工业循环水处理

工业循环水处理
工业循环水处理

循环冷却水处理

第一章循环冷却水系统及其水处理概况

第一节循环冷却水系统总概

人类日常生活离不开水,工业生产也同样离不开水。随着工业生产的发展,用水量越来越大,很多地区已经出现供水不足的现象,因此合理和节约用水已经成为发展工业生产中的一个重要问题。

工业用水主要包括锅炉用水、工艺用水、清洗用水和冷却用水、污水等。其中用水量最大的是冷却用水,约占工业用水量的百分之九十以上。不同的工业系统和不同用途对水质的要求是不同的;但各工业部门使用的冷却水对水质的要求基本上是一致的,这就使得冷却水质控制在近年来作为一门应用技术获得了迅速的发展。在工厂中,冷却水主要用来冷凝蒸汽,冷却产品或设备,如果冷却效果差,就会影响生产效率,使产品的收率和产品的质量下降,甚至于会造成生产事故。

水是比较理想的冷却介质。因为水的存在很普遍,和其它液体相比,水的热容或比热较大,水的汽化潜热(蒸发潜热)和熔化潜热也很高。比热是单位质量的水温度升高一度时所吸收的热量。常用的单位是卡/克·度(摄氏)或英热单位(B.T.U.)/磅·度(华氏)。用这两个单位表示水的比热度时,其数值是相同的。热容大或比热大的物质升高温度时需要吸收大量的热量,而本身温度并不明显升高,因此水具有良好的贮热性能。潜热是物态发生转变时所吸收或放出的热量。一克分子水蒸发成为一克分子蒸汽需要吸收近一万卡的热量,因此水蒸发时能吸收大量的热量,从而使水温下降,这种依靠水份蒸发带走热量的过程称为蒸发散热。

和水一样,空气也是一种常用的冷却介质。水和空气的导热性能都很差,在0℃时,水的导热系数是0.49千卡/米·小时·℃,空气的导热系数是0.021千卡/米·小时·℃,但水与空气相比,水的导热系数要比空气高24倍左右。因此,当冷却效果相同时,用水冷却比用空气冷却的设备要小得多。大型工业企业和用水量大的工厂一般都采用水冷却。常用的水冷系统可以分成三类,即直流系统、密闭系统和敞开蒸发系统,后两种冷却水都是循环使用的,故又称为循环冷却水系统。

1、冷却水系统

用水来冷却工艺介质的系统称作冷却水系统。冷却水系统通常

有两种:直流冷却水系统和循环冷却水系统。

1.1直流冷却水系统

在直流冷却水系统中,冷却水仅仅通过换热设备一次,用过后水就被排放掉,因此,它的用水量很大,而排出水的温升却很小,水中各种矿物质和离子含量基本上保持不变。

1.2循环冷却水系统

循环冷却水系统又分封闭式和敞开式两种。

1.2.1 封闭式循环冷却水系统

封闭式循环冷却水系统又称为密闭式循环冷却水系统。在此系统中,冷却水用过后不

是马上排放掉,而是回收再用。

1.2.2 敞开式循环冷却水系统

敞开蒸发系统是目前应用最广、类型最多的一种冷却系统。它也是以水冷却移走工艺介质或换热设备所散发的热量,然后利用热水和空气直接接触时将一部分热水蒸发出去,而使大部分热水得到冷却后,再循环使用。因此,这样的系统也称敞开循环冷却水系统。根据热水和空气接触方法的不同,可以分成很多类型。敞开循环冷却水系统的分类见表一。

表一敞开蒸发系统的分类

自然冷却塔

冷却池

喷淋冷却池

喷水式

敞开放式横流式

开点滴式

发自然通风

系点滴式、薄膜式

统风筒式

喷水式、点滴薄膜式

却点滴式

塔薄膜式逆流式

鼓风式喷水式

点滴薄膜式

机械通风点滴式

横流或逆流式

薄膜式

抽风式喷水式

逆流式

点滴薄膜式

冷却水由循环泵送往系统中各换热器,以冷却工艺热介质,冷却水本身温度升高,变成热水,此循环水量为R的热水被送往冷却塔顶部,由布水管道喷淋到塔内填料上。空气则由塔底百页窗空隙中进入塔内,并被塔顶风扇抽吸上升,与落下的水滴和填料上的水膜相遇进行热交换,水滴和水膜则在下降过程中逐渐变冷,当到达冷却水池时,水温正好下降到符合冷却水的要求。空气在塔内上升过程中则逐渐变热,最后由塔顶逸出,同时带走水蒸气。这部分水的损失称为蒸气损失E。热水由塔顶向下喷溅时,由于外界风吹和风扇抽吸的影响,循环水会有一定的飞溅损失和随空气带出的雾沫夹带损失。由于这些损失掉的水,统称为风吹损失D。为了维持循环水中的一定的离子浓度,必须不断向系统中加入补充水量M和系统外面排出一定的污水。这部分水量称为排污损失B。

冷却塔的种类很多,按照塔的构造和空气流动情况来区分,有自然通风冷却塔和机械通风冷却塔两大类。按照空气与水在塔内的相对流动情况,又可分为逆流式和横流式。有关各种类型冷却塔的结构和特点,可参阅有关的参考文献。机械通风冷却塔冷却效果最好。设

计中应综合考虑循环比,其应在3~5倍为宜。

2、浓缩倍数

循环冷却水的浓缩倍数是该循环冷却水的含盐量与其补充水的含盐量之比。

提高循环冷却水的浓缩倍数,可以降低补充水的用量,从而节约水资源;还可以降低排污水量,从而减少对环境的污染和废水的处理量。此外,提高浓缩倍数还可以节约水处理剂的消耗量,从而降低冷却水处里的成本。但是,过多地提高浓缩倍数,会使循环冷却水中的硬度,碱度和浊度升得太高,水的结垢倾向增大很多,从而使结垢控制的难度变得太大;还会使循环冷却水中的腐蚀性离子(例如Cl-和SO42-)和腐蚀性物质(例如H2S、SO2和NH3)的含量增加,水的腐蚀性增强,从而使腐蚀控制的难度增加;过多地提高浓缩倍数还会使药剂(例如聚磷酸盐)在冷却水系统内的停留时间增长而水解。因此,冷却水的浓缩倍数并不是愈高愈好,一般热电系统可控制5~8倍,化工、炼油2~4倍。

2.1.1节水量与浓缩倍数的关系

现在从节约水资源的角度看一下补充水量M占循环水量R的百分比M/R与浓缩倍数K 的关系,以及每提高一个浓缩倍数单位时节约的补充水百分比(以占循环水量的百

M /R K与浓缩倍数K的关系。

为了有一个定量的概念,我们用下面的例题来说明。

例题设循环冷却水系统的循环量R为10000m3/h,冷却塔进口和出口的水温分别为42℃和32℃,试求浓缩倍数K分别为1.5~10.0时的补充水量M、排污水量B以及补充水量占循环水量的百分比M/R。

解现以K+2.0时为例进行计算;

蒸发损失水量E=R·C P

=10000×4.187×(42-32)/2401

=174.4(m3/h)

风吹损失水量(按0.05%R计)

D=10000×0.05%=5.0(m3/h)

总排污水量Br=E/(K-1)=174.4/(2.0-1.0)=174.4(m3/h)

排污水量B=Br-D=174.4-5.0=169.4(m3/h)

补充水量M=E+Br=174.4+174.4=348.8(m3/h)

式中C P——水的热容量(比热)·kJ/(kg·℃);

t——水的进口温度与出口温度之差,℃;

r——水的蒸发潜热,kJ/kg ;

K——水的浓缩倍数。

现把K分别为1.5、3.0、4.0……10.0时的M、B、M/R和的计算结果列

于表2中。

2.1.2浓缩倍数的选择

从表2中可以看到:

随着循环冷却水浓缩倍数K的增加,冷却水系统的补充水量M和排污水量B都不断

表2不同浓缩倍数下冷却水运行参数的计算值

减少,因此,提高冷却水的浓缩倍数,可以节约水资源;

但是,每提高一个浓缩倍数单位( )M/R K 则随浓缩倍数的增加而降低。例如:

当浓缩倍数K 由1.0提高到2.0时,补充水量M 由10000 m 3/h ,降低到了348.8m 3/h 故有:

M/R / K=10000-348.8/10000/(2.0-1.0)=96.5%

当浓缩倍数K 由2.0提高到3.0时,则有:

M/R / K=348.8-261.6/10000/(3.0-2.0)=0.87%

当浓缩倍数K 由3.0提高到4.0时,则有:

M/R / K=261.6-232.5/10000/(4.0-3.0)=0.29%

当浓缩倍数K 由4.0提高到5.0时,则有:

M/R / K=232.5-218.0/10000/(5.0-4.0)=0.14%

由以上的例子中可以看到:

① 在低浓缩倍数时,提高浓倍数的节水效果比较明显;但当浓缩倍数提高到4.0以上 时,再进一步提高浓缩倍数的节水效果就不太明显了。例如把上述循环冷却水的浓缩倍数由4.0提高到5.0时,节约的水量仅占循环水量的0.14%。因此,一般循环冷却水系统的浓缩倍数通常被控制在2.0~4.0左右。

