3)⎪⎭⎫⎝⎛32n .【解析】:(1)证明:∵a n +1=a n +6a n -1(n ≥2).∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2).∵a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2).∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n .则a n +1=-2a n +5×3n ,∴a n +1-3n +1=-2(a n -3n ).又∵a 1-3=2,∴a n -3n ≠0.∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1,即a n =2×(-2)n -1+3n .(3)由(2)及3n b n =n (3n -a n )可得, 3n b n =-n (a n -3n )=-n [2×(-2)n -1]=n (-2)n , ∴b n =n ⎪⎭⎫ ⎝⎛-32n ,∴|b n|=n ⎪⎭⎫ ⎝⎛32n. 设T n =|b 1|+|b 2|+…+|b n |,则T n =23+2×⎪⎭⎫ ⎝⎛322+…+n ⎪⎭⎫⎝⎛32n ,①①×23,得23T n =⎪⎭⎫ ⎝⎛322+2×⎪⎭⎫ ⎝⎛323+…+(n -1)⎪⎭⎫ ⎝⎛32n +n ⎪⎭⎫ ⎝⎛32n +1,②①-②,得13T n =23+⎪⎭⎫ ⎝⎛322+…+⎪⎭⎫ ⎝⎛32n -n ⎪⎭⎫ ⎝⎛32n +1=2-3×⎪⎭⎫ ⎝⎛32n +1-n ⎪⎭⎫ ⎝⎛32+1=2-(n +3)⎪⎭⎫ ⎝⎛32n +1∴T n =6-2(n +3)⎪⎭⎫ ⎝⎛32n。
2019年高考数学一轮复习: 第5章 数列 第2节 等差数列及其前n项和学案 理 北师大版

第二节 等差数列及其前n 项和[考纲传真] (教师用书独具)1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.(对应学生用书第82页)[基础知识填充]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与前一项的差都等于同一个常数,那么这个数列就叫作等差数列.用符号表示为a n +1-a n =d (n ∈N +,d 为常数). (2)等差中项:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 叫作a 与b 的等差中项,即A =a +b2.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d ,a n =a m +(n -m )d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N +).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N +)是公差为md 的等差数列.4.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .5.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. [知识拓展] {a n }为等差数列,S n 是{a n }前n 项和(1)若a n =m ,a m =n ,则a m +n =0, (2)若S m =n ,S n =m ,则S m +n =-(m +n ), (3)若S m =S k (m ≠k ),则S m +k =0.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N +,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (5)等差数列的前n 项和公式是常数项为0的二次函数.( ) [答案] (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=0,则公差d 等于( )A .-1B .1C .2D .-2D [依题意得S 3=3a 2=6,即a 2=2,故d =a 3-a 2=-2,故选D .] 3.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( )A .-1B .0C .1D .6B [由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,选B .]4.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11A [a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5(a 1+a 5)2=5a 3=5.]5.(教材改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________.180 [由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.](对应学生用书第82页)(1)(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4D .8(2)设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________.【导学号:79140171】(1)C (2)-72 [(1)设{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,解得d =4.故选C .(2)设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.]方程思想:等差数列的基本量为首项n 项和公式列方程组求解,等差数列中包含整体思想:当所给条件只有一个时,可将已知和所求都用联系,整体代换即可求解.利用性质:运用等差数列性质可以化繁为简、优化解题过程[跟踪训练n n 11a 4=-12,若a m =30,则m =( )A .9B .10C .11D .15(2)《张邱建算经》卷上第22题为:今有女善织,日益功疾(注:从第2天起每天比前一天多织相同量的布),第1天织5尺布,现在一月(按30天计),共织390尺布,则第2天织布的尺数为( ) A .16129B .16131C .8115D .8015(1)B(2)A[(1)设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.