高考数学中圆锥曲线的对称问题
高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析1.已知圆经过椭圆的右焦点和上顶点.(1)求椭圆的方程;(2)过原点的射线与椭圆在第一象限的交点为,与圆的交点为,为的中点,求的最大值.【答案】(1);(2).【解析】本题考查直线、圆、椭圆、平面向量、分式函数等基础知识,考查直线与圆锥曲线的位置关系;考查运算求解能力、推理论证能力;考查数形结合、化归与转化及函数与方程等数学思想.第一问,数形结合,令y=0,x=0即可分别求出c和b的值,从而得到椭圆的标准方程;第二问,设出直线方程和P、Q点坐标,令直线与椭圆联立得到Q点横坐标,利用向量的数量积,将P、Q点坐标代入,得到关于k的表达式,利用导数求函数的最值;法二,将进行转化,变成,再利用配方法求最值.试题解析:(1)在中,令得,即,令,得,即, 2分由,∴椭圆:. 4分(2)法一:依题意射线的斜率存在,设,设 -5分得:,∴. 6分得:,∴, 7分∴. 9分.设,,令,得.又,∴在单调递增,在单调递减. 11分∴当时,,即的最大值为. 13分法二:依题意射线的斜率存在,设,设 5分得:,∴. 6分= 9分.设,则.当且仅当即.法三:设点,,6分= . 7分又,设与联立得: . 9分令. 11分又点在第一象限,∴当时,取最大值. 13分【考点】直线、圆、椭圆、平面向量、分式函数.2.(本小题满分12分)已知曲线上的点到点的距离比它到直线的距离小2.(1)求曲线的方程;(2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.【答案】(1).(2)当点P在曲线上运动时,线段AB的长度不变,证明见解析.【解析】(1)思路一:设为曲线上任意一点,依题意可知曲线是以点为焦点,直线为准线的抛物线,得到曲线的方程为.思路二:设为曲线上任意一点,由,化简即得.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,得,应用导数的几何意义,确定切线的斜率,进一步得切线的方程为.由,得.由,得.根据,得圆心,半径,由弦长,半径及圆心到直线的距离之关系,确定.试题解析:解法一:(1)设为曲线上任意一点,依题意,点S到的距离与它到直线的距离相等,所以曲线是以点为焦点,直线为准线的抛物线,所以曲线的方程为.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,则,由,得切线的斜率,所以切线的方程为,即.由,得.由,得.又,所以圆心,半径,.所以点P在曲线上运动时,线段AB的长度不变.解法二:(1)设为曲线上任意一点,则,依题意,点只能在直线的上方,所以,所以,化简得,曲线的方程为.(2)同解法一.【考点】抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.3.已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.(1)求抛物线C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.【答案】(1);(2)x-y-1=0或x+y-1=0.【解析】(1)设Q(x0,4),代入由中得x=,在根据抛物线的性质可得,解出p即可(2)设直线l的方程为,(m≠0)代入中得,直线的方程为,将上式代入中,并整理得.A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4),根据二次函数根与系数的关系可得y1+y2=4m,y1y2=-4,.然后求出MN的中点为E和AB的中点为D坐标的表达式,计算的表达式,根据求出m即可.试题解析:(1)设Q(x0,4),代入由中得x=,所以,由题设得,解得p=-2(舍去)或p=2.所以C的方程为.(2)依题意知直线l与坐标轴不垂直,故可设直线l的方程为,(m≠0)代入中得,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4,故AB的中点为D(2m2+1,2m),,有直线的斜率为-m,所以直线的方程为,将上式代入中,并整理得.设M(x3,y3),N(x4,y4),则.故MN的中点为E().由于MN垂直平分AB,故A,M,B,N四点在同一个圆上等价于,从而,即,化简得m2-1=0,解得m=1或m=-1,所以所求直线l的方程为x-y-1=0或x+y-1=0.【考点】1.抛物线的性质和方程;2.直线方程以及直线与曲线的位置关系.4.如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.(1)若圆过原点,求圆的方程;(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.【答案】(1)或;(2).【解析】(1)因为是圆的直径,所以当圆过原点时,一定有,由此可确定点的位置并进一步求出圆的标准方程;(2)设圆M的半径为,连结,显然有根据椭圆的标准方程知,所以,从而找到符合条件的定圆.解:(1)解法一:因为圆过原点,所以,所以是椭圆的短轴顶点,的坐标是或,于是点的坐标为或,易求圆的半径为所以圆的方程为或 6分解法二:设,因为圆过原点,所以所以,所以,所以点于是点的坐标为或,易求圆的半径所以圆的方程为或 6分(2)以原点为圆心,5为半径的定圆始终与圆相内切,定圆的方程为 8分探究过程为:设圆的半径为,定圆的半径为,因为,所以当原点为定圆圆心,半径时,定圆始终与圆相内切.(13分)【考点】1、椭圆的定义与标准方程;2、圆的定义与标准方程.5.已知,是双曲线的左,右焦点,若双曲线左支上存在一点与点关于直线对称,则该双曲线的离心率为A.B.C.D.【答案】【解析】即双曲线的一条渐近线方程.过焦点且垂直渐近线的直线方程为:,与联立,解之可得故对称中心的点坐标为();由中点坐标公式可得对称点的坐标为,将其代入双曲线的方程可得结合化简可得,故.故选.【考点】双曲线的几何性质,直线方程,两直线的位置关系.6.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.7.抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【答案】B【解析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.8.已知椭圆和椭圆的离心率相同,且点在椭圆上.(1)求椭圆的方程;(2)设为椭圆上一点,过点作直线交椭圆于、两点,且恰为弦的中点。
2025高考数学专项复习平移齐次化解决圆锥曲线中斜率和积问题与定点问题含答案