② 与直流冷却水相比,即使循环水的浓缩倍数比较低,例如仅为1.5倍,但此时补充 水即可节约94.8%(100%—5.2%)。由此可见,从节约水资源的角度来看,把直流冷却水改造为浓缩倍数不太高的冷却水,就可以节约大量的淡水资源。因此,直流冷却水系统的改造与不改造(为循环冷却水系统)是大不一样的。

敞开式循环冷却水的浓缩倍数可以通过调节排污水量或补充水量来控制。

2.2 补充水量M (m 3/h )

水在循环过程中,除因蒸发损失和维持一定的浓缩倍数而排掉一定的污水外,还由于空气流由塔顶逸出时,带走部分水滴,以及管道渗漏而失去部分水,因此补充水是下列各项损失之和。

2.2.1 蒸发损失E (m 3/h )冷却塔中,循环冷却水因蒸发而损失的水量E 与气候和冷却幅度有关,通常以蒸发损失率a 来表示。进入冷却塔的水量愈大,E 也就愈多,以式表示如下:

E=a(R-B)

a=e(t1-t2)

式中 a —蒸发损失率,%;

R —系统中循环水量,m3/h;

B —系统中排污水量,m3/h;

t1、t2—循环冷却水进、出冷却塔的温度,℃;

e—损失系数,与季节有关,夏季(25~30℃)时为0.15~0.16;冬季(-15~10℃)时为0.06~0.08;春秋季(0~10℃)时为0.10~0.12。

2.2.2 风吹损失(包括飞溅和雾沫夹带)D(m3/h)风吹损失除与当地的风速有关外,还与冷却塔的型式和结构有关。一般自然通风冷却塔比机械通风冷却塔的风吹损失要大些。若塔中装有良好的收水器,其风吹损失比不装收水器的要小些。风吹损失通常以占循环水量R 的百分率来估计,其值约为

D=(0.2%~0.5%)R m3/h

2.2.3 排污水损失B(m3/h)B的大小,由需要控制的浓缩倍数和冷却塔的蒸发量来确定,其计算下面再讨论。

2.2.4 渗漏损失F (m3/h)良好的循环冷却水系统,管道连接处,泵的进、出口和水池等地方都不应该有渗漏。但因管理不善,安装不好,则渗漏就不可避免。因此在考虑补充水量时,应视系统具体情况而定。故补充水量

M=E+D+B+F

3、排污水量B(m3/h)

排污水量B的确定与冷却塔的蒸发损失E和浓缩倍数K有关。可以通过下列物料衡算的办法,找出B和E与K的关系式。

设循环冷却水系统中,除了有补充水加入和排污、蒸发、风吹、渗漏等损失外,再没有其他的水流或溶质加入或排出系统,那么整个系统在循环浓缩过程中,就可以对循环水中某些不受加热、沉淀等干扰的溶质(如Cl-、Na+、K+等)作物料衡算,得到下面的式子:

M CM=E CE+B CR+D CR+F CR

式中:CM —补充水中某种溶质的浓度;

—水蒸气中某种溶质的浓度;

CE

—循环冷却水中某种溶质的浓度;

CR

当系统中管道联接紧密,不发生渗漏时,则F=0;当冷却塔收水器效果较好时,风吹损失D很小,如略去不计,则上式可简化为

E

B=

K-1

因此循环冷却水系统运行时,只要知道了系统中循环水量R和浓缩倍数K,就可以估算出蒸发量E,排污水量B以及补充水量M等操作参数。控制好这些参数,循环冷却水系统的运行也就能正常进行。

第二节敞开式循环冷却水处理的重要性

1、敞开式循环冷却水系统产生的弊端及问题

冷却水在循环系统中不断循环使用,由于水的温度升高,水流速度的变化,水的蒸发,各种无机离子和有机物质的浓缩,冷却塔和冷却水池在室外受到阳光照射、风吹雨淋、灰尘杂物的进入,以及设备结构和材料等多种因素的综合作用,会产生比直流系统更为严重的沉积物的附着、设备腐蚀和微生物的大量滋生,以及由此形成的粘泥污垢堵塞管道等问题。

1.1循环冷却水使用后的弊主要表现在以下五个方面:

①对于凉水塔周边污染物的吸收及累积;

②细菌及生物粘泥大量产生;

③金属腐蚀性急剧上升;

④泄露介质污染水系统进而造成全部冷却器管网的结垢或腐蚀;

⑤污染物不易消减。

1.2敞开式循环冷却水系统产生的问题

1.2.1沉积物的析出和附着

一般天然水中都溶解有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。

在循环冷却水系统中,重碳酸盐的浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态时,或者在经过换热器传热表面使水温升高时,会发生下列反应:

Ca(HCO3)2 CaCO3 + CO2 +H2O

CaCO3沉积在换热器传热表面,形成致密的碳酸钙水垢,它的导热性能很差。不同的水垢其导热系数不同,但一般不超过1.16W/(m·K),而钢材的导热系数为45 W/(m·K)。

1.2.2设备腐蚀

循环冷却水系统中,大量的设备是金属制造的换热器。对于碳钢制成的换热器,长期使用循环冷却水,会发生腐蚀穿孔,其腐蚀的原因是多种因素造成的。

1.2.3冷却水中溶解氧引起的电化学腐蚀

敞开式循环冷却水系统中,水与空气能充分地接触,因此水中溶解的O2可达饱和状态。当碳钢与溶有O2的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,微电池的阳极区和阴极区分别发生下列的氧化反应和还原反应:在阳极区 Fe=Fe2+ +2e

在阴极区 1/2 O2+ H2O +2e =2OH-

在水中 Fe2+ + 2OH- = Fe(OH)2

Fe(OH)2 Fe(OH)3

这些反应,促使微电池中的阳极区的金属不断溶解而被腐蚀。

1.2.4有害离子引起的腐蚀

循环冷却水在浓缩过程中,除重碳酸盐浓度随浓缩倍数增长而增加外,其他的盐类如氯化物、

硫酸盐等的浓度也会增加。当Cl-和SO2-4离子浓度增高时,会加速碳钢的腐蚀。Cl-和SO2-4会使金属上保护膜的保护性膜的保护能降低,尤其是Cl-的离子半径小,穿透性强,容易穿过膜层,置换氧原子形成氯化物,加速阳极过程的进行,使腐蚀加速,所以氯离子是引起点蚀的原因之一。

对于不锈钢制造的换热器,Cl-是引起应力腐蚀的主要原因,因此冷却水中Cl-离子的含量过高,常使设备上应力集中的部分,如换热器花板上胀管的边缘迅速受到腐蚀破坏。循环冷却水系统中如有不锈钢制的换热器时,一般要求Cl-的含量不超过300mg/L。

对于碳钢而言,S2-、油污、酸、碱的腐蚀是剧烈的,尤其是S2-引发的一系列生化腐蚀极易造成管道的大面点蚀穿孔,其对金属的腐蚀能力远大于Cl-、SO2-4等离子。

1.2.5微生物引起的腐蚀

微生物的滋生也会使金属发生腐蚀。这是由于微生物排出的粘液与无机垢和泥砂杂物等形成的沉积物附着在金属表面,形成氧的浓差电池,促使金属腐蚀。此外,在金属表面和沉积物之间缺乏氧,因此一些厌氧菌(主要是硫酸盐还原菌)得以繁殖,当温度为25~30℃时,繁殖更快。它分解水中的硫酸盐,产生H2S,引起碳钢腐蚀,其反应如下:

SO2-4 +8H++8e=S2-+4 H2O +能量(细菌生存所需)

Fe2+ + S2 -=FeS

铁细菌是钢铁锈瘤产生的主要原因,它能使Fe2+氧化为Fe3+,释放的能量供细菌生存需要。

细菌

Fe2+ Fe3+ +能量(细菌生存所需)

1.2.6微生物的滋生和粘泥

冷却水中的微生物一般是指细菌和藻类。在新鲜水中,一般来说细菌和藻类都较少。但在循环水中,由于养分的浓缩,水温的升高和日光照射,给细菌和藻类创造了迅速繁殖的条件。大量细菌分泌出的粘液像粘合剂一样,能使水中飘浮的灰尘杂质和化学沉淀等粘泥附在一起,形成粘糊糊的沉积物粘附在换热器的发热表面上,有人称之为生物粘呢,也有人把它叫做软垢。

粘泥积附在换热器管壁上,除了会引起腐蚀外,还会使冷却水的流量减少,从而降低换热器的冷却效率;严重时,这些生物粘泥会将管子堵死,迫使停产清洗。

2、敞开式循环冷却水处理的重要性及优点

如前所述,冷却水长期循环使用后,必然会带来沉积物附着、金属腐蚀和微生物滋生这三个问题,而循环冷却水处理就是通过水质处理的办法解决这些问题。这样做法的好处如下:

①稳定生产没有沉积物附着、腐蚀穿孔和粘泥堵塞等危害,冷却水系统中的换热器就可以始终在良好的环境中工作。循环冷却系统由于能够有效地控制污垢的沉积和生长,保证了传热效率,污垢热阻值一般定为万分之三以下。良好的传热效率为延长生产周期创造了条件。国内外有很多管理水平较高的工厂可连续生产400天左右。