(2)由条件知该女子每天织布的尺数构成一个等差数列{a n },且a 1=5,S 30=390,设公差为d ,则30×5+30×292×d =390,解得d =1629,则a 2=a 1+d =16129,故选A .]n n 23(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. [解] (1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n ,故S n +1,S n ,S n +2成等差数列. 定义法:d 是常数⇔{等差中项法:=a n +a 2n ∈N +⇔通项公式:qp ,为常数⇔{前An 2+BnA ,为常数⇔{[跟踪训练] (1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=a n +a n +2(n ∈N +),则该数列的通项为( ) A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n(2)已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N +),数列{b n }满足b n =1a n -1(n ∈N+).①求证:数列{b n }是等差数列. ②求数列{a n }中的通项公式a n . (1)A [由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n=n ,即a n =1n.](2)①证明:因为a n =2-1a n -1(n ≥2,n ∈N +),b n =1a n -1. 所以n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.又b 1=1a 1-1=-52, 所以数列{b n }是以-52为首项,1为公差的等差数列.②由(1)知,b n =n -72,则a n =1+1b n =1+22n -7.(1)(2018·东北三省三校二联)等差数列{a n }中,a 1+a 3+a 5=39,a 5+a 7+a 9=27,则数列{a n }的前9项的和S 9等于( ) A .66 B .99 C .144D .297(2)在等差数列{a n }中,已知a 1=10,前n 项和为S n ,若S 9=S 12,则S n 取得最大值时,n =________,S n 的最大值为________.【导学号:79140172】(1)B (2)10或11 55 [(1)根据等差数列的性质知a 1+a 3+a 5=3a 3=39,可得a 3=13.由a 5+a 7+a 9=3a 7=27,可得a 7=9,故S 9=9(a 1+a 9)2=9(a 3+a 7)2=99,故选B .(2)法一:因为a 1=10,S 9=S 12, 所以9×10+9×82d =12×10+12×112d ,所以d =-1. 所以a n =-n +11.所以a 11=0,即当n ≤10时,a n >0, 当n ≥12时,a n <0,所以当n =10或11时,S n 取得最大值,且最大值为S 10=S 11=10×10+10×92×(-1)=55.法二:同法一求得d =-1. 所以S n =10n +n (n -1)2·(-1)=-12n 2+212n=-12⎝ ⎛⎭⎪⎫n -2122+4418.因为n ∈N +,所以当n =10或11时,S n 有最大值,且最大值为S 10=S 11=55. 法三:同法一求得d =-1. 又由S 9=S 12得a 10+a 11+a 12=0. 所以3a 11=0,即a 11=0.所以当n =10或11时,S n 有最大值. 且最大值为S 10=S 11=55.] 项的性质:在等差数列=m -d ⇔m ≠,其几何意义是点n ,,m ,m 所在直线的斜率等于等差数列的公差和的性质:在等差数列{为其前n 项和,则①S 2n =n a 1+a 2n =…=n a n +②S 2n -1=n -a n .求等差数列前n 项和最值的两种方法函数法:利用等差数列前次函数最值的方法求解邻项变号法①当a 1>0[跟踪训练] (1)设S n 是等差数列{a n }的前n 项和,若6a 5=11,则11S 9=( )A .1B .-1C .2D .12(2)设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. (1)A (2)200 [S 11S 9=11(a 1+a 11)29(a 1+a 9)2=11a 69a 5=119×911=1.(2)依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.]。
2019版高考理科数学一轮复习课件:第6章(3)等比数列及其前n项和
理科数学 第六章:数列
理科数学 第六章:数列
理科数学 第六章:数列
拓展变式1 已知数列{an}的前n项和为Sn,且Sn=2an-3n(n∈N*).
(1)求a1,a2,a3的值;
(2)是否存在常数λ,使得{an+λ}为等比数列?若存在,求出λ的值和通项公式an,若
不存在,请说明理由.
解析 (1)当n=1时,S1=a1=2a1-3,解得a1=3,
考点3 等比数列的性质
理科数学 第六章:数列
理科数学 第六章:数列
理科数学 第六章:数列
理科数学 第六章:数列
考法1 等比数列的判定与证明
B考法帮·题型全突破
考法2 等比数列的基本运算 考法3 等比数列的性质的应用
考法1 等比数列的判定与证明
理科数学 第六章:数列
理科数学 第六章:数列
理科数学 第六章:数列
理科数学 第六章:数列
示例3 A.31
(1)等比数列{an}的前n项和为Sn,若an>0,q>1,a3+a5=20,a2a6=64,则S5= B.36 C.42 D.48
(2)在等比数列{an}中,若公比q=4,且前3项之和等于21,则该数列的通项公式 an= . 思路分析 (1)结合已知条件,由根与系数的关系,得a5,a3的值,从而求得q,a1,代 入等比数列前n项和公式即可. (2)利用通项法或对称设元法设出等比数列的项求解,注意an=amqn-m的应用. .