圆锥曲线中斜率和积为定值问题与定点问题(平移齐次化)1.真题回顾2020新高考I 卷2.题型梳理题型1:已知定点求定值题型2:已知定值求定点【例题】已知椭圆x 24+y 2=1,设直线l 不经过P 2(0,1)点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.Q (2,-1)2025高考数学专项复习平移齐次化解决圆锥曲线中斜率和积问题与定点问题【手电筒模型·1定+2动】直线y =kx +m 与椭圆x 2a 2+y 2b2=1a >b >0 交于A ,B 两点,P (x 0,y 0)为椭圆上异于AB 的任意一点,若k AP ⋅k BP =定值或k AP +k BP =定值(不为0),则直线AB 会过定点.(因为三条直线形似手电筒,固名曰手电筒模型).补充:若y =kx +m 过定点,则k AP ⋅k BP =定值,k AP +k BP k=定值.2020·新高考1卷·22C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,且过点A 2,1 .(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.题型一已知定点求定值C :y 2=4x ,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:∠POQ =90°.椭圆E:x22+y2=1,经过点M(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A(0,-1),证明:直线AP与AQ的斜率之和为2.A1,3 2,O为坐标原点,E,F是椭圆C:x24=y23=1上的两个动点,满足直线AE与直线AF关于直线x=1对称.证明直线EF的斜率为定值,并求出这个定值;点F(1,0)为椭圆x24+y23=1的右焦点,过F且垂直于x轴的直线与椭圆E相交于C、D两点(C在D的上方),设点A、B是椭圆E上位于直线CD两侧的动点,且满足∠ACD=∠BCD,试问直线AB的斜率是否为定值,请说明理由.:x22+y2=1,A0,-1,经过点1,1,且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ斜率之和为2.C :x 24+y 23=1,过F 作斜率为k (k ≠0)的动直线l ,交椭圆C 于M ,N 两点,若A 为椭圆C 的左顶点,直线AM ,AN 的斜率分别为k 1,k 2,求证:k k 1+k k 2为定值,并求出定值.题型二已知定值求定点全国卷理)已知椭圆x 24+y 2=1,设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.C:x24+y2=1,设直线l不经过点P2(0,1)且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:直线l过定点.C:y2=2px(p>0)上的点P(1,y0)(y0>0)到其焦点的距离为2.(1)求点P的坐标及抛物线C的方程;(2)若点M、N在抛物线C上,且k PM•k PN=-12,证明:直线MN过定点.C :x 24+y 23=1,P 1,32 ,若直线l 交椭圆C 于A ,B (A ,B 异于点P )两点,且直线PA 与PB 的斜率之积为-94,求点P 到直线l 距离的最大值.E :x 2a 2+y 2b2=1(a >b >0)的离心率为33,椭圆E 的短轴长等于4.(1)求椭圆E 的标准方程;x 26+y 24=1(2)设A 0,-1 ,B 0,2 ,过A 且斜率为k 1的动直线l 与椭圆E 交于M ,N 两点,直线BM ,BN 分别交⊙C :x 2+y -1 2=1于异于点B 的点P ,Q ,设直线PQ 的斜率为k 2,直线BM ,BN 的斜率分别为k 3,k 4.①求证:k 3⋅k 4为定值; ②求证:直线PQ 过定点.圆锥曲线中斜率和积为定值问题与定点问题(平移齐次化)1.真题回顾2020新高考I 卷2.题型梳理题型1:已知定点求定值题型2:已知定值求定点【例题】已知椭圆x 24+y 2=1,设直线l 不经过P 2(0,1)点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.Q (2,-1)【平移+齐次化处理】Step 1:平移点P 到原点,写出平移后的椭圆方程,设出直线方程,并齐次化处理将椭圆向下平移一个单位,(为了将P 2(0,1)平移到原点)椭圆方程化为C :x 24+(y +1)2=1,(左加右减,上减下加为曲线平移)设直线l 对应的直线l ′为mx +ny =1,椭圆方程化简为14x 2+y 2+2y =0,把一次项化成二次结构,将2y 乘上mx +ny 即可此时椭圆方程变成:14x 2+y 2+2y mx +ny =0⇒2n +1 y 2+2mxy +14x 2=0Step 2:根据斜率之积或斜率之和与韦达定理的关系得到等式,求得m ,n 之间的关系由于平移不会改变直线倾斜角,即斜率和仍然为-1,而P 2点此时为原点,设平移后的A (x A ,y A ),B (x B ,y B ),即y A -0x A -0+y B -0x B -0=-1,将椭圆方程两边同除以x 2,令k =y x ,得2n +1 k 2+2mk +14=0,结合两直线斜率之和为-1,即k 1+k 2=-2m 2n +1=-1,得2m =2n +1,∴m -2n =1,Step 3:得出定点,此时别忘了,还要平移回去!∴直线l ′恒过点Q ′(2,-2),向上平移一个单位进行还原在原坐标系中,直线l 过点Q (2,-1).【手电筒模型·1定+2动】直线y =kx +m 与椭圆x 2a 2+y 2b2=1a >b >0 交于A ,B 两点,P (x 0,y 0)为椭圆上异于AB 的任意一点,若k AP ⋅k BP =定值或k AP +k BP =定值(不为0),则直线AB 会过定点.(因为三条直线形似手电筒,固名曰手电筒模型).补充:若y =kx +m 过定点,则k AP ⋅k BP =定值,kAP +k BP k=定值.【坐标平移+齐次化处理】(左加右减,上减下加为曲线平移)Step 1:平移点P 到原点,写出平移后的椭圆方程,设出直线方程,并齐次化处理Step 2:根据斜率之积或斜率之和与韦达定理的关系得到等式,求得m ,n 之间的关系,Step 3:得出定点,此时别忘了,还要平移回去!【补充】椭圆E :x 2a 2+y 2b2=1(a >b >0),P (x 0,y 0)是椭圆上一点,A ,B 为随圆E 上两个动点,PA 与PB 的斜率分别为k 1,k 2.(1)k 1+k 2=0,证明AB 斜率为定值:x 0y 0⋅b 2a2(y ≠0);(2)k 1+k 2=t (t ≠0),证明AB 过定点:x 0-2y 0t,-y 0-2x 0t ⋅b 2a2 ;(3)k 1⋅k 2==b 2a 2,证明AB 的斜率为定值-y 0x 0(x 0≠0);(4)k 1⋅k 2=λλ≠b 2a 2 ,证明AB 过定点:x 0λa 2+b 2λa 2-b 2,-y 0λa 2+b 2λa 2-b 2 .以上称为手电筒模型,注意点P 不在椭圆上时,上式并不适用,常数也需要齐次化乘“12”2020·新高考1卷·22C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,且过点A 2,1 .