②节药水资源一般合理利用的循环水可节药96%以上的用水量,循环水装置的投资6~12个月就可以得到回收。例如在日产千吨合成氨的工厂中,每小时直流冷却水的用量是22000米3。如果用循环冷却水,其补充水量一般只需550~880米3/时。因此,循环冷却系统节约了96~97.5%的用水量。

③减少环境污染直流冷却水系统直接从水源抽取冷水用于冷却,然后又将温度升高了

的热水再排放到水源中去。将废热带到水源中形成热污染,用循环水可减95%以上的热污染。

④节约钢材提高经济效益;处理效果良好的化工企业冷却器一般使用寿命可达4~6年,远高于2~3年的一次水冷却器使用期限。

⑤减少设备的体积:热交换器的污垢热阻值若按千分之三设计时,其传热面积将比污垢热阻值,按万分之三设计时大数倍。因此采用循环冷却水系统可使热交换器体积缩小。这也就是为什么日产千吨的新氨厂比日产三百三十吨的老氨厂产量提高了三倍,而占地面积却减少了十倍的原因之一。热交换器体积减小还节约大量的钢材。

⑥循环冷却系统中投加缓蚀剂可以有效地控制腐蚀,降低了对热交换器的材质要求。

第二章循环冷却水系统中的沉积物控制

第一节循环冷却水系统中的沉积物

1、沉积物的分类

循环冷却水系统在运行的过程中,会有各种物质沉积在换热器的传热管表面。这些物质统称为沉积物。它们主要是由水垢(scale)、淤泥(sludge)、腐蚀产物(corrosion products)和生物沉积物(biological deposits)构成。通常,人们把淤泥、腐蚀产物和生物沉积物三者统称为污垢(fouling)。

2、水垢析出的判断

在实验室及生产现场我们常用LangLier指数判断水垢的形成趋势并相对应的作配方研究。

前面曾经提到,最容易沉积在换热器传热表面的水垢主要是碳酸钙垢。当条件适宜时也会出现磷酸钙垢及硅酸盐垢。下面就这些水垢析出的判断作些介绍。

2.1 碳酸钙析出的判断

2.1.1 饱和指数(L.S.I.)

碳酸盐溶解在水中达到饱和状态时,存在着下列动平衡关系:

Ca(HCO3)2 Ca2++2HCO-3 式1

HCO-3 H+ + CO32- 式2

CaCO3 Ca2++ CO32- 式3

1936年朗格利尔(Langelier)根据上述平衡关系,提出了饱和PH和饱和指数的概念,以判断碳酸钙在水中是否会出析出水垢,并据此提出用加酸或加碱预处理的办法来控制水垢的析出。

早期水处理工作者曾有意让冷却水在换热器传热表面上结一层薄薄的致密的碳酸钙水垢,这样既不影响传热效率,又可防止水对碳钢的腐蚀。因此,朗格利尔提出:L.S.I.>0时,碳酸钙垢会析出,这种水属结垢型水;当L.S.I.<0时,则原来附在传热表面上的碳酸钙垢层会被溶解掉,使碳钢表面裸露在水中而受到腐蚀,这种水称作腐蚀型水;当L.S.I.=0时,碳酸钙既不析出,原有碳酸钙垢层也不会被溶解掉,这种水属于稳定型水。如以式表之,则可写成:

L.S.I.=PH-PHs>0 结垢

L.S.I.=PH-PHs =0 不腐蚀不结垢

L.S.I.=PH-PHs<0 腐蚀

①计算饱和PH(PHs)的公式根据电中性原则和质量作用定律,中性碳酸盐水溶液中,存在着下列关系:

PHs=(9.70+A+B)-(C+D)

式中 A 总溶解固体系数;

B 温度系数;

C 钙硬度系数;

D M-碱度系数;

②饱和指数的应用通常设计部门对水质处理进行设计和确定药剂配方时,往往根据水质资料首先计算一下饱和指数,以判断水质是属于什么类型的,然后再考虑处理方案。

除了朗格利尔(Langelier)指数外,1946年雷兹纳(Ryznar),发明了稳定指数(R.S.I);1979年帕科拉兹(Puckorius)发明结垢指数;

上述四种指数均是针对碳钢材质,预测水中溶解的碳酸钙是否会析出,或者碳酸钙在水中是否会溶解而言,因此判断式中所谓腐蚀的实际含意并不是直接预测水的腐蚀性,而是指作保护层用的碳酸钙溶解后,碳钢直接裸露在水中,由电化学作用等原因引起腐蚀。如果材质是铝、不锈钢等合金则腐蚀问题就不会像碳钢那样突出。

2.2 磷酸钙析出的判断

在许多水质处理方案中,常在循环冷却水中投加聚磷酸盐作为缓蚀剂或阻垢剂,而聚磷酸盐在水中会水解成为正磷酸盐,使水中有磷酸根离子存在。磷酸根与钙离子结合会生成溶解度很小的磷酸钙沉淀,如附着在传热表面上,就形成磷酸钙水垢。因此,在投加有聚磷酸盐药剂的循环冷却水系统中,必须要注意磷酸钙水垢生成的可能性。

2.3 硅酸盐垢析出的判断

循环冷却水中,硅酸(以SiO2计)含量过高,加上水的硬度较大时,SiO2易与水中Ca2+或Mg2+生成传热系数很低的硅酸钙或硅酸镁水垢。这类水垢不能用一般的化学酸洗法去清洗,而要用酸、碱交替清洗的方法。如硅酸钙(或镁)垢中含有Al3+或Fe2+等金属离子时,清洗就更为困难,有人曾用氢氟酸清洗,取得一定的成功。

表1 A、B、C、D系数换算表

第二节循环冷却水系统中沉积物的控制

1、水垢的控制

控制水垢析出的方法,大致有以下几类。

1.1从冷却水中除去成垢的钙离子

水中Ca2+是形成碳酸钙垢的主要原因,如能从水中除去Ca2+,使水软化,则碳酸钙就无法结晶析出,也就形不成水垢。从水中除去钙离子的方法主要有以下两种。

①离子交换树脂法

离子交换树脂法就是让水通过离子交换树脂,将Ca2+、Mg2+从水中置换出来并结合在树脂上,达到从水中除去Ca2+、Mg2+的目的。用不同性质的离子交换树脂,可以很简便地从硬

水中除去Ca2+、Mg2等离子,使水软化。

用离子交换法软化补充水,成本较高。因此只有补充水量小的循环冷却水系统间或采用之。

②石灰软化法

补充水未进入循环冷却水系统前,在预处理时就投加适当的石灰,让水中的碳酸氢钙与石灰在澄清池中预先反应,生成碳酸钙沉淀析出,从而除去水中的Ca2+。

1.2 加酸或通CO2气,降低PH,稳定重碳酸盐

1.2.1 加酸

通常是加硫酸,加酸法目前仍有使用,由于硫酸加入后,循环水PH会下降,如不注意控制而加酸过多,则会加速设备的腐蚀。在操作中如果依靠人工分析循环水PH来控制加酸量。

1.2.2 通CO2气

有些化肥厂在生产过程中常有多余的CO2气,而有些化工厂的烟道气中也含有相当多的CO2气。如高炉冷却水处理,热轧水处理。

1.3 投加阻垢剂

从水中析出碳酸钙等水垢的过程,就是微溶性盐从溶液中结晶沉淀的一种过程。按结晶动力学观点,结晶的过程首先是生成晶核,形成少量的微晶粒,然后这种微小的晶体在溶液中由于热运动(布朗运动)不断地相互碰撞,和金属器壁也不断在进行碰撞,碰撞的结果就提供了结晶生长的机会,使小晶体不断地变成了大晶体,也就是说形成了覆盖传热面的垢层,从CaCO3的结晶过程看,如能投加某些药剂,破坏其结晶增长,就可达到控制水垢形成的目的。目前我公司使用的阻垢剂有有机多元膦酸、有机磷酸酯、聚丙烯酸盐等。

2、污垢的控制

前面已提及过污垢的形成主要是由尘土、杂物碎屑、菌藻尸体及其分泌物和细微水垢、腐蚀产物等构成。因此,欲控制好污垢,必须做到以下几点。

①降低补充水浊度

天然水中尤其是地面水中总夹杂有许多泥砂、腐植质以及各种悬浮物和胶体物,它们构成了水的浊度。作为循环水系统的补充水,其浊度愈低,带入系统中可形成污垢的杂质就愈少。干净的循环水不易形成污垢。当补充水浊度低于5mg/L以下,如城镇自来水、井水等,可以不作预处理直接进入系统。当补充水浊度高时,必须进行预处理,使其浊度降低。为此《中华人民共和国国家标准工业循环冷却水处理设计规范》中规定,循环冷却水中悬浮物浓度不宜大于20mg/L。当换热器的型式为板式、翅片管式和螺旋板式,不宜大于10mg/L。