理科数学 第六章:数列
理科数学 第六章:数列
理科数学 第六章:数列
突破攻略 在应用相应性质解题时,要注意性质成立的前提条件,有时需要对性质进 行适当变形.此外,解题时注意设而不求思想的运用.
2019届高考数学一轮复习第五章数列第3讲等比数列及其前n项和课件文
等比数列的判定方法
(1)定义法:若aan+n 1=q(q 为非零常数,n∈N*)或aan-n 1=q(q 为 非零常数且 n≥2,n∈N*),则{an}是等比数列. (2)等比中项法:若数列{an}中,an≠0 且 a2n+1=an·an+2(n∈N*), 则数列{an}是等比数列. (3)通项公式法:若数列通项公式可写成 an=c·qn(c,q 均是不 为 0 的常数,n∈N*),则{an}是等比数列.
na,q=1, 前 n 项和 Sn=__a_(__11_--__qq_n_)__,__q_≠__1_______________.
[解析] 当 q=1 时,Sn=na, 当 q≠1 时,Sn=a(11--qqn).
3.(2018·唐山模拟)已知等比数列{an}的前 n 项和为 Sn,且
a1+a3=52,a2+a4=54,则Sann=__2_n_-__1__.
3.等比中项 若 G2=a·b(ab≠0),那么 G 叫做 a 与 b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:an=am·qn-m(n,m∈N*). (2)若{an}为等比数列,且 m+n=p+q(m,n,p,q∈N*),则
am·an=___a_p_·a__q ___.
(3)若{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),a1n, {a2n},{an·bn},abnn仍是等比数列.
(4)等比数列{an}的前 n 项和为 Sn,则 Sn,S2n-Sn,S3n-S2n 仍成等比数列,其公比为 qn(当{an}的公比 q=-1 时,n 不取 偶数).
5.等比数列的前 n 项和公式
等比数列{an}的公比为 q(q≠0),其前 n 项和为 Sn, 当 q=1 时,Sn=na1; 当 q≠1 时,Sn=a1(11--qqn)=__a_11_--__aqn_q___.
(浙江版)2019年高考数学一轮复习(讲+练+测): 专题6.3 等比数列及其前n项和(测)
第03节 等比数列及其前n 项和一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.) 1.【2018届安徽省合肥一中、马鞍山二中等六校教育研究会高三上第一次联考】已知等比数列{}n a 满足213562,4a a a a ==,则3a 的值为( )A. 1B. 2C. 14D. 12【答案】A2.已知等比数列{}n a 的前n 项和为n S .若321510,9S a a a =+=,则1a =( ) A .13-B .13C .19-D .19【答案】D【解析】由已知可得⎪⎩⎪⎨⎧==+91041211q a q a a ,解之得⎪⎩⎪⎨⎧==3911q a ,应选D 。
3. 【2017届山东省济宁市高三3月模拟考试】设a R ∈,“1, a , 16为等比数列”是“4a =”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B【解析】由题意得, 1, a , 16为等比数列21614a a ⇒=⨯⇒=±,因此4a =⇒ 1, a , 16为等比数列,所以“1, a , 16为等比数列”是“4a =”的必要不充分条件,故选B.4. 【原创题】设等比数列{}n a 的前n 项和为n S ,满足0,1n a q >>,且3520a a +=,2664a a ⋅=,则5S =( )A .31B .36C .42D .48 【答案】A【解析】由已知得,3564a a ⋅=,又3520a a +=,则354,16a a ==,故24q =,2q =,11a =,所以55123112S -==-.5. 【改编题】函数y =...成为公比的数是( )A .21B .1 D .33 【答案】A6.【2018届广西钦州市高三上第一次检测】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为( )(结果保留一位小数.参考数据:,)( )A. 1.3日B. 1.5日C. 2.6日D. 2.8日 【答案】C【解析】设蒲(水生植物名)的长度组成等比数列{a n },其a 1=3,公比为,其前n 项和为A n .莞(植物名)的长度组成等比数列{b n },其b 1=1,公比为2,其前n 项和为B n .则A ,B n =,由题意可得:,化为:2n +=7,解得2n =6,2n =1(舍去). ∴n==1+=≈2.6.∴估计2.6日蒲、莞长度相等,故答案为:2.6.7. 【2017届浙江台州中学高三10月月考】等比数列{}n a 中,已知对任意正整数n ,12321n n a a a a +++⋅⋅⋅+=-,则2222123na a a a +++⋅⋅⋅+等于( )A.2(21)n -B.1(21)3n- C.1(41)3n- D.41n - 【答案】C.8.