OLED常用材料简介阳极,背电机和有机蒸发层的
OLED显示技术介绍

OLED显示技术介绍OLED,即有机发光二极管(Organic Light Emitting Diode)技术,是一种集显示与发光功能于一体的新型显示技术。
相较于传统的液晶显示技术,OLED显示技术具有更高的对比度、更快的响应速度、更宽的视角范围以及更低的功耗,因此备受关注并广泛应用于各个领域。
OLED显示技术的基本原理是利用有机材料具有的电致发光性质。
有机材料通常是一种或多种有机化合物或含有有机基团的无机物。
在OLED 中,有机材料被分成多层,其中包括阴极、电子传输层、发光层和阳极。
当电流通过这些层时,电子从阴极注入发光层,在激发态的电子和空穴会再组合的过程中,产生能量释放,发出可见光。
通过控制每层材料的属性和组合方式,可以实现不同颜色的发光,形成彩色显示。
OLED显示技术相较于传统的液晶显示技术具有多个优势。
首先,OLED具有更高的对比度。
由于OLED自身发光,在黑色显示时可以实现真正的像素关闭,因此可以实现纯黑色的显示,对比度更高,显示效果更加逼真。
其次,OLED具有更快的响应速度。
由于OLED的发光原理,每个像素点的响应速度非常快,可以达到微秒级别的刷新速度,不会产生拖尾现象,极大地提高了动态显示的效果。
此外,OLED具有更宽的视角范围。
传统的液晶显示技术会有视角变色的问题,而OLED则可以在更大的视角范围内保持色彩和亮度的一致性,使得多个观察者都能够获得相同的显示效果。
最后,OLED的功耗更低。
由于OLED只有点亮的像素会消耗能量,而其他像素则完全不消耗能量,因此在黑色显示时OLED的功耗非常低,能够延长设备的续航时间。
OLED显示技术在各个领域都得到了广泛的应用。
在移动设备领域,OLED显示技术已经成为智能手机和平板电脑的主流显示技术。
OLED屏幕可以实现更薄、更轻的设计,提供更高质量的显示效果。
在电视领域,OLED显示技术也被广泛应用。
OLED电视的主要优势是提供更高的对比度和更宽的视角,使得观众可以获得更加逼真的观影体验。
oled显示原理

oled显示原理OLED显示原理。
OLED(Organic Light-Emitting Diode)有机发光二极管是一种新型的显示技术,它可以在不需要背光的情况下实现自发光,因此在手机、电视、显示屏等领域有着广泛的应用。
本文将介绍OLED显示原理及其工作原理。
OLED显示原理可以简单地理解为有机材料在电场作用下发光的过程。
OLED显示屏由一系列有机材料组成,包括发光层、电子传输层和阳极、阴极等。
当外加电压作用于OLED显示屏时,正极和负极之间的电子流会使得有机材料中的电子和空穴结合,从而产生光子,实现发光效果。
OLED显示原理的核心在于有机材料的发光特性。
有机材料可以分为小分子有机材料和聚合物有机材料两种。
小分子有机材料通常是通过真空蒸发技术制备,具有高纯度和良好的电学性能;而聚合物有机材料则可以通过喷墨印刷等技术实现大面积制备,具有低成本和柔性显示的优势。
在OLED显示原理中,有机材料的发光颜色是由其分子结构和化学成分决定的。
通过控制不同的有机材料,可以实现红、绿、蓝等不同颜色的发光效果。
而且,OLED显示屏可以实现全彩色显示,因为它可以通过调节不同颜色的有机材料的发光强度来混合出各种颜色。
除了发光材料,OLED显示原理中的另一个重要组成部分是电子传输层。
电子传输层通常是由导电性较好的材料构成,它的主要作用是输送外加电压产生的电子和空穴,使得它们在发光层结合,从而实现发光效果。
总的来说,OLED显示原理是基于有机材料在外加电压作用下发光的原理。
通过控制不同的有机材料和电子传输层的结构,可以实现不同颜色和不同尺寸的OLED显示屏。
相比于传统LCD显示技术,OLED显示屏具有更高的对比度、更快的响应速度、更广的视角和更低的功耗,因此在未来会有更广泛的应用前景。
希望通过本文的介绍,读者对OLED显示原理有了更深入的了解,同时也能够对OLED技术的发展前景有所期待。
OLED显示技术的不断创新和发展将为我们的生活带来更多的便利和乐趣。
oled发光功能材料

oled发光功能材料OLED(Organic Light Emitting Diode)是一种新型的发光功能材料,具有极高的发光效率和优秀的色彩表现力。
它由一系列有机分子构成,能够通过电流的激发来产生发光效果。
相比于传统的LED (Light Emitting Diode),OLED具有更薄、更轻、更柔韧的特点,因此在显示技术领域有着广泛的应用前景。