(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【详解】(1)由题意可得:c a =224a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)[方法一]:通性通法设点M x 1,y 1 ,N x 2,y 2 ,若直线MN 斜率存在时,设直线MN 的方程为:y =kx +m ,代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0,可得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2,因为AM ⊥AN ,所以AM ·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,根据y 1=kx 1+m ,y 2=kx 2+m ,代入整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0,所以k 2+1 2m 2-61+2k 2+km -k -2 -4km 1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,因为A (2,1)不在直线MN 上,所以2k +m -1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13k ≠1 ,所以直线过定点直线过定点P 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,由AM ·AN=0得:x 1-2 x 1-2 +y 1-1 -y 1-1 =0,得x 1-2 2+1-y 21=0,结合x 216+y 213=1可得:3x 12-8x 1+4=0,解得:x 1=23或x 2=2(舍).此时直线MN 过点P 23,-13 .令Q 为AP 的中点,即Q 43,13,[方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为(x +2)26+(y +1)23=1,设直线MN 的方程为mx +ny =4.将直线MN 方程与椭圆方程联立得x 2+4x +2y 2+4y =0,即x 2+(mx +ny )x +2y 2+(mx +ny )y =0,化简得(n +2)y 2+(m +n )xy +(1+m )x 2=0,即(n +2)y x 2+(m +n )yx +(1+m )=0.设M x 1 ,y 1 ,N x 2,y 2 ,因为AM ⊥AN 则k AM ⋅k AN =y 1x 1⋅y 2x 2=m +1n +2=-1,即m =-n -3.代入直线MN 方程中得n (y -x )-3x -4=0.则在新坐标系下直线MN 过定点-43,-43,则在原坐标系下直线MN 过定点P 23,-13.又AD ⊥MN ,D 在以AP 为直径的圆上.AP 的中点43,13即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在Q 43,13 ,使得|DQ |=12|AP |=223.[方法三]:建立曲线系A 点处的切线方程为2×x6+1×y 3=1,即x +y -3=0.设直线MA 的方程为k 1x -y -2k 1+1=0,直线MB 的方程为k 2x -y -2k 2+1=0,直线MN 的方程为kx -y +m =0.由题意得k 1⋅k 2=-1.则过A ,M ,N 三点的二次曲线系方程用椭圆及直线MA ,MB 可表示为x 26+y 23-1+λk 1x -y - 2k 1+1 k 2x -y -2k 2+1 =0(其中λ为系数).用直线MN 及点A 处的切线可表示为μ(kx -y +m )⋅(x +y -3)=0(其中μ为系数).即x 26+y 23-1+λk 1x -y -2k 1+1 k 2x - y -2k 2+1 =μ(kx -y +m )(x +y -3).对比xy 项、x 项及y 项系数得λk 1+k 2 =μ(1-k ),①λ4+k 1+k 2 =μ(m -3k ),②2λk 1+k 2-1 =μ(m +3).③将①代入②③,消去λ,μ并化简得3m +2k +1=0,即m =-23k -13.故直线MN 的方程为y =k x -23 -13,直线MN 过定点P 23,-13.又AD ⊥MN ,D 在以AP 为直径的圆上.AP 中点43,13即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在Q 43,13 ,使得|DQ |=12|AP |=223.[方法四]:设M x 1,y 1 ,N x 2,y 2 .若直线MN 的斜率不存在,则M x 1,y 1 ,N x 1,-y 1 .因为AM ⊥AN ,则AM ⋅AN=0,即x 1-2 2+1-y 21=0.由x 216+y 213=1,解得x 1=23或x 1=2(舍).所以直线MN 的方程为x =23.若直线MN 的斜率存在,设直线MN 的方程为y =kx +m ,则x 2+2(kx +m )2-6=1+2k 2x -x 1 x -x 2 =0.令x =2,则x 1-2 x 2-2 =2(2k +m -1)(2k +m +1)1+2k 2.又y -m k 2+2y 2-6=2+1k 2y -y 1 y -y 2 ,令y =1,则y 1-1 y 2-1 =(2k +m -1)(-2k +m -1)1+2k 2.因为AM ⊥AN ,所以AM ⋅AN =x 1-2 x 2-2 +y 1-1 y 2-1 =(2k +m -1)(2k +3m +1)1+2k 2=0,即m =-2k +1或m =-23k -13.当m =-2k +1时,直线MN 的方程为y =kx -2k +1=k (x -2)+1.所以直线MN 恒过A (2,1),不合题意;当m =-23k -13时,直线MN 的方程为y =kx -23k -13=k x -23-13,所以直线MN 恒过P 23,-13.综上,直线MN 恒过P 23,-13,所以|AP |=423.又因为AD ⊥MN ,即AD ⊥AP ,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为Q 43,13 ,则|DQ |=12|AP |=223.所以存在定点Q ,使得|DQ |为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法;方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为mx +ny =4,再通过与椭圆方程联立,构建齐次式,由韦达定理求出m ,n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线MN :y =kx +m ,再利用过点A ,M ,N 的曲线系,根据比较对应项系数可求出m ,k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解x 1-2 x 2-2 以及y 1-1 y 2-1 的计算.题型一已知定点求定值C :y 2=4x ,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:∠POQ =90°.