水文计算步骤

合集下载

水文水利计算

水文水利计算

1水文1.1流域概况1.1.1李家岩水库流域概况李家岩水库坝址位于四川省成都市崇州市怀远镇清峰岭社区境内青峰岭大桥上游约1.3km处,地理位置位于东经103°07'-103°49'、北纬30°30'-30°53'之间。

该工程区处于四川盆地西北侧,地势西北高,南东低,东南侧山岭高程一般2200~1800m,相对高差140~1000m,西北侧山岭高程一般2200~3400m,相对高差1400~2500m,属于山区丘陵地带。

李家岩水库工程为岷江三级支流上的文井江干流河段。

其水系图如图1.1。

图1.1李家岩水库水系图1.1.2水库坝址流域概况李家岩水库下坝址位于青峰岭大桥上游约1.3km处,该坝址控制集水面积352.6 km2,占文井江流域面积的99.6%。

两坝址相距约1.3km,集水面积仅相差1.6%。

流域地势西北高,南东低,东南侧山岭高程一般2200~1800m,相对高差140~1000m,西北侧山岭高程一般2200~3400m,相对高差1400~2500m,属于山区丘陵地带。

1.2工程等级及洪水标准1.2.1工程等级和工程规模水利工程对社会经济的影响巨大,因此,应从社会经济全局的利益出发,将工程安全性与经济合理性统一考虑,进一步将枢纽中的建筑物进行分级。

水利水电工程的等别,应根据其工程规模、效益及在国民经济中的重要性,按中华人民共和国行业标准《水利水电工程等级划分及洪水标准》(SL252-2000)(见表1.1)进行确定。

表1.1水利水电工程分等指标注:1.水库总库容是指最高水位以下的静库容;2.治涝面积和灌溉面积均指设计面积。

工程分等指标:(1)水库总库容:本工程基本资料里给出的正常蓄水位高程为763.00m,根据水位—库容曲线(图1.2),可以得知本工程总库容为17141万m3,1亿m3<1.7141亿m3<10亿m3,根据表1.1可查得本工程等别为Ⅱ等,工程规模为大(2)型。

水文频率计算适线法

水文频率计算适线法


从图中可以看出,正偏情况下,当Cs愈大:

(1) 均值(即图中k=1)对应的频率愈小,频率曲线的中部愈向左偏
4 -
(2) 上段愈陡,下段愈平缓
6
-
3




c
s




线



2020/11/12
6
图 偏态系数Cs对频率曲线的影响
2020/11/12
7
2020/11/12
8
[例] 矩法和权函数法统计参数估计结果比较
19
2、是非题 2.1 水文频率计算中配线时,增大Cv可以使频率曲线变陡。
2.2 给经验频率点据选配一条理论频率曲线,目的之一是便于频率曲线的 外延。
2.3 某水文变量频率曲线,当 Cs不变,增加Cv值时,则该线呈反时针方向 转动。
2.4 某水文变量频率曲线, 当 Cv不变,增大Cs值时,则该线两端上抬, 中部下降。
4.6 水文频率计算适线法
内容提要 目估适线法 优化适线法
学习要求 1. 掌握目估适线法的作法和基本步骤 2. 掌握统计参数的变化对频率曲线的影响 3. 了解优化适线法的基本原理和作法
1
适线法(或称配线法)是以经验频率点据为基础, 在一定的适线准则下, 求解 与经验点据拟合最优的理论频率曲线的统计参数,并以此来估计水文要素总 体的统计规律 适线法是我国估计水文频率曲线统计参数的主要方法 适线法主要有两大类, 即目估适线法和优化适线法
-3.2
10.24
-0.007
0.02
11
641.5
-24.9 620.01 -0.057
1.42