OLED的发光原理是利用有机材料在电流作用下产生电致发光现象。
它由发光层、电子传输层和阳极、阴极等组成。
当外加电压施加到OLED器件时,电子从阴极注入,空穴从阳极注入,它们在电子传输层中相遇并复合,释放出光子能量,从而产生可见光。
这种发光原理使得OLED具有自发光的特性,不需要背光源,能够实现极高的对比度和色彩鲜艳的显示效果。
OLED发光功能材料的优点之一是其发光效率极高。
由于有机材料具有较高的光电转换效率,OLED能够将输入的电能转化为光能的效率接近100%,远高于传统的LED。
这使得OLED在能耗方面具有明显的优势,可以节省大量的电能。
此外,由于OLED采用自发光原理,不需要背光源,因此可以实现更薄、更轻的显示器件,为轻薄、便携型电子设备的发展提供了可能。
除了高发光效率外,OLED还具有优秀的色彩表现力。
由于OLED 材料的特殊结构,它可以通过调节有机分子的类型和浓度来控制发光颜色。
因此,OLED能够呈现出更广的色域范围,使得图像的细节更加丰富、色彩更加真实。
这使得OLED在显示技术领域得到广泛应用,尤其是在高端电视、智能手机等领域。
OLED发光功能材料的独特性还表现在其柔性和可弯曲性。
由于有机材料具有较好的柔性和可塑性,因此制备的OLED器件可以非常薄且具有一定的柔韧性。
这使得OLED在可穿戴设备、弯曲显示器等领域有着广泛的应用前景。
例如,柔性OLED显示屏可以应用于可穿戴设备,如智能手表、智能眼镜等,为用户提供更加舒适和便捷的显示体验。
然而,OLED发光功能材料也存在一些挑战和限制。
OLED资料

什么是PMOLEDPMOLED的英文全称是Passive Matrix OLED,中文意思是被动式有机电激发光二极管。
如果将OLED比作LCD,PMOLED就如同STN LCD;而主动式有机电激发光二极管(Active matrix OLED;AMOLED)就如同TFT LCD。
前者较不适合用于显示动态影像,反应速度相对较慢,较难发展中大尺寸面板,不过相对较为省电;后者则是反应速度较快,并可发展各种尺寸应用,最大可达电视面板需求,但相对被动式较为耗电。
2011年国内主要OLED企业状况分析OLED产业发展受到了中国政府的高度关注,在工业和信息化部支持下,中国内地的OLED研发取得了突破性进展。
2008年10月,由清华大学组建的维信诺公司在昆山成功建成中国内地第一条OLED大规模生产线,实现了小尺寸OLED显示屏的量产。
目前,中国内地主要有昆山维信诺、汕尾信利、四川虹视、佛山彩虹等企业从事小尺寸OLED生产。
而中国首条AMOLED中试线已经在昆山建成投产并于2010年底打通全部生产工艺,上海天马和佛山彩虹都在建设4.5代AMOLED生产线预计2011年即可量产,京东方及四川虹视等也在积极进行AMOLED项目研发工作。
中国大陆的AMOLED面板生产线有京东方的4.5代和5.5代线,成都虹视的4.5代线,长三角天马的2.5代线,维信诺的2.5代线和4.5代线,厦门天马的5.5代线,珠三角彩虹的2条4.5代线,彩显的2.5代线,信利的2.5代线等,我国AMOLED产业即将见到丰收的硕果。
1、维信诺:自主创新引领中国OLED产业2008年10月,维信诺公司依托清华大学研究的技术在昆山建立了中国大陆第一条PMOLED大规模生产线,使我国OLED产业初具规模。
十多年来,维信诺始终坚持自主创新,走从技术开发到产业化发展的道路,并成为中国大陆最早完整掌握PMOLED生产制造技术的企业。
全球出货量位居第三因为看好OLED产业的发展前景,从2002年起,维信诺依托清华大学研究的技术建成了中国大陆第一条PMOLED中试生产线,2009年维信诺建立了中国大陆第一条AMOLED中试生产线,并于2010年实现了LTPSTFT背板与OLED的技术集成。
OLED材料

oled材料OLED(Organic Light Emitting Diode)是有机发光二极管的缩写,是一种新型的平面显示技术。
相比传统的LCD技术,OLED具有更高的亮度、更高的对比度、更快的响应速度、更广的视角、更低的功耗、更薄的厚度以及柔性显示的能力。
它由一系列有机材料构成,这些材料在电场刺激下能够发出光。
OLED材料主要由三部分组成:有机发光层,负责发光;电子传输层,负责电子注入和传输;以及电子势阱。
有机发光层中的有机化合物分为发光分子和辅助剂,发光分子是实现发光的主要组成部分,辅助剂可以提高发光效果和电荷传输性能。