【2018届河北省衡水中学高三上学期二调】设正项等比数列{}n a 的前n 项和为n S ,且11n na a +<,若3520a a +=, 3564a a =,则4S =( )A. 63或120B. 256C. 120D. 63 【答案】C 【解析】由题意得353520{64a a a a +==,解得3516{ 4a a ==或354{ 16a a ==.又11n naa +< ,所以数列{}n a 为递减数列,故3516{4a a ==.设等比数列{}n a 的公比为q ,则25314a q a ==,因为数列为正项数列,故12q =,从而164a =,所以4416412120112S ⎡⎤⎛⎫⨯-⎢⎥⎪⎝⎭⎢⎥⎣⎦==-.选C. 9.设等比数列}{n a 的前n 项和为n S ,若15m S -=,-11m S =,121m S +=,则=m ( ) A.3 B.4C.5D. 6【答案】C【解析】由已知得,116m m m S S a --==-,1132m m m S S a ++-==,故公比2q =-,又11mm a aq S q-=-11=-,故11a =-,又1116m m a a q-=⋅=-,代入可求得5m =.10.【2017届湖北武汉市蔡甸区汉阳一中高三第三次模拟】已知121,,,9a a --成等差数列, 1239,,,,1b b b --成等比数列,则()221b a a -的值为 A. 8± B. 8- C. 8 D. 98± 【答案】C11.【2018届河南省洛阳市高三上尖子生第一次联考】在等比数列{}n a 中, 2a , 16a 是方程2620x x ++=的根,则2169a a a 的值为( )A.B.【答案】B【解析】由2a , 16a 是方程2620x x ++=的根,可得: 21621662a a a a +=-⨯=,,显然两根同为负值,可知各项均为负值;21699a a a a ===故选:B.12.【2017年福建省三明市5月质量检查】已知数列的前项和为,且,,则( ) A. B.C.D.【答案】A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【2017届浙江省丽水市高三下联考】已知数列{}n a 是公比为q 的单调递增的等比数列,且149a a +=,238a a =, 1a =__________; q =_________.【答案】 1 2【解析】311142322311199,8{ 8a a q a a a a a qa q a q +=+==∴== ,,且101a q >>,, 解得a 1=1,q=2.14.【2017届浙江省ZDB 联盟高三一模】已知{}n a 是等比数列,且0n a >, 243546225a a a a a a ++=,则35a a +=__________, 4a 的最大值为__________.【答案】 552【解析】243546225a a a a a a ++= ()2223355353522525,05n a a a a a a a a a ⇒++=⇒+=>∴+=22354354255242a a a a a a +⎛⎫∴=≤=⇒≤ ⎪⎝⎭,即4a 的最大值为52.15.【2017届浙江省台州市高三上期末】已知公差不为的等差数列,若且成等比数列,则__________._________.【答案】 1,.16.已知{}n a 满足, +⋅+⋅+=232144a a a S n 14-⋅n n a 类比课本中推导等比数列前项和公式的方法,可求得=-n n n a S 45___________. 【答案】n .【解析】因为++⋅+⋅+= 232144a a a S n 14-⋅n n a , 所以++⋅+⋅+= 332214444a a a S n 114--⋅n n a n n a 4⋅+,两式相加可得()()++++++= 322211445a a a a a S n ()n n n a a +--114n n a 4⋅+,所以n a S nn n n =+++=-11145. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.【2017届浙江省丽水市高三下测试】已知数列{}n a 的相邻两项1,n n a a +是关于x 的方程()2*20n n x x b n N -+=∈的两实根,且11a =.(1)求234,,a a a 的值;(2)求证:数列123n n a ⎧⎫-⨯⎨⎬⎩⎭是等比数列,并求数列{}n a 的通项公式. 【答案】(1)21a =, 33a =, 45a = (2)()1213nn n a ⎡⎤=--⎣⎦【解析】试题分析:(1)由题中所给的递推关系可得21a =, 33a =, 45a =. (2)由题意可得数列123n n a ⎧⎫-⨯⎨⎬⎩⎭是首项为13,公比为-1的等比数列.则()1213nn n a ⎡⎤=--⎣⎦.(2)∵11111122223331111222333n n n n n n n n nnn n n a a a a a a +++⎛⎫--⨯-⨯--⨯ ⎪⎝⎭===--⨯-⨯-⨯,故数列123n n a ⎧⎫-⨯⎨⎬⎩⎭是首项为12133a -=,公比为-1的等比数列. 