根据水文现象变化的基本规律,水文计算的基本方法

根据水文现象变化的基本规律,水文计算的基本方法

根据水文现象变化的基本规律,水文计算的基本方法水文计算的基本方法概述水文计算是根据水文现象变化的基本规律而进行的一系列计算和分析工作。

通过对水文数据的处理和运算,可以了解和预测水文过程的变化,为水资源管理、水灾防御等工作提供科学依据。

基本方法水文计算涉及多种方法和工具,下面是一些常用的方法:1.水文观测方法–包括地面观测和遥感观测两种方法。

–地面观测通过测量水文站点的降雨量、蒸发量、径流量等数据,获取水文过程的实时观测数据。

–遥感观测利用遥感技术,通过对地球表面的反射、辐射等信息进行检测和分析,获取广域范围内的水文数据。

2.水文数据分析方法–主要通过统计学方法和时序分析方法对水文数据进行分析。

–统计学方法可以用来分析水文数据的统计特征,如均值、方差、相关性等。

–时序分析方法可以研究和预测水文过程的变化趋势,如周期性、趋势性等。

3.水文模型方法–水文模型是基于物理过程和数学模型构建的数值计算模型,用于模拟水文过程的变化。

–常用的水文模型包括降雨径流模型、水质模型、地下水模型等。

–水文模型可以通过迭代计算,得到水文过程变量的时空分布特征。

4.水文预测方法–水文预测是指通过对现有水文数据和预测因素的分析,预测未来一段时间内水文过程的变化。

–常用的水文预测方法包括经验模型、统计模型和数学模型等。

–水文预测可以帮助水资源管理者做出有效的决策,保障水资源的合理分配和利用。

5.水文实验方法–水文实验是通过人工的方法对水文过程进行控制和观测,用于研究和验证各种水文理论和方法。

–常用的水文实验方法包括人工降雨试验、水文模拟实验等。

–水文实验可以提供研究水文过程的详细数据,为其他水文计算方法的应用提供参考依据。

总结水文计算的基本方法主要包括水文观测、数据分析、模型建立、预测方法和实验方法等。

这些方法在水资源管理、环境保护、水灾防御等方面具有重要作用,为科学合理地利用和管理水资源提供了基础工具和理论支持。

继续为您介绍更多关于水文计算的基本方法。

水文分析详细步骤

水文分析详细步骤

提取小流域给定一个地区的DEM 数据,提取各级小流域,并计算各个流域面积 (1) 加载原始DEM 数据数据,,设为DEM (2) 对原始DEM 数据进行洼地填充数据进行洼地填充,,结果记为fillDEM (3) 利用fillDEM 计算水流方向矩阵计算水流方向矩阵,,记为Flowdir —fillDEM(4) 利用Flowdir —fillDEM 计算汇集水流量计算汇集水流量,,记为Accumul —fillDEM(5) 对Accumul —fillDEM 进行一个计算提取先加载Spatial Analyst 工具条,打开下面的Raster Calculator输入提取公式,进行计算,得结果Calculaton4. (6) 双击Stream Link设置如下参数:点击OK,得结果StreamL—cal3.(7)双击Watershed设置如下参数:点击OK,得结果Watersh—Flow6.双击上述结果,,打开图例编辑(7)双击上述结果进行如上参数设置:Show:Unique ValuesValued Field:选VALUE并点击Add All Values,再点击确定即可(8) 得到结果如下图所示得到结果如下图所示::(9) 计算流域面积计算流域面积,,首先要将上述结果转化为矢量首先要将上述结果转化为矢量,,在Spatial Analyst 下的Convert 下进行转换进行转换,,结果记为Watershe —flow6(10) 在未启动编辑状态下,打开上述结果的属性表点击右下角Options,增加一栏属性,数值选Double类型左键点击AREA表头,选中该栏,然后右键单击表头,选择Failed Calculator先将Advanced 复选框选上点击Help,打开,找到面积计算代码将代码复制到Field Calculator里:点击OK,计算完成注意:我的计算结果貌似不准确,再重新做一遍看看(已实验,没问题)注意:将第(5)步的计算结果转化为矢量得到结果如下:将此图与流域图一起显示,则效果更好啊(注意:要将此图图例改为Hollow,并将此图放在流域图上面)设置完以后,得到效果如下:。