【解析】直线PQ :x =my +4,P x 1,y 1 ,Q x 2,y 2由x =my +4,得1=x -my4则由x =my +4y 2=4x ,得:y 2=4x ⋅x -my 4,整理得:y x 2+m y x -1=0,即:y 1x 1⋅y 2x 2=-1.所以k OP ⋅k OQ =y 1y 2x 1x 2=-1,则OP ⊥OQ ,即:∠POQ =90°椭圆E :x 22+y 2=1,经过点M (1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A (0,-1),证明:直线AP 与AQ 的斜率之和为2.【解析】设直线PQ :mx +n (y +1)=1,P x 1,y 1 ,Q x 2,y 2 则m +2n =1.由mx +n (y +1)=1x 22+y 2=1,得:x 22+[(y +1)-1]2=1.则x 22+(y +1)2-2(y +1)[mx +n (y +1)]=0,故(1-2n )y +1x 2-2m y +1x +12=0.所以y 1+1x 1+y 2+1x 2=2m 2n -1=2.即k AP +k AQ =y 1+1x 1+y 2+1x 2=2.A 1,32 ,O 为坐标原点,E ,F 是椭圆C :x 24=y 23=1上的两个动点,满足直线AE 与直线AF 关于直线x =1对称.证明直线EF 的斜率为定值,并求出这个定值;【答案】(提示:k 1+k 2=0答案:12)点F (1,0)为椭圆x 24+y 23=1的右焦点,过F 且垂直于x 轴的直线与椭圆E 相交于C 、D 两点(C 在D 的上方),设点A 、B 是椭圆E 上位于直线CD 两侧的动点,且满足∠ACD =∠BCD ,试问直线AB 的斜率是否为定值,请说明理由.解法1常规解法依题意知直线AB 的斜率存在,设AB 方程:y =kx +m A x 1,y 1 ,B x 2,y 2代入椭圆方程x 24+y 23=1得:4k 2+3 x 2+8kmx +4m 2-12=0(*)∴x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3由∠ACD =∠BCD 得k AC +k BC =0∵C 1,32 ,∴y 1-32x 1-1+y 2-32x 2-1=kx 1+m -32x 1-1+kx 2+m -32x 2-1=0∴2kx 1x 2+m -32-k x 1+x 2 -2m +3=0∴2k ⋅4m 2-124k 2+3+m -32-k -8km 4k 2+3-2m +3=0整理得:(6k -3)(2k +2m -3)=0∴2k +2m -3=0或6k -3=0当2k +2m -3=0时,直线AB 过定点C 1,32,不合题意∴6k -3=0,k =12,∴直线AB 的斜率是定值12解法2齐次化:设直线AB 的方程为m (x -1)+n y -32 =1椭圆E 的方程即:3[(x -1)+1]2+4y -32 +322=12即:4y -32 2+12y -32+6(x -1)+3(x -1)2=0联立得:(4+12n )y -32 2+(12m +6n )y -32 (x -1)+(6m +3)(x -1)2=0即(4+12n )y -32x -1 2+(12m +6n )y -32x -1+(6m +3)=0∴由∠ACD =∠BCD 得k AC +k BC =y 1-32x 1-1+y 2-32x 2-1=-(12m +6n )(4+12n )=0即:n =-2m∴直线AB 的斜率为-m n =12,是定值.:x 22+y 2=1,A 0,-1 ,经过点1,1 ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.解法1常规解法:证明:由题意设直线PQ 的方程为y =k x -1 +1k ≠0 ,代入椭圆方程x 22+y 2=1,可得1+2k 2 x 2-4k k -1 x +2k k -2 =0,由已知得1,1 在椭圆外,设P x 1,y 1 ,Q x 2,y 2 ,x 1x 2≠0,则x 1+x 2=4k k -1 1+2k 2,x 1x 2=2k k -21+2k 2,且Δ=16k 2k -1 2-8k k -2 1+2k 2 >0,解得k >0或k <-2.则有直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +2-k 1x 1+1x 2=2k +2-k ⋅x 1+x 2x 1x 2=2k +2-k ⋅4k k -12k k -2=2k -2k -1 =2.即有直线AP 与AQ 斜率之和2.解法2齐次化:上移一个单位,椭圆E和直线L:x 22+y -1 2=1mx +ny =1,mx +ny =1过点1,2 ,m +2n =1,m =1-2n ,x 2+2y -1 2=2,x 2+2y 2-4y =0,2y 2+x 2-4y mx +ny =0,-4n +2 y2-4mxy +x 2=0,∵x ≠0,同除x 2,得-4n +2 y x2-4m yx+1=0,k 1+k 2=-4m -4n +2=2m 1-2n =2mm=2.C :x 24+y 23=1,过F 作斜率为k (k ≠0)的动直线l ,交椭圆C 于M ,N 两点,若A 为椭圆C 的左顶点,直线AM ,AN 的斜率分别为k 1,k 2,求证:k k 1+kk 2为定值,并求出定值.将椭圆沿着AO 方向平移,平移后的椭圆方程为(x −2)24+y 23=1⇒x 24+y 23+x =0设直线MN 方程为mx +ny =1,代入椭圆方程得x 24+y 23+x (mx +ny )=0,两侧同时除以x 2得13y x 2−n y x +1−4m 4=0,k 1+k 2=3n ,k 1k 2=34−3m ,k =k MN=−mn,因为mx +ny =1过定点F (3,0)⇒m =13,所以k k 1+kk 2=4题型二已知定值求定点全国卷理)已知椭圆x 24+y 2=1,设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)根据椭圆的对称性,P 3-1,32 ,P 41,32两点必在椭圆C 上,又P 4的横坐标为1,∴椭圆必不过P 11,1 ,∴P 20,1 ,P 3-1,32 ,P 41,32 三点在椭圆C 上,把P 20,1 ,P 3-1,32 代入椭圆C ,得:1b 2=11a 2+34b2=1,解得a 2=4,b 2=1,∴椭圆C 的方程为x 24+y 2=1.(2):解法1常规解法:①当斜率不存在时,设l :x =m ,A m ,y A ,B m ,-y A ,∵直线P 2A 与直线P 2B 的斜率的和为-1,∴k P 2A +k P 2B =y A -1m +-y A -1m =-2m=-1,解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l :y =kx +t ,t ≠1 ,A x 1,y 1 ,B x 2,y 2 ,联立y =kx +tx 2+4y 2-4=0,整理,得1+4k 2 x 2+8ktx +4t 2-4=0,x 1+x 2=-8kt 1+4k 2,x 1x 2=4t 2-41+4k 2,则k P 2A+k P 2B =y 1-1x 1+y 2-1x 2=x 2kx 1+t -x 2+x 1kx 2+t -x 1x 1x 2=8kt 2-8k -8kt 2+8kt1+4k 24t 2-41+4k 2=8k t -14t +1 t -1=-1,又t ≠1,∴t =-2k -1,此时Δ=-64k ,存在k ,使得Δ>0成立,∴直线l 的方程为y =kx -2k -1,当x =2时,y =-1,∴l 过定点2,-1 .