所以()1112133n nn a --⨯=⨯-,即()1213nn n a ⎡⎤=--⎣⎦.18.【改编题】已知等比数列{n a }的公比为q ,且满足1n n a a +<,1a +2a +3a =913,1a 2a 3a =271.(1)求数列{n a }的通项公式;(2)记数列{n a n ⋅-)12(}的前n 项和为n T ,求.n T【答案】(1)n a =131-n (n *N ∈);(2)n T =3-131-+n n . 【解析】(1)由1a 2a 3a =271,及等比数列性质得32a =271,即2a =31,由1a +2a +3a =913得1a +3a =910由⎪⎪⎩⎪⎪⎨⎧=+=91031312a a a 得⎪⎪⎩⎪⎪⎨⎧=+=910312111q a a q a 所以31012=+q q ,即231030q q +=-解得q =3,或q =31由1n n a a +<知,{n a }是递减数列,故q =3舍去,q =31,又由2a =31,得1a =1, 故数列{n a }的通项公式为n a =131-n (n *N ∈) ………………6分(2)由(1)知n a n ⋅-)12(=1312--n n ,所以n T =1+33+235+⋯+1312--n n ①31n T =31+233+335+…+1332--n n +n n 312- ② ①-② 得:32n T =1+32+232+332+⋯+132-n -nn 312- =12+(31+231+331+⋯+131-n )-nn 312- =12+311)311(311--⋅-n -n n 312-=2-131-n -n n 312-,所以nT =3-131-+n n . 19.【2017全国卷2】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .【答案】(1)12n n b -=.(2)6-或21.(2)由(1)及已知得2122121d q q q -++=⎧⎨++=⎩,解得41q d =⎧⎨=-⎩或58q d =-⎧⎨=⎩. 所以313236S a d⨯=+=-或3132321S a d ⨯=+=. 20.已知数列{}n a 的前n 项和为n S ,10a =,1231n n a a a a n a ++++++= ,*n ∈N . (Ⅰ) 求证:数列{1}n a +是等比数列;(Ⅱ) 设数列{}n b 的前n 项和为n T ,11b =,点1(,)n n T T +在直线对于*n ∈N 恒成立,求实数m 的最大值.【答案】(Ⅰ)详见解析;【解析】(Ⅱ)由(Ⅰ)得121n n a -=-,因为点1(,)n n T T +在直线因为11b =满足该式,所以n b n =21.【2017届安徽省亳州市二中高三下检测】已知各项均不相等的等差数列{}n a 满足11a =,且125,,a a a 成等比数列.(Ⅰ)求{}n a 的通项公式; (Ⅱ)若()()*111nn n n n n a a b n N a a +++=-∈,求数列{}n b 的前n 项和n S .【答案】(Ⅰ)21n a n =-;(Ⅱ)当n 为偶数时, 221n n S n =-+.当n 为奇数时, 2221n n S n +=-+.(Ⅱ)由21n a n =-,可得()()()()()1141111121212121nn n n n n n n a a n b a a n n n n +++⎛⎫=-=-=-+ ⎪-+-+⎝⎭,当n 为偶数时,111111112113355721212121n n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=--+++--+++=-+=- ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭. 当n 为奇数时, 1n +为偶数,于是1111111122113355721212121n n S n n n n +⎛⎫⎛⎫⎛⎫⎛⎫=--+++--+-+=--=- ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭22.设数列{}n x 的前n 项和为n S ,若存在非零常数p ,使对任意n *∈N 都有2n nS p S =成立,则称数列{}n x 为“和比数列”.(1)若数列{}n a 是首项为2,公比为4的等比数列,判断数列{}2log n a 是否为“和比数列”;(2)设数列{}n b 是首项为2,且各项互不相等的等差数列,若数列{}n b 是“和比数列”,求数列{}n b 的 通项公式.【答案】(1)是,证明见解析;(2)()24142n b n n =+-=-试题解析:(1)由已知,121242n n n a --=⋅=,则2log 21n a n =-.设数列{}2log n a 的前n 项和为n S ,则()21212n n S n n +-=⋅=,()22224n S n n ==. 所以24n nS S =,故数列{}2log n a 是“和比数列”. (2)设数列{}n b 的公差为d (0d ≠),前n 项和为n T ,则()122n n n n d -T =+, ()222142n n n n d -T =+,所以()()()()222148*********n n n n n d n d n n n d n d -++-T ==-T +-+ 因为{}n b 是“和比数列”,则存在非零常数p ,使()()822141n d p n d+-=+-恒成立.即()()822141n d p n d +-=+-⎡⎤⎣⎦,即()()()4240p dn p d -+--=恒成立.所以()()()40240p d p d -=⎧⎪⎨--=⎪⎩因为0d ≠,则4p =,4d = 所以数列{}n b 的通项公式是()24142n b n n =+-=-。