水文统计介绍

水文统计介绍

P-III型曲线的特点: 一端有限另一端无限的不对称单峰正偏曲线
f(x)
皮尔逊Ⅲ 型概率密度曲线
a0 M0(x)
Me(x)
xP
P f ( x)dx
xP
x
在水文计算中,一般要求出指定概率P所相应的随
机变量的取值xP,即求出的 xP满足下列等式:
P
P( X
xP )
xP
(
)
(
x
a0
)
1
e
(
x
因此,由给定的CS 及P,从P-III型曲线离均系数 值表,查出P ,再由下式求:
xP (PCV 1)x
xP即为指定概率 P 所相应的随机变量的取值。这是 水文统计分析中要求计算的一个量
如求频率P=1/100(水文学常称为百年一遇)时的径 流量QP=0.01。
【算例】
已知: 某地年平均降雨量 x =1000 mm, CV =0.5, CS =1.0,若年降雨量符合P - III型分布 试求:P=1% 的年降雨量。
其反映年降雨量(Xx)的经验频率P(Xx)和x的关系。随
着样本容量n的增加,频率P就非常接近于概率,而该经 验分布曲线就非常接近于总体的分布曲线。
三、理论曲线线型
1.正态分布
x
式中, x :均值(平均数);
:均方差(标准差)。 许多随机变量如水文测量误差、抽样误差 等一般服从正态分布。
正态分布曲线的特点:
料中出现大于或等于某一值 x 的次数。
注意:样本的每一项的经验频率用公式P=m/n进
行计算,当m=n时,P=100%,说明样本的最末项 为总体的最小值,这是不合理的。故必须进行修 正,常采用下面的公式进行计算:
经验频率的计算公式: P m n1

水文分析计算-第4章课件-2015年

水文分析计算-第4章课件-2015年

XB=EXB+( XA-EXA)*sB/sA
(5)利用雨量~~洪峰(量)关系插补
条件:两者关系较好,可由实测或调查的Q去推X。
(三)频率计算-- 经验适线法
地区 Cs/Cv
Cv>0.6地区 3.0
Cv<0.45地区 4.0
一般地区 3.5
(四)合理性分析
1、同站、 不同历 时间协调
1)频率曲线不交叉(适用范围内) 2)不同历时的频率曲线变化平缓,
(3) 指标暴雨法(index-rainfall)
假设:气候一致区内各站暴雨的模比系数(变量)同分布; (各站均值不同,但Cv,Cs/Cv相同。)
Ki xi, j / xi
Ki 模比系数变量,i 1,..., m个站
xi, j 第i站样本系列,j 1,..., ni , ni样本容量
对模比系数变量Ki,用均值法(或中值法) 推求出该分区综合模比系数频率曲线;
➢点面折减系数=0.92
最大1日 XP,f=296*0.92=272mm
2、设计暴雨时程分配及净雨划分
时段序号
1
2
3
(Dt=6h)
占最大1天分
11
63
17
配百分比
设计面暴雨
29.9
171.3
46.2
量(mm)
设计净雨量
7.9
171.3
46.2
(mm)
地面净雨量
5.5
162.3
37.2
(mm)
地下净雨量
(2)移用区域的平均值
域内本年
主要是对发生一般暴雨的年份而言。即流
份未发生特大暴雨的情况。
(3)用等值线插补
点较多,

工程水文的计算内容

工程水文的计算内容

工程水文的计算内容
工程水文的计算内容主要包括以下几个方面:
1. 降雨量计算:估算区域内一定时间内的自然降雨量,通常采用等值方法、等密度方法、等面积法等。

2. 洪水流量计算:通过水文分析方法计算出河流在一定时间内的洪水流量,通常采用径流量计算、洪水频率计算等方法。

3. 水位流量关系计算:通过河道横断面断面积与水位的关系,计算出各个水位下的流量值,建立水位-流量曲线。

4. 水力特征参数计算:包括闸门、堤防、道渠水力特征参数计算,通常采用一般水力学公式、实验公式等方法。

5. 河流设计洪水计算:根据地区的物理地理环境、河道水系情况,计算某一设计标准下的洪水流量值,并根据该值进行设计河道的断面大小、堤防高度、附属建筑物高度等的计算。