解法2齐次化:下移1个单位得E :x 24+y +1 2=1⇒x 24+y 2+2y =0,设平移后的直线:A B :mx +ny =1,齐次化:x 2+4y 2+8y mx +ny =0,8n +4 y 2+8mxy +x 2=0,∵x ≠0同除以x 2,8n +4 y x 2+8m y x +1=0,8n +4 k 2+8mk +1=0,k 1+k 2=-8m 8n +4=-1,8m =8n +4,2m -2n =1,∴mx +ny =1过2,-2 ,上移1个单位2,-1 .C :x 24+y 2=1,设直线l 不经过点P 2(0,1)且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:直线l 过定点.不平移齐次化【解析】设直线l :mx +n (y -1)=1......(1)由C :x 24+y 2=1,得x 24+[(y -1)+1]2=1即:x 24+(y -1)2+2(y -1)=0......(2)由(1)(2)得:x 24+(y -1)2+2(y -1)[mx +n (y -1)]=0整理得:(1+2n )y -1x2+2m ⋅y -1x +14=0则k P 2A +k P 2B =y 1-1x 1+y 2-1x 2=-2m1+2n =-1,则2m =2n +1,代入直线l :mx +n (y -1)=1,得:l :(2n +1)x +2n (y -1)=2显然,直线过定点(2,-1).C :y 2=2px (p >0)上的点P (1,y 0)(y 0>0)到其焦点的距离为2.(1)求点P 的坐标及抛物线C 的方程;(2)若点M 、N 在抛物线C 上,且k PM •k PN =-12,证明:直线MN 过定点.答案:(2)(9,-2)C :x 24+y 23=1,P 1,32 ,若直线l 交椭圆C 于A ,B (A ,B 异于点P )两点,且直线PA 与PB 的斜率之积为-94,求点P 到直线l 距离的最大值.解法1齐次化:公共点P 1,32 ,左移1个单位,下移32个单位,C :x +124+y +3223=1A B:mx +ny =1,3x 2+6x +4y 2+3y =0,4y 2+3x 2+6x +2y mx +ny =0,12n +4 y 2+62m +n xy +6m +3 x 2=0,等式两边同时除以x 2,12n +4 y x2+62m +n yx+6m +3 =0,k PA ⋅k PB =-94,6m +312n +4=-94,-12m -94n =1,mx +ny =1过-12,-94 ,右移1个单位,上移32个单位,过Q 12,-34,∴P 到直线l 的距离的最大值为PQ 的值为1-12 2+32--34 2=854,由于854>12,∴点P 到直线l 距离的最大值854已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的离心率为33,椭圆E 的短轴长等于4.由k 3⋅k 4=k BP ⋅k BQ ,即t -t 2=-2,∴t =22+83,此时Δ2=4 k 29>0,∴PQ 的方程为y =k 2x +22(1)求椭圆E 的标准方程;x 6+y 24=1(2)设A 0,-1,B 0,2,过A 且斜率为k 1的动直线l 与椭圆E 交于M ,N 两点,直线BM ,BN 分别交⊙C :x 2+ y -12=1于异于点B 的点P ,Q ,设直线PQ 的斜率为k 2,直线BM ,BN 的斜率分别为k 3,k 4.①求证:k 3⋅k 4为定值;②求证:直线PQ 过定点.3答案:(2)-2;(3) 0,2【小问1详解】4c=33 由题意 a b 2+c 2=a 22b = 解得2==ba c =2所以椭圆的标准方程为:x 6+62y 24=1;【小问2详解】2①设MN 的方程为y =k 1x -1,与x 6+y 24=1联立得: 3k 2 1+2x 2-6k 1x -9=0,x 1+x 2=6k 13k 21+293k 21+2 1+1>0设M (x 1,y 1),N (x 2,y 2),则 x 1x 2=- Δ1=72 2k 2,∴k 3⋅k 4=y 1-2x 1⋅y 2-2x 2= k 1x 1-3 2x 2-3 k x 1x 2=k 21x 1x 2-3k 1(x 1+x 2)+9x 1x 2=-2【法二】平移坐标系+齐次化处理将坐标系中的图像整体向下平移2个单位,2平移后的椭圆方程为:x 6+ 22y +4=1,整理得:2x 2+3y 2+12y =0,设平移后的直线MN 的方程为:mx +ny =1,代入点 0,-3得mx -y3=1,y则有2x 2+3y 2+12y mx - 3=0,整理得:-y 2+12mxy +2x 2=0y令k =x,将-y 2+12mxy +2x 2=0两边同除x 2,得-k 2+12mk +2=0,故k 3⋅k 4=-2y m '说明:因为平移后k 3=x m 'y n ',k 4=x n ',而式子-y 2+12mxy +2x 2=0中x ,y 的值对应平移后的m '和n '所以同除x 2后得到的就是一个以k 3和k 4为根一个关于k 的一元二次方程.②设PQ 的方程为y =k 2x +t ,与x 2+ y -12=1联立 k 22+1x 2+2k 2 t -1x +t t -2=0,2k 2t -1k 22+1t -2tk 22+1 2-t 2+2t >0设P (x 3,y 3),Q (x 4,y 4)则 x 3x 4= Δ2=4 k 2 x 3+x 4=-∴k BP ⋅k BQ =y 3-2x 3⋅y 4-2x 4= k 2x 3+t -2 2x 4+t -2 k x 3x 4=k 22x 3x 4+k 2 t -2 x3+x 4+ t -22x 1x 2=k 2 2t t -2-2k 2 2 t -2 t -1+ k 2 2+1 t -22t t -2=k 22t -2k 22 t -1 2+1 t -2 + k 2t =t -2t 3,故直线PQ 恒过定点 0,23.。
高考数学圆锥曲线专题练习及答案解析

X = —½距离为6,点P,Q是椭圆上的两个动点©
C
(1)求椭圆C的方程;
(2)若直线AP丄40,求证:直线P0过泄点R,并求出R点的坐标。
【例二・】已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设该动圆圆心的轨迹为曲 线C。
(1)求曲线C的方程;
(2)过点N(1,O)任意作两条互相垂直的直线∕1,∕2,分别交曲线C于不同的两点A,B和
的焦点,直线4F的斜率为少,O为坐标原点。
3
(1)求E方程;
(2)设过点A的直线/与E相交于PQ两点,当AOP0的面积最大时,求/的方
程。