OLED材料的发光原理是通过激发材料中的分子,使其处于激发态,并随后返回基态的过程中释放出光。
其发光机理主要包括焦耳热效应和冷热复合效应。
在电流注入时,电子从阴极注入到电子传输层,并在有机发光层中遇到发光分子,激发这些分子跃迁至激发态,而激发态的分子处于不稳定状态,会以光子的形式释放出能量,从而产生发光。
OLED材料具有许多优点,使其成为下一代显示技术的主要候选。
首先,OLED具有超高对比度,可以实现无限的暗黑色和高亮度的白色,显示效果非常出色。
其次,OLED具有更广的视角,不论从哪个角度观察都能获得高质量的显示效果。
此外,OLED的响应速度非常快,没有运动模糊的问题,适合用于显示动态图像。
OLED还可以实现薄、轻、柔性显示,可以制作成弯曲和卷曲的显示屏,为设计师提供更多的创意空间。
然而,OLED材料也存在一些挑战。
首先,OLED的使用寿命相对较短,尤其是蓝色发光材料的寿命较低。
其次,由于有机发光层材料易于分解,需要采取有效的封装技术来防止氧气和水分的侵入。
此外,OLED的成本较高,由于制造设备和材料本身的成本较高。
这些问题是需要解决的关键问题。
总而言之,OLED作为一种新兴的显示技术,具有许多优点和潜在的应用前景。
随着技术的不断进步和成本的降低,相信OLED将会在未来取得更广泛的应用,并且进一步改善人们的视觉体验。
有机电致发光器件(OLED)课件

OLED技术的创新与突破
提高效率和稳定性
通过材料和工艺的改进,提高OLED的发光效率和 稳定性,延长使用寿命。
柔性显示技术
进一步研究柔性OLED显示技术,实现更轻薄、可 弯曲的显示产品。
多功能集成
探索将触摸功能、传感器等集成到OLED显示面板 中,实现更多功能。
OLED产业的发展趋势与展望
市场规模持续增长
随着OLED在更多领域的应用,市场规模将持续增长,带动产业的 发展。
技术竞争加剧
随着技术的不断进步,OLED产业将面临激烈的技术竞争,促使企 业加大研发投入。
产业布局优化
随着全球产业格局的变化,OLED产业将进一步优化布局,形成更 加合理的产业链结构。
感谢观看
有机电致发光器件( OLED课件
• OLED基础知识 • OLED器件结构与性能 • OLED制造工艺与设备 • OLED市场与技术发展趋势 • OLED的未来展望
01
OLED基础知识
OLED的定义与特点
总结词
OLED是一种有机电致发光器件,具有自发光的特性,能够实现高对比度、广 视角、快速响应等优点。
OLED在未来的应用前景
显示器技术
随着显示技术的不断进步,OLED 有望成为下一代主流显示技术, 广泛应用于电视、电脑、手机、 平板等电子产品。
照明领域
OLED具有自发光的特性,可以做 成柔性的照明产品,为室内外照明 提供新的解决方案。
可穿戴设备
随着可穿戴设备的普及,OLED的轻 薄、柔性特点使其在智能手表、健 康监测器等设备上具有广阔的应用 前景。
OLED技术的挑战与机遇
挑战
OLED技术的成本较高,良品率较低,且寿命相对较短,这些 问题制约了OLED技术的进一步普及和应用。
OLED有机电致发光材料与器件

OLED有机电致发光材料与器件摘要本文概述了OLED的发展简史,并简单介绍了OLED有机电致发光器件的基本结构与发光机理。
此外,还对比了OLED与PLED,这两种系列材料只是材料特性和成膜方法不同,本质上却无异。
相较于LCD,OLED具有很大优势,但仍面临寿命短等技术瓶颈。
随着研发力度的加大,其技术瓶颈将会被逐渐解决,可以预见在未来的显示市场,OLED必将是绝对主流产品。
关键词:有机电致发光器件;OLED显示器OLED (Organic Light Emitting Device)全名叫做有机电致发光器件,是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。
其原理是用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。
根据这种发光原理而制成显示器被称为有机发光显示器,也叫OLED显示器[1]。
1.OLED有机电致发光显示器件的发展简史1963年New York University的Pope[2]等第一次发现有机材料单晶蒽的电致发光现象。
1982年Vincett[3]的研究小组制备出厚度0.6 蒽的薄膜,并观测到电致发光。
1987年Kodak公司的邓青云等采用了夹层式的多层器件结构,开创了有机电致发光的新的时代[4]。