②做好循环冷却水水质处理

冷却水在循环使用过程中,如不进行水质处理,必然会产生水垢或对设备腐蚀,生成腐蚀产物。同时必然会有大量菌藻滋生,从而形成污垢。如果循环水进行了水质处理,但处理得不太好时,就会使原来形成的水垢因阻垢剂的加入而变得松软,再加上腐蚀产物和菌藻繁殖分泌的粘性物,它们就会粘合在一起,形成污垢。因此,做好水质处理,是减少系统产生污垢的好方法。

③投加分散剂

在进行阻垢、防腐和杀生水质处理时,投加一定量的分散剂,也是控制污垢的好方法。分散剂能将粘合在一起的泥团杂质等分散成微粒使之悬浮于水中,随着水流流动而不沉积在

传热表面上,从而减少污垢对传热的影响,同时部分悬浮物还可随排污水排出循环水系统。如我公司的4050等。

④做好旁滤处理:一般细菌形成的粘泥以及被杀死细菌尸体、剥离下来的生物粘呢有70%以上是通过旁滤器排出循环水系统之外,一般大于1000t/h的循环水系统设计要求旁滤量不低于循环量的5%,实践证明中速过滤器滤除效果优于无阀滤池,但人工强度略大,对于存在化学泄漏的循环水系统一般建议旁漏量在7%以上为宜。并定时、定人反洗,及做好旁滤器维护工作。

⑤保障循环水压力及流速:在循环水设计规范中要求循环水冷却水侧流速管程水流速大于

0.9米/秒,壳程大于0.3米/秒,热负荷强度小于5×104千卡/米2·小时。对于有氨、油、硫化物,有机化学品泄漏的系统,水流速度应增加20%~50%。

第三节阻垢剂及分散剂

1、有机膦酸

1.1 有机膦酸的种类和性质

有机膦酸的种类很多,但在它们的分子结构中都含有与碳原子直接相连的膦酸基团: O

- C — P —HO

OH

并且分子中还可能含有—OH、—CH2或—COOH等基团。因此,按分子中含膦酸基团的数目,有机膦酸可分为二膦酸三膦酸四膦酸五膦酸等;如按分子结构的类型,有机磷酸又可分为甲叉膦酸型、同碳二膦酸型、羟酸膦酸型和含其他原子膦酸型。

有机磷酸是国外60年代后期才开发的新产品,但在70年代就在循环冷却水处理中得到广泛应用。这是由于它有以下一些优点。首先,它们分子结构中都有C—P键,而这种键比聚磷酸盐中的P—O—P键要牢固得多,因此它的化学稳定性好、不易水解,并且耐高温,在使用中不会因水解生成正磷酸而导致菌藻过度繁殖。其次,它与聚磷酸盐一样也有临界值效应(Threshold effect),就是只需用几mg/L的有机膦酸就可以阻止几百mg/L的碳酸钙发生沉淀;人们在实际使用中发现,有机膦酸与聚磷酸盐混合使用的效果比单用任何种都好。除了与聚磷酸盐外,它还与多种药剂有良好的协同效应。因此在实际使用中人们常择其有最佳协同效应的复合配方使用。除上述优点外,有机膦酸在高剂量下还具有良好的缓蚀性能,并且属于无毒或极低毒的药剂,因此在使用中可以不必担心环境污染的问题。

1.2 常用的有机膦酸

有机膦酸品种很多,但在循环冷却水中常用的药剂主要有以下几种。

1.21 ATMP

化学名称为氨基三甲叉膦酸,ATMP系其英文名称Aminotrimethylenephosphonic acid 的缩写。

1.2.2 EDTMP

化学名称为乙二胺四甲叉膦酸,EDTMP则是其英文名称Ethylenediamineteramethylene phosphonic acid的缩写。

1.2.3 HEDP

HEDP是同碳二膦酸型中的一种有机膦酸。它的分子结构中不含N,其化学名称为羟基乙叉二膦酸。HEDP是其英文名称1-Hydroxyethylidene-1,1-diphosphonic acid的缩写。

1.2.4 DTPMP

DTPMP是国外80年代开发的一种有机膦酸。其化学名称为二亚乙基三胺五亚甲基膦酸。DTPMP是其英文名称diethylenetriaminepentamethylenephosphonic acid 的缩写。

它的特点是与Mm2+复合对碳钢和铜合金均有很好的缓蚀能力。由于Mm2+不在环境法规限制范围之内,因此这种药剂的的配方在国际上已引起较大的兴趣。DTPMP与上述有机膦酸一样,也可以和多个金属离子螯合,形成两个或多个立体大分子环状络合物,松散地分散于水中,破坏了碳酸钙晶体的生长,从而起到阻垢的作用。

2、膦羟酸

膦羟酸分子中同时含有磷酸基—PO(OH)2和羟基—COOH两种基团。根据它们在化合

物中的位置和数目的不同,可以有很多品种。在我公司配方中,使用较多的是PBTCA,它的化学名称是2-膦酸基丁烷-1,2,4三羟酸,PBTCA是其英文名称2-phosphonobutane-1,2,4-tricarboxylic acid 的缩写。

3、有机膦酸酯

有机膦酸酯的种类很多,但其分子结构中均有下列基团:

- C - O -PO(OH)2

由于有机磷酸脂对水生动物的毒性很低,且会缓慢水解,水解后的产物还可以生物降解,因此对环境没有什么影响。

有机磷酸酯一般与其它药剂如聚磷酸盐、锌盐、木质素和苯骈三氮唑等复合使用。

4、聚羟酸

4.1 聚羟酸的种类和性质

聚羟酸作为阻垢剂和分散剂,使用最多的是丙烯酸的均聚物和共聚物,以及马来酸为主的均聚物和共聚物。

聚羟酸的阻垢性能与其分子量、羟基的数目和间隔有关。每个品种有其最佳分子量值。如果分子量相同,则碳链上羟基数愈多,阻垢效果愈好。因为当羟基聚积密度高时,阻碍了相邻原子的自由旋转作用,相对地固定了相邻原碳子上羧基的空间位置,增强了它们与碱土金属晶格的缔合程度,从而提高了阻垢能力。

4.2 常用的聚羧酸

4.2.1 聚丙烯酸

聚丙烯酸除有良好的阻垢性能外,还能对非晶状的泥土、粉尘和腐蚀产物以及生物碎

屑等起分散作用。因此在现代使用的各种复合水处理剂中常加有聚丙烯酸,分子量1000~2500阻垢分散性最佳。

4.2.2 聚甲基丙烯酸

聚甲基丙烯酸由甲基丙烯酸单体聚合而成。聚甲基丙烯酸的阻垢和分散性能与聚丙烯酸相似,其耐温性较好。

4.2.3 丙烯酸与丙烯酸羟丙酯共聚物

丙烯酸与丙烯酸羟丙酯共聚研究并使用于80年代。它是由丙烯酸与丙烯酸羟丙酯共聚而成。它抑制碳酸钙结垢的性能较差,效果不如有机膦酸和上述几种聚合物,但对磷酸钙、磷酸锌以及氢氧化锌、水合氧化铁等有非常好的抑制和分散作用,其效果超过上述各种阻垢剂。

4.2.4 丙烯酸与丙烯酸酯共聚物

丙烯酸与丙烯酸酯共聚物是由该两种单体共聚而成。其分子结构式为:

(CH2—CH ) 〔CH2—CH 〕

COOH m COOR n

它对磷酸钙和氢氧化锌有良好的抑制和分散作用,常与聚磷酸盐、磷酸酯和锌盐等药剂复配使用。

4.2.5 水解聚马来酸酐

水解聚马来酸酐简称HPMA,是其英文名称Hydrolyzed polymaleic anhydride 的缩写。它由马来酸酐单体在甲苯中以过氧化二苯甲酰为引发剂聚合成聚马来酸酐,再通过加热水解,使分子中酸酐大部分被水解为羧基,其阻垢性能优于聚丙烯酸系列产品。

4.2.6 马来酸酐-丙烯酸共聚物

为降低水解聚马来酸酐的价格,又保持其较高的耐温性,人们又开发了一种以马来酸酐和丙烯酸两种单体在过氧化二苯甲酰引发剂作用下共聚成水解聚马来酸酐和丙烯酸共聚物。它的阻垢性能与水解聚马来酸酐相似,但价格要低些,因此生产实际中,常以马来酸酐-丙烯酸共聚物替代水解聚马来酸酐,可获得同样的效果。

4.2.7 丙烯酸-丙烯磺酸四元共聚物

其主要由多元多品丙稀酸磺化聚合而成,为90年代世界是最先进的一代阻垢分散剂,尤其对粘泥的分散性有极好的处理效果,其性能稳定、不易水解,配伍性、协同增效效果优异。

4.2.8 苯乙烯磺酸-马来酸(酐)共聚物

国外已开发出相当多品种的带磺酸基团的共聚物。据称这类共聚物具有良好的阻垢性能,特别是对抑制磷酸钙垢效果更显著。除此之外还兼有良好的分散性能,适应PH范围宽,对“钙容忍度”高,是一种应用前途广泛的新品种。

5、有机膦酸和聚羧酸的阻垢和分散机理

5.1 有机膦酸的阻垢机理

有机膦酸的阻垢机理比较复杂,说法也有多种,目前大致有以下两种说法。

5.1.1晶格畸变论

碳酸钙垢是结晶体,它的成长按照严格顺序,由带正电荷的Ca2+与带负电荷的CO2-3相撞才能彼此结合,并按一定的方向成长。在水中加入有机膦酸时,它们会吸附到碳酸钙晶体的