高考数学一轮复习 第六章 数列 第3讲 等比数列及其前n项和配套课时作业 理(含解析)新人教A版-新
第3讲 等比数列及其前n 项和配套课时作业1.(2019·某某某某模拟)已知等比数列{a n }中,a 2=2,a 6=8,则a 3a 4a 5=( ) A .±64 B .64 C .32 D .16答案 B解析 因为a 2=2,a 6=8,所以由等比数列的性质可知a 2·a 6=a 24=16,而a 2,a 4,a 6同号,所以a 4=4,所以a 3a 4a 5=a 34=64.故选B.2.(2019·某某调研)设等比数列{a n }的前n 项和为S n ,若a 1=3,a 4=24,则S 6=( ) A .93 B .189 C .99 D .195答案 B解析 ∵a 4=a 1q 3=3q 3=24,∴q =2,∴S 6=a 11-q 61-q=189.故选B.3.已知正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7=( ) A.56 B.65 C.23 D.32答案 D解析 由等比数列性质可知a 2a 8=a 4a 6=6,故a 4,a 6分别是方程x 2-5x +6=0的两根.因为a n +1<a n ,所以a 4=3,a 6=2,故a 5a 7=a 4a 6=32.故选D.4.(2019·某某模拟)设a 1=2,数列{1+2a n }是公比为2的等比数列,则a 6=( ) A .31.5 B .160 C .79.5 D .159.5答案 C解析 因为1+2a n =(1+2a 1)·2n -1,则a n =5·2n -1-12,a n =5·2n -2-12. a 6=5×24-12=5×16-12=80-12=79.5.5.(2019·某某某某中学调研)等比数列{a n }的前n 项和为S n ,已知a 2a 5=2a 3,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36答案 B解析 由a 2a 5=a 3a 4=2a 3,得a 4= 2.又a 4+2a 7=2×54,所以a 7=14,又因为a 7=a 4q 3,所以q =12,所以a 1=16,所以S 5=16×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=31.故选B.6.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63 D .84答案 B解析 设等比数列{a n }的公比为q ,a 1+a 3+a 5=a 1(1+q 2+q 4)=21,即q 4+q 2+1=7,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)×q 2=21×2=42.故选B.7.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64(n >2),且前n 项和S n =42,则n =( )A .3B .4C .5D .6答案 A解析 由a 1+a n =34,a 1a n =a 3a n -2=64及{a n }为递增数列,得a 1=2,a n =32=a 1qn -1,又S n =a 11-q n1-q=42,∴q =4,n =3.故选A.8.(2019·某某模拟)设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( ) A .2 B .73 C .310 D .1或2答案 B解析 设S 2=k ,S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,S 4=3k ,∴S 6S 4=7k 3k =73.故选B.9.(2019·延庆模拟)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1)C .n n +12D .n n -12答案 A解析 ∵a 2,a 4,a 8成等比数列,∴a 24=a 2·a 8,即(a 1+3d )2=(a 1+d )(a 1+7d ), 将d =2代入上式,解得a 1=2, ∴S n =2n +n n -1·22=n (n +1).故选A.10.