专题练习
1•在平面直角坐标系XOy中,已知点A(O,—OB点在直线y = -3±, M点满足
MB//QA,莎•亦=屁•鬲M点的轨迹为曲线C。
(1)求C的方程:
(2)P为C上的动点,/为C在P点处的切线,求O点到/距离的最小值。
10.抛汤钱屮阿基来德三角形鲂纟见般质及疝用
11.(S傩曲钱屮的戒切後龜哩
锥曲线中的求轨迹方程问题
解题技巧
求动点的轨迹方程这类问题可难可易是高考中的髙频题型,求轨迹方程的主要方法有直译法、
相关点法、泄义法、参数法等。它们的解题步骤分别如下:
1.直译法求轨迹的步骤:
(1)设求轨迹的点为P(χ,y);
(2)由已知条件建立关于x,y的方程;
D,Q设线段ABQE的中点分别为几。・
①求证:直线P0过左点R,并求出泄点/?的坐标;
②求PGl的最小值。
专题练习
1.设椭圆E:丄y+ =y=l(α> b > 0)的右焦点到直线x-y + 2√z2=0的距离为3,且过点Cr Ir
I
圆锥曲线全国卷高考真题解答题(含解析))

圆锥曲线全国卷高考真题解答题一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.9.2017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .10.2018年全国卷Ⅲ理数高考试题文已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.12.2018年全国普通高等学校招生统一考试理数(全国卷II )设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.13.2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.14.2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.15.2018年全国卷Ⅲ文数高考试题已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+.16.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)设A 、B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.17.2017年全国普通高等学校招生统一考试文科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .18.2017年全国普通高等学校招生统一考试文科数学(新课标3卷)在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.19.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.20.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在C 上(1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)已知曲线2:,2x C y D =,为直线12y上的动点,过D 作C 的两条切线,切点分别为,A B .(1)证明:直线AB 过定点: (2)若以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.22.2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷带解析)设1F , 2F 分别是椭圆C : 22221(0)x y a b a b+=>>的左、右焦点, M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a , b .23.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ) 已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积24.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM ON ⋅=12,其中O 为坐标原点,求|MN |.一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或. 【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小. 2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2【分析】(1)设直线l :32y x m =+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得1252x x +=;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果. 【详解】(1)设直线l 方程为:32y x m =+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+= 联立2323y x m y x ⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系. 3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)2y x =-【解析】试题分析:设出F ,由直线AFc ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF,()0,2A -所以23c =,c =又222,2c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ==214k =+ 点O 到直线l的距离d =所以12OPQS d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.4.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+. 【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示;(2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kbx k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-. (2)四边形OAPB 能为平行四边形. ∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = 239k =+2(3)23(9)mk k k -⨯+.解得147k =247k =.∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形. 