活性增长点上与Ca2+螯合,抑制了晶格向一定的方向成长,因此使晶格歪曲,长不大,也就是说晶体被有机膦酸表面去活剂的分子所包围而失去活性。这也是产生前述临界值效应的机理。同样,这种效应也可阻止其他晶体的沉淀。另外,部分吸附在晶体上的化合物,随着晶体增长被卷入晶格中,使CaCO3晶格发生位错,在垢层中形成一些空洞,分子与分子之间的相互作用减小,使硬垢变软。

通过实验证明,有机膦酸能使CaCO3晶体严重畸变。这可能是由于有机膦酸分子量较小。它吸附在CaCO3晶粒活性增长上干扰了晶粒向一定方向成长,因而产生严重畸变。

5.1.2 增加成垢化合物的溶解度

有机膦酸在水中能离解出H+,本身成带负电荷的阴离子,这些负离子与Ca2+、Mg2+等金属离子形成稳定络合物,从而提高了CaCO3晶粒析出的过饱和度,也就是说增加了CaCO3在水中的溶解度。另外,由于有机膦酸能吸附在CaCO3晶粒分散度对溶解度影响角度看,晶粒细小也就意味着CaCO3溶解度变大,因此提高了CaCO3析出时的饱和度。

5.2 聚羧酸的阻垢和分散机理

聚羧酸的阻垢和分散机理也有多种说法,归纳起来大致有以下三种

①增溶作用

这种说法与有机膦酸能提高成垢化合物的溶解度相似,即聚羧酸溶于水后发生电离,生成带负电荷的分子链。这些带负电荷的分子链可与Ca2+形成能溶于水的络合物,从而使成垢化合物的溶解度增加,起到阻垢作用。

②晶格畸变作用

由于聚羧酸的分子量相当大,是线性高分子化合物,它除了一端吸附在CaCO3晶粒上以外,其余部分则围绕到晶粒周围,使其无法增长而变得圆滑。因此晶粒增长受到干扰而歪曲,晶粒变得细小,形成的垢层松软,极易被水流冲掉,大量实验和生产实践证实了这种说法。

③静电斥力作用

因为聚羧酸在水中电离子成阴离子后有强烈的吸附性,它会吸附到悬浮在水中的一些泥砂、粉尘等杂质的粒子上,使其表面带有相同的负电荷,因而使粒子间相互排斥,呈分散状态悬浮于水中。

自然界中许多物质也具备阻垢及分散能力,如木质素、丹宁、淀粉和纤维素。但由于其原料不稳定,造成产品品质及效果波动较大、费用很高,未能广泛用于大量工业水处理。

第三章循环冷却水系统中金属的腐蚀及其控制

冷却水处理要解决的问题之一是金属设备的腐蚀。

从化学热力学的理论上可知,几种常见的金属—碳钢、铜及铜合金、铝和不锈钢在冷却水中是不稳定的。它们最终将通过腐蚀到达各自的稳定状态—腐蚀产物。

第一节冷却水中金属腐蚀的形态

在冷却水系统的正常运行过程中以及化学清洗过程中,金属常常会发生不同形态的腐蚀。

根据金属腐蚀理论的知识,通过仔细观察腐蚀试样或损坏设备的金属腐蚀形态,再配合一些其他的方法,人们常常能找出产生腐蚀的原因和解决腐蚀问题的措施,所以研究冷却水系统中金属的腐蚀形态是一种十分有用的方法,腐蚀的趋势的指腐蚀产生的可能性,是热力学概念,而腐蚀的速度表示腐蚀反应快慢,是动力学概念。

以下介绍冷却水系统中一些金属的腐蚀形态及其实例。

1、均匀腐蚀

均匀腐蚀又称全面腐蚀或普遍腐蚀。其一般特点是腐蚀过程在金属的全部暴露表面上的均匀地进行。在腐蚀过程中,金属逐渐变薄,最后被破坏。

对碳钢而言,均匀腐蚀主要发生在低PH的酸性溶液中。例如,冷却水系统中的碳钢换热器用盐酸、硝酸或硫酸等无机酸进行化学清洗时,如果没有在这些酸中添加适当的缓蚀剂,则碳钢将发生明显的均匀腐蚀。又如,在加酸过多,冷却水的PH降到很低时,碳钢的设备也将发生明显的均匀腐蚀。

2、电偶腐蚀

电偶腐蚀又称双金属腐蚀或接触腐蚀。

当两种不同的金属浸在导电性的水溶液中时,两种金属之间通常存在着电位差。如果这些金属互相接触或用导线连接,则该电位差就会驱使电子在它们之间流动,从而形成一个腐蚀电池。与不接触时相比,耐蚀性较差的金属(即电位较低的金属)在接触后腐蚀速度通常会增加,而耐蚀性较好的金属(即电位较高的金属)在接触后腐蚀速度将下降。

电偶序是按金属或合金的腐蚀电位E C的高低而排列的顺序,而电动序则是按纯金属或元素的标准电极电位而排列的顺序。要预测电偶腐蚀中的电偶关系,采用电偶序比采用电动序更为合理。

冷却水系统中电偶腐蚀的实例之一是换热器中黄铜换热管和碳钢管板或钢制水室之间在冷却水中发生的电偶腐蚀。在腐蚀过程中,被加速腐蚀的是很厚的钢制管板或水室,而不是薄的铜管。由于钢制管板或水室的壁较厚,因而仍可长期使用。其电偶序按纯金属的标准电极电位排序。

3、缝隙腐蚀

浸泡在腐蚀性介质中的金属表面,当其处在缝隙或其他的隐蔽区域内时,常会发生强烈的局部腐蚀。这种腐蚀常常和孔穴、垫片底面、搭接缝、表面沉积物、金属的腐蚀产物以及螺帽、铆钉帽下缝隙内积存的少量静止溶液有关。因此,这种腐蚀形态被称作缝隙腐蚀,有时也被称作垢下腐蚀、沉积(物下)腐蚀、垫片腐蚀等。

产生缝隙腐蚀或垢下腐蚀的沉积物有:冷却水中的泥砂、尘埃、腐蚀产物、水垢、微生物粘泥和其他固体。沉积物的作用是屏蔽,在其下面形成缝隙,为液体不流动创造投条件。

金属和非金属接触的表面之间的缝隙也能引起缝隙腐蚀,例如使用垫片时的情况。

循环冷却水系统中碳钢换热器中沉积物下面金属的腐蚀可以看作缝隙腐蚀(垢下腐蚀)的一个实例。冷却水系统腐蚀监测装置中夹牢碳钢试片用的螺帽及垫片下缝隙内碳钢表面发生的腐蚀,可以看作缝隙腐蚀的又一个实例。

缝隙腐蚀的机理是,缝隙腐蚀的总反应包括金属M氧化生成金属离子M2+的阳极过程和水中的溶解氧还原为氢氧根离子的阴极过程。

阳极过程 M M2++2e

阴极过程 1/2O2+H2O+2e 2OH-

在缝隙中,金属生成金属离子M2+,而氧则由于缝隙中溶液对流不畅而贫化,故氧的还原反应主要是缝隙之外氧容易到达的阴极区进行。这样,在缝隙溶液中就有了过剩的正电荷。这些过剩的正电荷需要带负电的氯离子迁移到缝隙中去,以保持电中性。结果缝隙内金属氯化物的浓度增加。之后,金属氯化物MCl2水解,生成不溶性的金属氢氧化物沉淀和可溶性的盐酸:

MCl2+ 2H2O M(OH) 2 +2H+ + 2Cl-

盐酸是强电解质,它在水中会全部电离为H+和Cl-。这些H+和Cl-会加速多数金属和合金的溶解(腐蚀)。

凡是耐蚀性依靠氧化膜或钝化膜的金属或合金,例如不锈钢和碳钢,特别容易遭受缝隙腐蚀。

4、孔蚀

孔蚀又称为点蚀或坑蚀。孔蚀是在金属表面上产生小孔的一种极为局部的腐蚀形态。这种孔蚀的直径可大可小,但在大多数情况下都比较小。有些蚀孔孤立地存在;有些蚀孔则紧凑在一起,像一片粗糙的表面。

孔蚀是破坏性和隐患性最大的的腐蚀形态之一。它使设备穿孔破坏,而这时的失重仅占整个结构很小的一部分。孔蚀特别有害,因为它是一种局部的但是剧烈的腐蚀形态。孔蚀严重的设备会在突然之间发生穿孔以及随之而来的泄漏,使人措手不及。