(2019·北大附中模拟)若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式为( )A .a n =22n -1B .a n =2nC .a n =22n +1D .a n =22n -3答案 A解析 ∵a 2n +1-3a n +1a n -4a 2n =(a n +1-4a n )(a n +1+a n )=0,又a n +1+a n >0,∴a n +1=4a n ,∴a n =2×4n -1=22n -1.故选A.11.设等比数列{a n }的前n 项和为S n ,若a 8=2a 4,S 4=4,则S 8的值为( ) A .4 B .8 C .10 D .12答案 D解析 设等比数列{a n }的公比为q ,由题意知q ≠1.因为a 8=2a 4,S 4=4,所以⎩⎪⎨⎪⎧a 1q 7a 1q 3=2,a 11-q 41-q=4,解得q 4=2,a 1=-4(1-q ),所以S 8=a 11-q 81-q=-41-q 1-221-q=12.故选D.12.记等比数列{a n }的前n 项积为T n (n ∈N *),已知a m -1·a m +1-2a m =0,且T 2m -1=128,则m 的值为( )A .4B .7C .10D .12答案 A解析 因为{a n }是等比数列,所以a m -1a m +1=a 2m .又a m -1a m +1-2a m =0,则a 2m -2a m =0,所以a m =2.由等比数列的性质可知前2m -1项积T 2m -1=a 2m -1m ,即22m -1=128,故m =4.故选A.13.(2019·某某模拟)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=2S n +3,则S 4=________.答案 66解析 依题意有a n =2S n -1+3(n ≥2),与原式作差,得a n +1-a n =2a n ,n ≥2,即a n +1=3a n ,n ≥2,可见,数列{a n }从第二项起是公比为3的等比数列,a 2=5,所以S 4=1+5×1-331-3=66.14.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 答案 3n -1解析 由3S 1,2S 2,S 3成等差数列可得4S 2=3S 1+S 3,所以3(S 2-S 1)=S 3-S 2,即3a 2=a 3,a 3a 2=3.所以q =3,所以a n =3n -1. 15.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式为a n =________.答案 2n解析 ∵a 25=a 10,∴(a 1q 4)2=a 1q 9,∴a 1=q ,∴a n =q n.∵2(a n +a n +2)=5a n +1,∴2a n (1+q 2)=5a n q ,∴2(1+q 2)=5q ,解得q =2或q =12(舍去).∴a n =2n.16.(2019·启东模拟)已知等比数列{a n }中,a 2>a 3=1,则使不等式⎝ ⎛⎭⎪⎫a 1-1a 1+⎝ ⎛⎭⎪⎫a 2-1a 2+⎝ ⎛⎭⎪⎫a 3-1a 3+…+⎝ ⎛⎭⎪⎫a n -1a n ≥0成立的最大自然数n 是________.答案 5解析 设公比为q ,由a 2>a 3=1知0<q <1,a n =q n -3,∴不等式的左端=q -21-q n1-q-q 21-q -n 1-q -1=1-q n1-q q2·(1-q 5-n)≥0,∵0<q <1,∴n ≤5. 17.(2018·高考)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. (1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e an . 解 (1)设{a n }的公差为d .因为a 2+a 3=5ln 2,所以2a 1+3d =5ln 2. 又a 1=ln 2,所以d =ln 2. 所以a n =a 1+(n -1)d =n ln 2. (2)因为ea 1=eln 2=2,eane a n -1=e an -an -1=eln 2=2,所以{e an }是首项为2,公比为2的等比数列. 所以ea 1+ea 2+…+e an =2×1-2n1-2=2(2n-1).18.已知数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2,n ∈N *).设b n =a n +1-a n . (1)证明:数列{b n }是等比数列; (2)设=b n4n 2-12n,求数列{}的前n 项和S n .解 (1)证明:因为a n +1=3a n -2a n -1(n ≥2,n ∈N *),b n =a n +1-a n , 所以b n +1b n =a n +2-a n +1a n +1-a n =3a n +1-2a n -a n +1a n +1-a n =2a n +1-a na n +1-a n=2, 又b 1=a 2-a 1=2-1=1,所以数列{b n }是以1为首项,以2为公比的等比数列. (2)由(1)知b n =1×2n -1=2n -1,因为=b n4n 2-12n,所以=122n +12n -1=14⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =c 1+c 2+…+=14⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=14⎝ ⎛⎭⎪⎫1-12n +1=n4n +2.19.