考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 【答案】(Ⅰ0ax y a --=0ax y a ++=(Ⅱ)存在 【详解】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得(2,)M a a ,(2,)N a -,或(22,)M a -,,)N a a .∵12y x '=,故24x y =在x =2a a C 在(22,)a a 处的切线方程为(2)y a a x a -=-,即0ax y a --=.故24x y =在x =-22a 处的导数值为-a ,C 在(22,)a a -处的切线方程为(2)y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=或0ax y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+.当=-b a 时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力 6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题分析:设的方程为.(1)由在线段上,又;(2)设与轴的交点为(舍去),.设满足条件的的中点为.当与轴不垂直时.当与轴垂直时与重合所求轨迹方程为.试题解析:由题设,设,则,且.记过两点的直线为,则的方程为.............3分(1)由于在线段上,故,记的斜率为的斜率为,则,所以..................5分(2)设与轴的交点为,则,由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合,所以,所求轨迹方程为.........12分考点:1.抛物线定义与几何性质;2.直线与抛物线位置关系;3.轨迹求法.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =.因此AMN 的面积AMNS11212144227749=⨯⨯⨯=.(Ⅱ)由题意3t >,0k >,()A .将直线AM的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当32k =时上式不成立,因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->,解得322k <<. 因此k 的取值范围是()32,2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.8.2016年全国普通高等学校招生统一考试理科数学(新课标1卷) 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)答案见解析;(Ⅱ).【解析】试题分析:(Ⅰ)利用椭圆定义求方程;(Ⅱ)把面积表示为关于斜率k 的函数,再求最值。
2023年高考数学三轮复习圆锥曲线中的二级结论及应用(解析版)

查补易混易错点07圆锥曲线中的二级结论及应用圆锥曲线有许多形式结构相当漂亮的结论,记住圆锥曲线中一些二级结论,能快速摆平一切圆锥曲线压轴小题。
1设P 点是椭圆x 2a 2+y 2b2=1(a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点,记∠F 1PF 2=θ,则(1)|PF 1||PF 2|=2b 21+cos θ;(2)S △PF 1F 2=b 2tan θ2;(3)e =sin ∠F 1PF 2sin ∠PF 1F 2+sin ∠PF 2F 1.2设P 点是双曲线x 2a 2-y 2b2=1(a >0,b >0)上异于实轴端点的任一点,F 1,F 2为其焦点,记∠F 1PF 2=θ,则(1)|PF 1||PF 2|=2b 21-cos θ;(2)S △PF 1F 2=b 2tan θ2;(3)e =sin ∠F 1PF 2|sin ∠PF 1F 2-sin ∠PF 2F 1|.3.设A ,B 为圆锥曲线关于原点对称的两点,点P 是曲线上与A ,B 不重合的任意一点,则k AP ·k BP =e 2-1.4.设圆锥曲线以M (x 0,y 0)(y 0≠0)为中点的弦AB 所在的直线的斜率为k .(1)圆锥曲线为椭圆x 2a 2+y 2b 2=1(a >b >0),则k AB =-b 2x 0a 2y 0,k AB ·k OM =e 2-1.(2)圆锥曲线为双曲线x 2a 2-y 2b 2=1(a >0,b >0),则k AB =b 2x 0a 2y 0,k AB ·k OM =e 2-1.(3)圆锥曲线为抛物线y 2=2px (p >0),则k AB =p y 0.5.过椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F 且倾斜角为α(α≠90°)的直线交椭圆于A ,B 两点,且|AF →|=λ|FB →|,则椭圆的离心率等于1(1)cos λλα-+.6.过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 且倾斜角为α(α≠90°)的直线交双曲线右支于A ,B两点,且|AF →|=λ|FB →|,则双曲线的离心率等于|λ-1(λ+1)cos α|.7.过抛物线y 2=2px (p >0)的焦点F 倾斜角为θ的直线交抛物线于A ,B 两点,则两焦半径长为p 1-cos θ,p1+cos θ,1|AF |+1|BF |=2p ,|AB |=2p sin 2θ,S △AOB =p 22sin θ.1.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为M (-12,-15),则E 的方程为()A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1 D.x 25-y 24=1【答案】B【解析】由题意可知k AB =-15-0-12-3=1,k MO =-15-0-12-0=54,由双曲线中点弦中的斜率规律得k MO ·k AB =b 2,即54=b 2,又9=a 2+b 2,联立解得a 2=4,b 2=5,故双曲线的方程为x 24-y 25=1.于A ,B 两点,已知AF →=3FB →,则k =()A .1 B.2 C.3D .2【答案】B【解析】∵λ=3,由结论可得,e =32,由规律得32cos α=3-13+1,cos α=33,k =tan α= 2.4.如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为()A .5B .6 C.163 D.203【答案】C 【解析】因为1|AF |+1|BF |=2p ,|AF |=4,所以|BF |=43,所以|AB |=|AF |+|BF |=4+43=163.6.已知双曲线C :()105x y k k -=>的左、右焦点分别为1F ,2F ,且123F PF ∠=,则12F PF △的面积为().【答案】C【解析】由()22105x y k k -=>,b =123F PF π∠=,由结论可知122tan 2F PF b S θ==△7.