检查和发现蚀孔常常是很困难的,因为蚀孔既小,通常又被腐蚀产物或沉积物覆盖着。

蚀孔通常往重力方向生长。一般蚀孔需要几个月或几年才穿透金属。在出现可以看到的蚀孔之前,通常需要现段很长的孕育期。

对于碳钢而言,孔蚀主要发生在中性的腐蚀性介质中。例如,在未采取防腐措施的敞开式循环冷却水系统中。

在碳钢换热器冷却水一侧的碳钢管壁表面和管板上,经常可以看到许多由孔蚀产生的腐蚀产物及其下面的蚀孔。这是冷却水系统中最长常的孔蚀的实例之一。

硫离子、氯离子和氢离子能够促进多数金属和合金的溶解,且整个过程随时间而加速。

冷却水中大多数孔蚀和卤素离子有关。其中影响最大的是氯离子、溴离子和次氯酸根离子。

许多不锈钢在海水和其它氯离化物溶液中有强烈产生孔蚀和缝隙腐蚀的倾向,普通碳钢

耐孔蚀的能力比不锈钢要高一些。

5、选择性腐蚀

选择性腐蚀又称为选择性浸出。选择性腐蚀是从一种固体金属中有选择地除去其中一种元素的腐蚀。而冷却水系统中最常的选择性腐蚀是黄铜管的脱锌。

6、磨损腐蚀

磨损腐蚀又称为冲击腐蚀、冲刷腐蚀或磨蚀。磨损腐蚀是由于腐蚀性流体和金属表面间的相对运动引起的金属加速破坏和腐蚀。它同时还包括机械磨耗和磨损作用。

在冷却水系统中,泵的叶轮、凝汽器中冷却水入口处铜管的端部、挡板的折流等处常遭到冲刷腐蚀都可以作为冷却水系统中磨损腐蚀的一些实例。

一般来说,原来耐蚀性能较好的材料将会显示出较好的耐磨损腐蚀性能。

7、应力腐蚀破裂

应力腐蚀破裂是指拉应力和特定腐蚀介质的共同作用而引起金属或合金的破裂。应用腐蚀破裂的方向一般与作用应力的方向垂直。应力可有各种来源:外加应力、残余应力、焊接应力等。在应用中如长管径、长管道、托管支架不平衡,焊接应力未消除等。

第二节冷却水中金属腐蚀的影响因素

不同冷却水系统中金属的腐蚀形态和腐蚀速度是不同的。为此,需要了解冷却水系统中影响腐蚀的因素,知道哪些因素是促进腐蚀的,哪此因素是可以抑制腐蚀的,从而设法避开不利的因素,利用有利的因素,以减轻了防止冷却水中金属设备的腐蚀。

冷却水中金属换热设备腐蚀的影响因素有很多,概括起来可分为化学因素、物理因素和微生物因素。本次仅讨论一些化学因素和物理因素,微生物因素将会在下面进行讨论。

1、PH值

冷却水的PH值对于金属腐蚀速度的影响往往取决于该金属的氧化物在水中的溶解度对PH值的依赖关系。

如果该金属的氧化物溶于酸性水溶液而不溶于碱性水溶液,则该金属在低PH值时就腐蚀得快一些,而高PH值就腐蚀得慢一些。有些金属的氧化物既溶于酸性水溶液中又溶于碱性水溶液中。这些氧化物被称为两性氧化物,而这些金属则被称为两性金属。

2、阴离子

金属的腐蚀速度与水中阴离子的种类有密切的关系。水中不同的阴离子在增加金属腐蚀速度方面具有以下的顺序:

NO3-<CH3COO-<SO2-4<Cl-<ClO-4

冷却水中的Cl-、Br-、I-等活性离子能破坏碳钢、不锈钢和铝等金属或合金表面的钝

化膜,增加其腐蚀反应的阳极过程速度,引起金属的局部腐蚀。

水中的铬酸根、亚硝酸根、硅酸根和磷酸根等阴离子则对钢有缓蚀作用,其盐类是一些常用的冷却水缓蚀剂。

3、络合剂

络合剂又称配体。冷却水中常遇到的络合剂有:NH3、CN-、EDTA、和ATMP等。它们能与水中的金属离子生成可溶性的络离子,使水中金属离子的游离浓度降低,金属的电极位降低,金属的电极电位降低,从而使金属的腐蚀速度增加。

4、硬度

水中钙离子的浓度和镁离子的浓度之和称为水的硬度。钙、镁离子的浓度过高时,则会与水中的碳酸根、磷酸根或硅酸根作用,生成碳酸钙、磷酸钙和硅酸镁垢,引起垢下腐蚀。

5、金属离子

冷却水中的碱金属离子,对于金属和合金的腐蚀速度没有明显的或直接的影响。

铜、银、铅等重金属离子在冷却水中对钢、铝、镁、锌这几种常用的金属起有害作用。锌离子在冷却水中对钢有缓蚀作用,因此锌盐被广泛用作冷却水缓蚀。

6、溶解的气体

6.1 氧

氧在中性水(其中包括工业冷却水)中对一些金属的腐蚀起着重要的作用。在腐蚀着的金属表面上,它起着阴极去极化剂的作用,促进金属的腐蚀。除去氧后,水就变成没有腐蚀性了。

在某些情况下,氧又是一种氧化性钝化剂,它能使金属钝化,免于腐蚀。氧对水腐蚀性的影响随金属而变化。

6.2 二氧化碳

二氧化碳溶于冷却水中,生成碳酸或碳酸氢盐,使水的PH值下降。水的酸性增加,将有助于氢的析出和金属表面膜的溶解破坏。

没有氧存在时,溶解状态二氧化碳的存在会引起钢和铜的腐蚀,但不会引起铝的腐蚀。

6.3氨

氨往往在工艺系统泄漏时进入冷却水中,例如像合成氨厂中那样。当冷却水中存在氧化剂时,氨就选择性地腐蚀铜,生成可溶性的四氨合铜络离子。

6.4 硫化氢

硫化氢是能够进入冷却水系统中的最有害的气体之一。它是由于工艺过程污染、大气污染、有机体污染而进入的,或者是由于硫酸盐还原水中的硫酸盐后生成的。

硫化氢会加速铜、钢和合金钢的腐蚀,尤其是加速凝汽器铜合金管的点蚀,但硫化氢对铝没有腐蚀性。

6.5 二氧化硫

循环冷却水系统中的喷淋式冷却塔在运行过程中,会收集工业性大气中的二氧化硫。溶解的二氧化硫会降低循环冷却水的PH值,增加它对金属的腐蚀性。

6.6氯

氯是控制冷却水中微生物生长最常用的杀生剂。氯进入水中后,水解生成盐酸的次氯酸,因此氯会降低冷却水的PH值,增加水的腐蚀性。

7、浓度

多数金属在非氧化性酸中,随着酸浓度的增加,腐蚀加剧;而在氧化性酸中,则随着浓度的增加,腐蚀速度有一个最高值。当浓度超过一定数值以后,金属表面生成保护膜,腐蚀速度下降。

铁在稀碱溶液中的腐蚀产物为不易溶解的氢氧化物,对金属有保护作用。在不具有氧化性或缓蚀作用的中性盐水溶液中,腐蚀速度-浓度曲线上往往有一最高点。

在流动和充分充气的淡水中,当氯离子的浓度由0增加到500mg/L时,碳钢的腐蚀形态主要为孔蚀,碳钢的腐蚀速度随水中氯离子浓度的增加而增加。

8、流速

在淡水中,金属的腐蚀主要是耗氧腐蚀。因此在流速较低的时候,金属的腐蚀速度随水流速的增加而增加。这是因为水的流速增加,水携带到金属表面的溶解氧的流量随之增加。当水的流速够高时,足量的氧到达金属表面,使金属部分或全部钝化。如果钝化发生,金属的腐蚀速度将下降。

如果水的流速继续增加,这时水对金属表面上钝化膜的冲击腐蚀将使金属的腐蚀速度重新增大。

超高速的流体设备中,例如离心泵的叶轮,还会引起空泡腐蚀。

循环水设计要求水流速度在0.9~1.2m/s 为宜。

9、电偶

在冷却水系统中,不同的金属或合金材料间的接触或连接常常是不可避免的,尤其在复杂的设备或成套的装置中。

发生连接的两种(或两种以上)的金属或合金,如果彼此的腐蚀电位相差较大,它们再与冷却水相接触,就会形成一个腐蚀大电池或电偶而发生电偶腐蚀。

10、温度

一般来讲,金属的腐蚀速度随温度的增加而增加。

温度升高,水中物质的扩散系数增大,而电极反应的过电位和溶液的粘度减小。扩散系数增大,能使更多的溶解氧扩散到腐蚀金属表面的阴极区。过电位的降低可以使氧或氢离子的阴极还原过程和金属的阳极溶解过程加速。这些都使金属的腐蚀速度增加。另一方面,温度升高会使氧在水中的溶解度降低,从而使金属的腐蚀速度降低。

在敞开式的循环冷却水中,在温度较低的区间内,金属的腐蚀速度随温度的升高而加快。此时,虽然氧在水中的溶解度随温度的升高而下降,但这时氧的扩散速度的增加起着主导作用,因而到达金属表面的氧的流量增加。这一倾向一直延续到77℃。之后,金属的腐蚀速度随温度的升高而下降。此时,氧的溶解度降低在起主导作用。