(2019·某某省实验中学模拟)已知等比数列{a n }的前n 项和为S n ,公比q >0,S 2=2a 2-2,S 3=a 4-2.(1)求数列{a n }的通项公式; (2)设b n =n a n,求{b n }的前n 项和T n . 解 (1)设等比数列{a n }的公比为q , 因为S 2=2a 2-2,①S 3=a 4-2,②所以由①②两式相减得a 3=a 4-2a 2,即q 2-q -2=0. 又因为q >0,所以q =2.又因为S 2=2a 2-2,所以a 1+a 2=2a 2-2,所以a 1+a 1q =2a 1q -2, 代入q =2,解得a 1=2,所以a n =2n. (2)由(1)得b n =n2n ,所以T n =12+222+323+…+n -12n -1+n2n ,①将①式两边同乘12,得12T n =122+223+324+…+n -12n +n2n +1,②由①②两式错位相减得12T n =12+122+123+124+…+12n -n 2n +1=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12-n 2n +1=1-12n -n2n +1,整理得T n =2-n +22n.20.(2019·正定模拟)已知数列{a n }的前n 项和为S n ,a 1=1,且3a n +1+2S n =3(n ∈N *). (1)求数列{a n }的通项公式;(2)若对任意n ∈N *,k ≤S n 恒成立,某某数k 的最大值. 解 (1)因为3a n +1+2S n =3,① 所以当n ≥2时,3a n +2S n -1=3.②由①-②,得3a n +1-3a n +2a n =0(n ≥2),所以a n +1a n =13(n ≥2). 因为a 1=1,3a 2+2a 1=3,解得a 2=13,所以a 2a 1=13.所以数列{a n }是首项为1,公比为13的等比数列.所以a n =⎝ ⎛⎭⎪⎫13n -1.(2)由(1)知S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .由题意,可知对于任意n ∈N *,恒有k ≤32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 成立.因为数列⎩⎨⎧⎭⎬⎫1-⎝ ⎛⎭⎪⎫13n 单调递增,所以数列⎩⎨⎧⎭⎬⎫1-⎝ ⎛⎭⎪⎫13n 中的最小项为23,所以k ≤32×23=1,故实数k 的最大值为1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 等比数列及其前n项和
[考纲传真] (教师用书独具)1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体
的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的
关系.
(对应学生用书第84页)
[基础知识填充]
1.等比数列的有关概念
(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数
列就叫作等比数列.这个常数叫作等比数列的公比,通常用字母q表示,定义的表达式为an+1an=q(n∈N
+
,q为非零常数).
(2)等比中项:如果在a与b中间插入一个数G,使得a,G,b成等比数列,那么根据等比数列的定义,
Ga=b
G
,G2=ab,G=±ab,那么G叫作a与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等
比数列⇔G2=ab.
2.等比数列的有关公式
(1)通项公式:an=a1qn-1.
(2)前n项和公式:
S
n
= na1(q=1),a1(1-qn)1-q=a1-anq1-q(q≠1).
3.等比数列的常用性质
(1)通项公式的推广:an=am·qn-m(n,m∈N+).
(2)若m+n=p+q=2k(m,n,p,q,k∈N+),则am·an=ap·aq=a2k;
(3)若数列{an},{bn}(项数相同)是等比数列,则{λan},1an,{a2n},{an·bn},anbn(λ≠0)仍然是等比
数列;
(4)在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,…为等比数
列,公比为qk.
[基本能力自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)满足an+1=qan(n∈N+,q为常数)的数列{an}为等比数列.( )
(2)G为a,b的等比中项⇔G2=ab.( )
(3)若{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是等比数列.( )
(4)数列{an}的通项公式是an=an,则其前n项和为Sn=a(1-an)1-a.( )