1990年,英国剑桥大学Cavendish实验室的Burroghes[5]等人首次采用共轭聚合物聚对苯撑乙烯(PPV,polyphenylene vinylene)制作了高分子发光二极管,简化了制备工艺,开辟了发光器件的又一个新领域—聚合物薄膜电致发光器件。
1997年,Princeton Univ. Forrest S R的小组发现磷光的有机电致发光材料,使得有机电致发光器件的内量子效率可能到达100%。
OLED简介

1988年C.Adachi等人首次提出了将空穴传输层、电子传输 层和发光层分开的三层结构,获得了高亮度和长寿命的蓝 光器件; 1998年,美国普林斯顿大学的Forrest小组首次提出将磷光 染料应用于有机电致发光器件,这样就突破了器件内量子 效率低于25%的限制,理论上使内量子效率达到了100%, 从而开创了有机磷光电致发光的新领域。
天津工业大学
单线态和三线态: 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子 轨道中,成对自旋,方向相反,电子净自旋等于零:S=½+(-½)=0,其多重性 M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁 场影响而分裂,称“单线态”;当基态分子的一个成对电子吸收光辐射后,被 激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即ÄS=0,则激发态 仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配 对的电子,电子净自旋不等于零,而等于1: S=1/2+1/2=1 其多重性: M=2S+1=3,即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线 (重)激发态”。 “三线激发态” 比 “单线激发态” 能量稍低。当激发态的分子通过振动驰豫— 内转换—振动驰豫到达第一单线激发态的最低振动能级时,第一单线激发态最 低振动能级的电子可通过发射辐射(光子)跃回到基态的不同振动能级,此过 程称为 “荧光发射”。如果荧光几率较高,则发射过程较快,需10-8秒。 第一电子三线激发态最低振动能级的分子以发射辐射(光子)的形式回到基态 的不同振动能级,此过程称为 “磷光发射”。发生过程较慢 约 10-4~10秒。
天津工业大学
高性能彩色化OLED:现代社会信息的传输速度越来越快, 人们需要一种高质量的显示画面,这就需要OLED在这方面 发展; 有源矩阵OLED显示器(AMOLED):该种器件更适合于制备 大面积显示器件,其能耗更低; 用于普通照明的OLED:据测算,OLED耗能仅相当于白炽 灯的20%,而且更环保;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OLED常用材料简介
2006-2-21 OLED用材料主要有电极材料,载流子输送材料和发光材料。
1电极材料
1) 阴极材料
为提高电子的注入效率,要求选用功函数尽可能低的材料做阴极,功函数越低,发光亮度越高,使用寿命越长。
A.单层金属阴极
如Ag 、Al 、Li 、Mg 、Ca 、In等。
B.合金阴极
将性质活泼的低功函数金属和化学性能较稳定的高功函数金属一起蒸发形成金属阴极、如Mg: Ag(10: 1),Li:Al (0.6%Li) 合金电极,功函数分别为3.7eV和3.2eV。
优点:提高器件量子效率和稳定性;
能在有机膜上形成稳定坚固的金属薄膜。
C.层状阴极
由一层极薄的绝缘材料如LiF, Li2O,MgO,Al2O3等和外面一层较厚的Al组成,其电子注入性能较纯Al电极高,可得到更高的发光效率和更好的I-V特性曲线。
D.掺杂复合型电极
将掺杂有低功函数金属的有机层夹在阴极和有机发光层之间,可大大改善器件性能,其典型器件是ITO/NPD/AlQ/AlQ(Li)/Al,最大亮度可达30000Cd/m2,如无掺Li层器件,亮度为3400Cd/m2。
2) 阳极材料
为提高空穴的注入效率,要求阳极的功函数尽可能高。
作为显示器件还要求阳极透明,一般采用的有Au、透明导电聚合物(如聚苯胺)和ITO导电玻璃,常用ITO玻璃。
2 载流子输送材料
1)空穴输送材料(HTM)
要求HTM有高的热稳定性,与阳极形成小的势垒,能真空蒸镀形成无针孔薄膜。
最常用的HTM均为芳香多胺类化合物,主要是三芳胺衍生物。