如果在同一金属或合金上存在温度差,则温度高的那一部分将会成为腐蚀电池的阳极而腐蚀,温度低的那一部份则成为腐蚀电池的阴极。这种情况常发生在已经结垢的换热器中。

在温度升高的过程中,某些金属或合金之间的相对电位会发生明显的电位极性逆转。例

循环水基础知识电子教案

1工业上使用循环水的意义 1.1冷却水对水质的要求 在许多工业生产中,水是直接或间接使用的重要工业原料之一,其中大量的是用来作为冷却介质,通常在选用水作为冷却介质时,需注意选用的水要能满足以下几点要求: 1) 水温要尽可能低一些 在同样设备条件下,水温愈低,日产量愈高。同时冷却水温度愈低,用水量也相应减少。2) 水质不易结垢 冷却水在使用中,要求在换热设备的传热表面上不易生成水垢,以免影响传热设备的传热效率。这对工厂安全生产是一个关键。生产实践告诉我们,由于水质不好,易结水垢而影响工厂生产的例子是屡见不鲜的。 3) 水质对金属设备不易产生腐蚀 冷却水在使用中,要求对金属设备最好不产生腐蚀,如果腐蚀不可避免,则要求腐蚀性愈小愈好,以免传热设备因腐蚀太快而迅速减少有效传热面积或过早报废。 4) 水质不易滋生菌藻 冷却水在使用过程中,要求菌藻获等微生物在水中不易滋生繁殖,这样可避免或减少因茵藻繁殖而形成大量的粘泥污垢。过多的粘泥污垢会导致管道堵塞和腐蚀。 1.2循环冷却水运行时存在的问题 对循环冷却水系统,冷却水在不断循环使用过程中,由于水的温度升高,水流速度的 变化,水的蒸发,各种无机离子和有机物质的浓缩,冷却塔和冷水池在室外受到阳光照射、风吹雨淋、灰尘杂物的飘落,以及设备结构和材料等多种因素的综合作用,会产生以下三种危害: 1) 严重的水垢附着 2) 设备腐蚀 3) 菌藻微生物的大量滋生,以及由此形成的粘泥污垢堵塞管道等 这些危害会威胁和破坏工厂长周期地安全生产,甚至造成经济损失,因此不能掉以轻心,在日常运行时,必须要选择一种经济实用的循环水处理方案,务使上述危害减轻,直至使其不发生。

循环水处理技术

循环水术语: 1循环冷却水系统:以水作为冷却介质,并循环使用的供水系统,由换热设备、冷却塔、水泵、管道以及其它有关设备组成,分为敞开式循环水系统和密闭式循环水系统。 2敞开式循环水系统:是指循环冷却水与空气直接接触冷却的循环冷却水系统。 3循环水量:每小时用水泵输送的总水量,以Q表示,单位m3/h。 4保有水量:冷却水系统的总贮水量(包括凉水池、换器器、管网系统、旁滤等)。以V表示,单位m3。保有水量与循环量之间设计要求是:保有水量/循环量=1/3-1/5之间。 5 蒸发水量:循环水在冷却塔内通过蒸发而冷却,在此过程中损失的水量称为蒸发水量,以E表示,单位m3/h。E=a(R-B),a=e(t1-t2)(%)(e,夏季25~30℃时0.15~0.16,冬季-15~10时0.06~0.08,春秋季0~10℃时为0.10~0.12. 6补充水量:循环冷却水在运行过程中补充因蒸发、风吹、排污等损失的水量,以M表示,单位m3/h。M=N×B 7排污水量:为了维持一定的浓缩倍数,必须从循环冷却水系统中排放的水量,以B表示,单位m3/h。B=E/N-1 8飞溅损失:由于风力作用把水从系统中吹入大气,叫做飞溅损失。一般风吹损失可按1‰Q计算,以W表示,单位m3/h。 9浓缩倍数:循环水中的含盐量与补充水的含盐量之比值,

以N表示。常用来计算浓缩倍数的离子有钾离子、电导、氯离子、二氧化硅等。 10腐蚀速率:以金属失重而计算得的每年平均腐蚀深度,常用单位mm/a、mdd、密尔/年(可选用标准试片法、试管法进行监测) 11污垢沉积速率:模拟监测换热管内在一个月中所沉积的污垢总量。单位mg/cm2.月(mcm,可选用试管法进行监测))。12粘泥量:指微生物及其分泌的粘液与其它有机或无机的杂质混合在一起的粘浊物。单位mL/m3。 13异养菌:以细菌平皿计数法统计出第毫升水中异养菌落个数,单位个/mL。 水质参数:1、PH值;2、钙硬度;3、碱度;4、K+或SiO2; 5、总铁; 6、电导率; 7、浑浊度; 8、微生物; 9、生物粘泥量;10、污垢沉降速率;11、垢层与腐蚀产物的成分;12、腐蚀率;13、药剂浓度。 一、循环水术语

循环水系统加药系统方案要点

2000m3/h,2×1500m3/h 循环水系统投药系统 设 计 方 案 苏州得润水处理设备有限公司 2010年10月

目录 一、概述 (2) 二、循环冷却水处理设计的原则和要求 (2) 三、工艺流程的确定 (3) 四、循环水系统设计参数 (4) 五、设计规范标准 (6) 六、药剂选用原则 (7) 七、补充水及旁滤处理 (7) 八、循环水处理 (7) 九、清洗与预膜处理 (10) 十、药剂的选用及投药量 (13) 十一、投药设备的选型 (14) 十二、供货清单 (16) 十三、设备的投资概算 (16)

一、概述 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、CL-、 2 SO等离子,溶解性固体,悬浮物相应增加,空气中污染物如 4 尘土、杂物、可溶性气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥,造成换热器换热效率降低,能源浪费,过水断面减少,通水能力降低,甚至使设备管道腐蚀穿孔,酿成事故。 循环冷却水处理的目的就在于消除或减少结垢、腐蚀和生物粘泥等危害,使系统可靠地运行。 循环水中能产生的盐垢有许多种,如碳酸钙、硫酸钙、碳酸镁、氢氧化锰、硅酸钙等,其中以碳酸钙垢最为常见,危害最大。 二、循环冷却水处理设计的原则和要求 1、安全生产、保护环境、节约能源、节约用水是在工业循环冷却水处理设计中需要贯彻的国家技术方针政策的几个重要方面。在符合安全生产要求方面:循环冷却水处理不当,首先会使用权冷却设备产生不同程度的结垢和腐蚀,导致能耗增加,严重时不仅会损坏设备,而且会引起工厂停车、停产和减产的生产事故,造成极大的经济损失。因此,安全生产首先应保证循环冷却水处理设施连续、稳定地运行并能达到预期的处理要求。其次,在循环冷却水处理的各个环节如循环水处理、旁流水处理、补充水处理及辅助生产设施如仓库、加药间等,设计中都应考虑生产上安全操作的要求。特别是使用的各种药剂如酸、碱、阻垢剂、杀菌灭藻剂等,常常是有腐蚀性、有素,对人体有害的。因此,对各种药剂的贮存、运输、配制和使用,设计上都必须有保证工作人员卫生、安全的设施。并按使用药剂的特性,具体考虑其防火、防腐、防素、防尘等安全生产要求。 2、循环冷却水处理,可以概括为去除悬浮物、控制泥垢、控制腐蚀及微生物等四个方面。 3、敞开式循环冷却水系统中冷却水吸收热量后,以冷却塔与大气直接接触,二氧化碳逸散,溶解氧和浊度增加,水中溶解盐类浓度增加以及工艺介质泄漏等,使循环水水质恶化,给系统带来结垢、腐蚀、污泥和菌藻问题。

工业循环冷却水处理系统

工业循环冷却水处理系统 一、概述 循环冷却水在使用之後,水中的Ca2+、Mg2+、Cl-、SO42-等离子,溶解固体和悬浮物相应增加,空气中污染物如灰尘、杂物、可溶性气体以及换热器物料泄露等,均可进入循环冷却水,使循环冷却水系统中的设备和管道腐蚀、结垢,造成换热器传热效率降低,过水断面减少,甚至使设备管道腐蚀穿孔。 循环冷却水系统中结垢、腐蚀和微生物繁殖是相互关联的,污垢和微生物粘泥可以引起垢下腐蚀,而腐蚀产品又形成污垢,要解决循环冷却水系统中的这些问题,必须进行综合治理。 采用水质稳定技术,用物理与化学处理相结合的办法控制和改善水质,使循环冷却水系统中的腐蚀、结垢、生物污垢得到有效的解决,从而取得节水、节能的良好效益。臭氧产品已在国内电子、电力、饮料、制药行业广泛应用,质量达到国外同行业90年代水平。投入产出比的可比效益为:1:2-1:10以上,节约能源,提高设备使用效率,延长设备的使用寿命和运行的安全性,减少环境污染。 臭氧可以作为唯一的处理药剂来替代其它的处理冷却水处理剂,它能阻垢、缓蚀、杀菌、能使冷却水系统在高浓缩倍数甚至在零排污下运行,从而节水节能,保护水资源;同时,臭氧冷却水处理不存在任何环境污染。国外应用臭氧进行循环水处理已经取得了成功,而我国在这个领域却是空白。 二、系统工艺 循环水冷却通常分为密闭式循环水冷却系统和敞开式循环水冷却系统。密闭式循环水冷却系统中,水是密闭循环的,水的冷却不与空气直接接触。敞开式循环水冷却系统,水的冷却需要与空气直接接触,根据水与空气接触方式的不同,可分为水面冷却、喷水冷却池冷却和冷却塔冷却等。 敞开式循环水冷却系统可分为以下3类: 1.压力回流式循环冷却系统 此种循环水系统一般水质不受污染,仅补充在循环使用过程中损失的少量水量。补充水可流入冷水池,也可流入冷却构筑物下部。冷水池也可设在冷却塔下面,与集水池合并。 补充水→ 冷水池→ 循环泵房→生产车间或冷却设备→冷却塔 压力回流式循环冷却系统