6. 险工评估:评估河道流域内险工的稳定性、影响面积及灾害程度等情况,可以采用水文模拟、人工干预模拟、地形分析、水文资料分析等方法。

7. 河道治理规划:根据河道流域内的降雨、流量、水位等参考数据,设计污水处理设施、间断式河段打底等治理方案。

水文计算

水文计算

1水文计算1.1水文资料桥位于次稳定河段,设计流量31%3500/S Q Q m s ==,设计水位457.00S H m =,河槽流速 3.11/s c v m =,河槽流量3C Q =3193m /s ,河槽宽度c B 108.38m=,河槽平均水深c h 9.49m =,天然桥下平均流速0 3.00/M v m s =。

1.2桥孔长度计算知该桥位于次稳定河段,有明显河槽。

根据我国公路桥梁最小孔径长度jL 的公式:S j C Q L K Q nCB ⎛⎫= ⎪⎝⎭K,n —反映河床稳定性的系数和指数,查表2-1得K=0.95,n=0.87。

计算桥孔长()0.87S j C Q L K B =0.9535003193108.38=111.52Q nC ⎛⎫=⨯⨯ ⎪⎝⎭表2-1 K,n 值表注:此表摘自《桥涵水文》(第三版)表5-2-11.3桥孔布设根据桥位河床断面形态,将左岸桥台桩号布置在K52+330,取5孔30m 预应力混凝土简支梁为上部结构,双柱式桥墩,墩径取1.6m ,右墩台桩号取K52+480。

该桥孔布设方案的桥孔净长度为145.20m ,大于最小桥孔净长度111.52m ,是合理的。

1.4桥面最低高程的确定河槽弗汝徳数22cr cv 3.11F 0.104 1.0gh 9.809.49===<⨯,即设计流量通过时为缓流。

桥前出现雍水,而不出现桥墩迎水面的激流冲击高度。

1.4.1桥前雍水高度z ∆和桥下雍水高度z '∆冲刷前桥下流速S m jQ v A '=式中:j A —桥下净水面积,()j q A 1A (1)SsssQ Q pv pv λλμλμ=-==-(1-);s v —设计流速,一般采用天然河槽平均流速c v ; P —冲刷系数,取1.3;μ—因墩台侧面涡流阻水而引起的桥下过水面积折减系数,又称压缩系数,可以用公式计算: 3.1110.37510.3750.95928.4s jv l μ=-=-⨯=(其中j l 为桥墩净间距),带入上式得 23500902.710.959 1.3 3.11j A m ==⨯⨯则可得冲刷前桥下平均流速3500 3.88/902.71m v m s'==天然桥下平均流速0 3.00/M v m s = 冲刷后桥下平均流速 0.250.25503.883.51/3.8810.52110.51 3.11m M mc v v m sv d v --'===⎛⎫⎛⎫'+⨯- ⎪+- ⎪⎝⎭⎪⎝⎭系数4.85N K ===0.50.50.490.10.1y K ===-桥前最大雍水高度 ()()N y2222M0MK K 4.850.49z v-v =3.51-3.00=0.40m 2g29.8⨯∆=⨯桥下雍水高度z '∆取0.5z ∆,则z 0.50.40.20m '∆=⨯=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推理公式法计算设计洪峰流量
推理公式法是基于暴雨形成洪水的基本原理推求设计洪水的一种方法。

1.推理公式法的基本原理
推理公式法计算设计洪峰流量是联解如下一组方程
)
6.7.8(278.0)5.7.8(,278.0)
4.7.8(,278.04
/13/11m
c c
n c
p m c n p Q m J L t F t t S Q t F S =<⎪⎪⎭


⎛-=
≥⎪
⎪⎭

⎝⎛--ττ
τμτ
μτ
便可求得设计洪峰流量Q p ,即Q m ,及相应的流域汇流时间τ。

计算中涉及三类共7个参数,即流域特征参数F 、L 、J ;暴雨特征参数S 、n ;产汇流参数μ、m 。

为了推求设计洪峰值,首先需要根据资料情况分别确定有关参数。

对于没有任何观测资料的流域,需查有关图集。

从公式可知,洪峰流量Q m 和汇流时间τ互为隐函数,而径流系数ψ对于全面汇流和部分汇流公式又不同,因而需有试算法或图解法求解。

1. 试算法
该法是以试算的方式联解式(8.7.4)(8.7.5)和(8.7.6),步骤如下:
① 通过对设计流域调查了解,结合水文手册及流域地形图,确定流域的几何特征值F 、L 、J ,设计暴雨的统计参数(均值、C V 、C s / C V )及暴雨公式中的参数n (或n 1、n 2),损失参数μ及汇流参数m 。