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右顶点分别为A ,B ,点P 在椭圆上异于A ,B 两点,若AP 与BP 的斜率之积为-1,则椭圆的离心率为()【解析】k AP ·k BP =-12,e 2-1=-12,∴e 2=12,e =22.8.在椭圆x 225+y 29=1上,△PF 1F 2为焦点三角形,如图所示.(1)若θ=60°,则△PF 1F 2的面积是________;(2)若α=45°,β=75°,则椭圆离心率e =________.【答案】(1)33(2)6-22【解析】(1)由结论得S △PF 1F 2=b 2tanθ2,即S △PF 1F 2=33.(2)由公式e =sin (α+β)sin α+sin β=sin 60°sin 45°+sin 75°=6-22.9.(2022·荆州模拟)已知P 是椭圆x 24+y 2=1上的一点,F 1,F 2是椭圆的两个焦点,当∠F 1PF 2=π3时,则△PF 1F 2的面积为________.【答案】33【解析】由结论可得:S =b 2tan θ2,可得S =1·tan π6=33.标原点,则|AB|为【答案】12【解析】易知2p=3,由结论可得知|AB|=2psin2α,所以|AB|=3sin230°=12.15.设F为抛物线C:y2=16x的焦点,过F且倾斜角为6π的直线交C于A、B两点,O为坐标原点,则△AOB的面积为。
圆锥曲线(4大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错(原卷版)

D.3
变式
3.过双曲线
C
:
x a
2 2
y2 b2
1(a
0,b
0)
的右焦点 F2 作双曲线一条渐近线的垂线,垂
足为
A
,且与另一条渐近线交于点
B
,若
|
AF2
|
1 3
|
F2 B
|
,则双曲线
C
的离心率是(
)
A. 6 2
B. 3 或 6 2
C. 3 6 2
D. 3 3
1.已知圆 C1 : x2
y2
b2 b
)
A. 1+ 5 2
B. 3 1 2
C. 3
D.2
变式
2.已知双曲线 E :
y2 a2
x2 8
1(a
0) 的上焦点为 F1 ,点
P
在双曲线的下支上,若
A(4, 0) ,且 PF1 | PA | 的最小值为 7,则双曲线 E 的离心率为( )
A.2 或 697 25
B.3 或 697 25
C.2
A. 3
B.2
C. 2 3
D. 13
8.已知双曲线
x2 a2
y2 b2
1(a
0,b
0)
的左、右焦点分别为 F1, F2 ,以 F1F2 为直径的圆与双
曲线在第二象限的部分交于点
P
,若双曲线上的点
Q
满足
F1P
2 3
F2Q
,则双曲线的离
心率为( )
A. 37 5
B. 35 5
C. 37
4
D. 15 3
专题 11 圆锥曲线
易错点一:求轨迹方程时忽略变量的取值范围(求动点轨迹 方程)
2020-2022年全国新高考圆锥曲线说题

性及定点定值问题,或求面积以及最值问题,因为它们
更能体现数学的核心素养。
命题立意 考题分析 拓展推广 备考策略
2020年全国I卷理科数学第20题
已知
A, B
分别为椭圆
E
:
x2 a2
y2
t 3
x 3
y2
,所以
1
y2
t 3
x2
3
消参思想
x1 3 x2 3
考虑到
3 y1 x1 3
y2 是一个关于 x2 3
x1,
y1, x2 ,
y2 的非对称表达式,无法直接利用韦达定理
,
命题立意 考题分析 高考预测 备考策略
由于 x22
9
将
3 y1 x1 3
y22 1 ,故 y22
2
3②
由①②得 6 3 2 3 3
消参思想 由直线 CD 方程为
y
y1
y2 x2
y1 x1
x
x1
令 y 0 x x2 y1 x1 y2 3 3
y1 y2
2
从而证明直线
CD
过定点
3 2
,
0
,
命题立意 考题分析 拓展推广 备考策略
法五:先猜后证
取点 C 与点 G 重合, 直线 PA 的方程为 y 1 x 3 ,
将
C,
D
的坐标代入(1)式
x
6t
3t2 3 3t2
6t t2 1 2t
27 2t
t2 9
12t3 36t 8t3 24t
3 2
圆锥曲线复习课课件

将问题转化为函数问题,利用函数的性质和图像,求解相关 问题。
05
圆锥曲线的问题与挑战
圆锥曲线中的难题与挑战
圆锥曲线中的复杂计算
圆锥曲线问题往往涉及大量的计算和复杂的数学公式,需要学生 具备较高的数学计算能力和逻辑思维能力。
圆锥曲线中的抽象概念
圆锥曲线问题常常涉及到抽象的概念和性质,需要学生具备较好的 数学基础和空间想象力。
利用圆锥曲线的参数方程,将问 题转化为参数的取值范围或最值 问题,简化计算。
圆锥曲线的特殊解题方法
焦点三角形法
利用圆锥曲线的焦点三角形,结合正 弦定理、余弦定理等,求解相关问题 。
切线法
通过圆锥曲线的切线性质,结合导数 和切线斜率,求解相关问题。
圆锥曲线的综合解题方法
数形结合法
将几何性质与代数表达式相结合,通过数形结合的方法,直 观地解决问题。
作用。
光线的弯曲程度与圆锥曲线的离 心率有关,离心率越大,光线弯
曲程度越明显。
圆锥曲线的对称性质
圆锥曲线具有对称性,包括中 心对称、轴对称和面对称等。
圆具有中心对称和轴对称,椭 圆和双曲线只有中心对称,抛 物线只有轴对称。
对称性是圆锥曲线的一个重要 性质,在解决几何问题时具有 广泛应用。
03
圆锥曲线的应用
路,提高解题能力。
培养数学思维
学生应注重培养数学思维,提高 逻辑推理能力和空间想象力,以
便更好地解决圆锥曲线问题。
如何进一步深化对圆锥曲线的研究
研究圆锥曲线的性质
01
学生可以进一步研究圆锥曲线的性质和特点,探索其内在规律
和数学之美。
探索圆锥曲线与其他数学领域的联系
02
学生可以探索圆锥曲线与其他数学领域之间的联系,例如与代
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学中圆锥曲线的对称问题
圆锥曲线的对称问题在高考数学中是一个常见的考点。
这类问题通常涉及到对圆锥曲线(如椭圆、双曲线和抛物线)的对称性质的理解和应用。
首先,我们需要明确圆锥曲线的对称性质:
1. 椭圆:椭圆关于其长轴和短轴都是对称的。
这意味着,如果点P(x, y)在椭圆上,那么点P'(-x, y)和P''(x, -y)也都在椭圆上。
2. 双曲线:双曲线关于其主轴和次轴都是对称的。
如果点P(x, y)在双曲线上,那么点P'(-x, y)和P''(x, -y)也都在双曲线上。
3. 抛物线:抛物线关于其对称轴是对称的。
如果点P(x, y)在抛物线上,那么点P'(x, -y)也在抛物线上。
在解决这类问题时,我们通常会利用这些对称性质来简化计算或找到解题的线索。
例如,如果我们知道一个点在一个圆锥曲线上,那么我们可以利用对称性质来找到其他也在该曲线上的点。
此外,我们还需要注意一些特殊的对称情况,如中心对称和轴对称。
这些对称性质也可以帮助我们更好地理解和解决圆锥曲线的对称问题。
总的来说,解决圆锥曲线的对称问题需要我们对圆锥曲线的对称性质有深入的理解,并能够灵活应用这些性质来解决问题。
同时,我们还需要注意一些特殊的对称情况,以便更好地应对各种复杂的题目。