TPD:N,N′-双(3-甲基苯基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺
NPD: N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺
2)电子输运材料(ETM)
要求ETM有适当的电子输运能力,有好的成膜性和稳定性。
ETM一般采用具有大的共扼平面的芳香族化合物如8-羟基喹啉铝(AlQ),1,2,4一三唑衍生物(1,2,4-Triazoles,
TAZ),PBD,Beq2,DPVBi等,它们同时又是好的发光材料。
3 发光材料
选择发光材料应满足下列条件:
A.高量子效率的荧光特性,荧光光谱主要分布400-700nm可见光区域。
B.良好的半导体特性,即具有高的导电率,能传导电子或空穴或两者兼有。
C.好的成膜性,在几十纳米的薄层中不产生针孔。
D.良好的热稳定性。
按化合物的分子结构,有机发光材料一般分为两大类:
(1) 高分子聚合物,分子量10000---100000,通常是导电共轭聚合物或半导体共轭聚合物,可用旋涂方法成膜,制作简单,成本低,但其纯度不易提高,在耐久性,亮度和颜色方面比小分子有机化合物差。
(2) 小分子有机化合物,分子量为500-2000,能用真空蒸镀方法成膜,按分子结构又分为两类:
有机小分子化合物和配合物。
1) 有机小分子发光材料
主要为有机染料,具有化学修饰性强,选择范围广,易于提纯,量子效率高,可产生红、绿、蓝、黄等各种颜色发射峰等优点,但大多数有机染料在固态时存在浓度淬灭等问题,导致发射峰变宽或红移,所以一般将它们以低浓度方式掺杂在具有某种载流子性质的主体中,主体材料通常与ETM和HTM层采用相同的材料。
掺杂的有机染料,应满足以下条件:
a. 具有高的荧光量子效率
b. 染料的吸收光谱与主体的发射光谱有好的重叠,即主体与染料能量适配,从主体到染料能有效地能量传递;
c. 红绿兰色的发射峰尽可能窄,以获得好的色纯;
d. 稳定性好,能蒸发。
(1)红光材料
主要有:罗丹明类染料,DCM,DCT,DCJT,DCJTB,DCJTI和TPBD等
(2)绿光材料
主要有:香豆素染料Coumarin6(Kodak公司第一个采用),奎丫啶酮(quinacridone, QA)(先锋公司专利),六苯并苯(Coronene),苯胺类(naphthalimide).
(3)蓝光材料
主要有:N-芳香基苯并咪唑类;1,2,4-三唑衍生物(TAZ)(也是ETM材料);1,3-4-噁二唑的衍生物OXD-(P-NMe2)(高亮度;1000cd/m2);双芪类(Distyrylarylene);BPVBi(亮度可达6000Cd/m2)。
2) 配合物发光材料
金属配合物介于有机与无机物之间,既有有机物的高荧光量子效率,又有无机物的高稳定性,被视为最有应用前景的一类发光材料。
常用金属离子有;Be2+ Zn2+ Al3+ Ca3+ In3+ Tb3+ Eu3+ Gd3+等
主要配合物发光材料有:8-羟基喹啉类,10-羟基苯并喹啉类,Schiff碱类,-羟基苯并噻唑(噁唑)类和羟基黄酮类等。
OLED材料发展-空穴传输材料
2006-1-25
目前空穴传输材料(Hole transport materials)(本文层电洞传输材料)向提高热稳定向和降低空穴传输层与阳极界面的能级差的方向发展,但离不开triphenylamines(图1)的结构。
日本的Nagoya大学与Nippon Steel Chemical公司合作开发TPD衍生物的电洞传输材料(图2),虽然改善了TPD易结晶的特性,但使用Alq为电子传输发光体时,元件
(ITO/CuPc/HTM/Alq/LiF/Al)的表现并不太理想(表一)。
表一TPD衍生物的性质
日本Idemitsu公司开发出triamine的电洞传输材料(图3),它们具有较高的耐热性。
美国的Xerox公司开发出另一种星放射状的电洞传输材料(图4),其具有较高热稳定性(T g >120℃)。
德国Covion公司则开发一种Spiro型电洞传输材料(图5),命名为Spiro-NPB及Spiro-TAD,而其T g分别为147℃及133℃,其在元件的表现较NPB为好(表二)。
表二NPB和Spiro-NPB、Spiro-TAD衍生物性质的比较
Kodak公司所发表一种新型triphenylamine型电洞传输材料(图6),其是利用金刚烷的构形的固定来提高其T g(T g=155℃)。