图8.7.1 推理公式法计算设计洪峰流量流程图
② 计算设计暴雨的S p 、x TP ,进而由损失参数μ计算设计净雨的T B 、R B 。

③ 将F 、L 、J 、R B 、T B 、m 代入式(8.7.4)(8.7.5)和(8.7.6),其中仅剩下Q m 、τ、R s,τ未知,但R s,τ与τ有关,故可求解。

④ 用试算法求解。

先设一个Q m ,代入式(8.7.6)得到一个相应的τ,将它与t c 比较,判断属于何种汇流情况,再将该τ值代入式(8.7.4)或式(8.7.5),又求得一个Q m ,若与假设的一致(误差不超过1%),则该Q m 及τ即为所求;否则,另设Q m 仿以上步骤试算,直到两式都能共同满足为止。

试算法计算框图如图8.7.1。

2. 图解交点法
该法是对(8.7.4)(8.7.5)和(8.7.6)分别作曲线Q m τ及τ Q m ,点绘在一张图上,如图8.7.2所示。

两线交点的读数显然同时满足式(8.7.4)(8.7.5)和(8.7.6),因此交点读数Q m 、τ即为该方程组的解。

图8.7.2 交点法推求洪峰流量示意图
【例8.3】江西省××流域上需要建小水库一座,要求用推理公式法推求百年一遇设计洪峰流量。

计算步骤如下:
1. 流域特征参数F 、L 、J 的确定 F=104km 2,L=26km ,J=8.75‰
2. 设计暴雨特征参数n 和S p
暴雨衰减指数n 由各省(区)实测暴雨资料发现定量,查当地水文手册可获得,一般n 得数值以定点雨量资料代替面雨量资料,不作修正。

从江西省水文手册中查得设计流域最大1日雨量得统计参数为:
5
.3/,42.0,1151===V s V d C C C mm x Q mp ~τ
Q mp ~t
τ
Q mp
Q
t ,τ
m m p Q Q =
暴雨衰减指数 n 2=0.60, p d p x x ,1,241.1= ()8.84241312.342.01151.12416.01
,242
=⨯+⨯⨯⨯==--n p p x S mm/h
3. 产汇流参数μ、m 的确定
可查有关水文手册,本例查得的结果是μ=3.0mm/h 、m=0.70。

4. 图解法求设计洪峰流量
(1)采用全面汇流公式计算,即假定t c ≥τ。

将有关参数代入式(8.7.4)、(8.7.6)和式(3-45),得Q m 及τ的计算式如下:
7.867.245110438.84278.06
.06.0-=⨯⎪⎭

⎝⎛-=ττmp Q (8.7.7) 4
/14/13/11
.5000875.07.026278.0mp
mp Q Q =⨯⨯=
τ (8.7.8) (2)假定一组τ值,代入式(8.7.7),算出一组相应的Q mp 值,再假定一组Q mp 值代入公式(8.7.8),算出一组相应的τ值,成果见表8.7.3)。

(3)绘图。

将两组数据绘再同一张方格纸上,见图8.7.3,两线交点处对应的Q mp 即为所求的设计洪峰流量。

由图读出Q mp =510m 3/s ,τ=10.55h 。

表8.7.3 Q m τ线及τ Q m 线计算表
设 τ
(h ) Q mp (m 3/s ) 设 Q mp (m 3/s ) τ (h ) (1) (2) (3) (4) 8 617.4 400 11.2 10 529.1 450 10.9 12 465.3 500 10.6 14
416.6
600
10.1
(4)检验是否满足t c ≥τ
()h S n t n p c 570.38.844.016
.01
122
=⎪


⎝⎛⨯=⎥


⎢⎣⎡-=μ
本例题τ=10.55h<t c =57h ,所以采用全面汇流公式计算是正确的。

图8.7.3 图解交点法求Q m、τ。

相关文档
最新文档