工业循环水处理技术改进措施

工业循环水处理技术改进措施 环境保护、节水减排、废水回用是对目前循环冷却水系统提出的新挑战。企业应根据自身特点,积极采用成熟的新技术、新材料和新装置,优化循环冷却水处理系统,提高循环冷却水处理技术水平,为企业甚至整个社会的可持续发展做出应有的贡献。 1导言 循环水处理是个巨大而艰巨的系统工程,我们要解决的就是腐蚀、结垢、微生物粘泥这三个问题,要针对本厂实际情况结合自己设备存在的问题,做出正确判断,更重要的是要对整个设备进行优化管理,加大管理监察力度,围绕水质稳定做工作,争取达到对循环水水质、水温的合理控制,防患于未然,在实现节能降耗的同时,为全厂生产设备的安全运行提供有利保障。 2段国内外循环水处理的实际情况 2.1现阶段国内外循环水处理情况 循环水冷却处理技术于上世纪初期已在国外得到了良好的应用和发展,但也因为诸多实际因素的限制暴露出各种问题。上世纪末期循环水处理技术才被引入我国,在经过了一段漫长的发展历程后,方呈现出逐渐成熟趋势。在近几年的发展过程中,全世界循环水处理效率得到了很大程度的提升,应用于循环水处理的相关处理剂也逐渐增多,更甚至发展成为国际化和规模化的处理剂产品,在此方面,我国对于循环水处理剂的进出口量也在不断增长。 2.2现阶段国内外循环水主要处理手段 现阶段我国在处理循环水方面主要应用以下几种方式:首先是化学处理方式,该方式主要通过应用化学药剂,对循环水中所包含的多种不稳定物质实施高强度处理,从而有效降低污水的腐蚀性以及阻止污水结垢,另一方面能够合理降低常规工作状态下的排水量和补水量;其次是物理处理方式,该方式主要是应用相关处理材料对循环水进行科学全面的分析,同时通过改变循环水的能量、温度及压强,有效加强循环水处理材料的抗腐蚀及抗结垢等功能。 3循环水运行中存在的问题 3.1循环水系统内长期漏油 由于设备老化等原因,循环水系统长期漏油,久而久之,这样就会使装置换热设备内表面形成一层油膜,影响循环水的处理效果,泄漏的油脂还会成为众多微生物丰富的营养源,造成循环水系统微生物大量迅速繁殖难以控制,微生物粘泥、藻类急剧增多,使换热器内表面长期被油泥覆盖,致使缓蚀阻垢剂无法与换热器内表面接触从而丧失其缓蚀阻垢作用,导致换热器极易产生结垢和腐蚀。 3.2阻垢缓蚀效果差 由于不同时期水质和生产工艺条件都会发生变化或波动,就要及时改进、调整、优化缓蚀阻垢剂配方,如果配方长期不换,菌藻对杀菌剂已产生了免疫功能,阻垢缓蚀效果抗冲击和污染能力就会降低,杀菌效果差。 3.3凉水塔排泥设施不完善,水池没有做到定期清淤 凉水塔底部一般呈平底状,池底排泥阀无法排掉池底的淤泥,所以循环水厂的排泥阀不起作用,淤泥只能靠清扫水池才能排掉。但由于生产的连续不间断性,给清池工作带来很大的困难。 4现代循环水处理技术 随着循环水处理技术的发展,现代循环水处理技术采用有机阻垢剂、缓蚀剂、杀菌灭澡剂综合运用的方法,轮换交替使用,这样可以达到药剂间相互增效的作用。目前有机阻垢剂品种繁多,主要有有机磷系列、聚羟酸系列、聚羟酸脂系列等,一般来讲,复合配方的阻垢

工业循环水国标word版本

工业循环水国标

中华人民共和国标准 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment GB50050-95 主编部门:中华人民共和国化学工业部 批准部门:中华人民共和国建设部 施行日期:1995年10月1日 中国计划出版社 1995年北京 目次 1总则 2术语、符号 2.1术语 2.2符号 3循环冷却水处理 3.1一般规定 3.2敞开式系统设计 3.3密闭式系统设计 3.4阻垢和缓蚀 3.5菌藻处理 3.6清洗和预膜处理 4旁流水处理 5补充水处理 6排水处理 7药剂的贮存和投配 8监测、贮存和化验 附录A水质分析项目表 附录B本规范用词说明 附加说明 附:条文说明 1总则 1. 01为了控制工业循环冷却水系统内由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规范。 1. 02本规范适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。 1. 03工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1. 04工业循环冷却水处理设计应在不断地总结生产实践经验和科学试验的基础上,积极慎重地采用新技术。 1. 05工业循环冷却水处理设计除应按本规范执行外,尚应符合有关现行国家标准、规范的规定。 2术语、符号 2.1术语

2.1.1循环冷却水系统Recirculating cooling water systemc 以水作为冷却介质,由换热设备,水泵、管道及其它关设备组成,并循环使用的一种给水系统。 2.1.2敞开式系统Open system 指循环冷却水与大气直接触冷却的循环冷却水系统。 2.1.3密闭式系统Closed system 指循环冷却水不与大气直接触冷却的循环冷却水系统。 2.1.4药剂Chemicals 循环冷却水处理过程中使用的各种化学物质。 2.1.5异状养菌数学课Count of heterotrophic bacteria 按细菌平皿计数法求出每毫升水中的异养菌个数. 2.1.6粘泥Slime 指微生物及其分泌的粘液与其它有机和无机的杂质混合在一起的粘浊物质。2.1.7粘泥量Slime content 用标准的浮游生物网,在一定时间内过滤定量的水,将截留下来的悬浊物放入量筒内静置一定时间,测其沉淀后粘泥量的容积,以mg/m3表示。 2.1.8.污垢热阻值Fouling resistance 表示换热设备传热面上因沉积物而导致传热效率下降程度的数值,单位为m2.k/w。 2.1.9腐蚀率Corrosion rate 以金属腐蚀失重而算得的平均腐蚀率,单位为mm/a。 2.1.10系统容积System capacity volume 循环冷却水系统内所有水容积的总和。 2.1.11浓缩倍数Cycle of concentration 循环冷却水的含盐浓度与补充水的含盐浓度之比值。 2.1.12监测试片Monitoring test coupon 放置在监测换热设备或测试管道上监测腐蚀用的标准金属试片。 2.1.13预膜Prefilming 在循环冷却水中投加预膜剂,使清洗后的换热设备金属表面形成均匀密致的保护膜的过程。 2.1.14间接换热Indirect heat exchange 换热介质之间不直接接触的一种换热形式。 2.1.15旁流水Side stream 从循环冷却水系统中分流部分水量,按要求进行处理后,再返回系统。 2.1.16药剂允许停留时间Permitted retention time of chemicals 药剂在循环冷却水系统中的有效时间。 2.1.17补充水量Amount of makeup water 循环冷却水系统在运行过程中补充所损失的水量。 2.1.18排污水量Amount of blowdown 在确定的浓缩倍数条件下,需要从循环冷却水系统中排放的水量。 2.1.19热流密度Heat load intensity 换热设备的单位传热面每小时传出的热量。以W/m2。 2.2符号 编号符号含义

电化学 循环水处理工艺介绍

项目概述 ***********厂内现有部分循环水排污水。 为了节约用水,减少排放,实现水资源再利用,公司拟对厂内的上述各系统循环水排污水进行处理后回用于厂内循环水系统作为补水,代替新鲜水的使用。设计处理水量为200m3/h。 一.设计基础 1.水质情况 1.1水质指标 注:混合污水水质即为经计算后原水水质指标。 1.2水质分析 由以上数据表可以看出,将几股循环水排污水及浓水混合后,其水质的主要问题是电导率、总硬度、总碱度较高,需要进行降低去除处理。

而对于水中含盐量的降低去除则必然涉及到膜法除盐技术,而膜脱盐设备对于进水水质有一定的要求标准,从上述水质表分析,其水质总硬度、总碱度等指标较高,均超过膜脱盐设备的进水要求,原水的结垢性较强,易在膜过滤过程中形成垢类物质沉积在膜表面,影响膜的正常运行。所以必需对原水进行预处理,降低水质的总硬度、总碱度等指标,使处理出水达到膜脱盐设备的进水要求,才能进入脱盐设备进行脱盐处理。 本方案设计工艺分为两部分,一部分是预处理,一部分是脱盐处理。预处理主要用于降低水中的总硬度、总碱度等,脱盐处理主要用于降低水中的含盐量。2.设计水量 设计处理水量为:200m3/h。 二.技术工艺说明 1.技术工艺确定 1.1 技术工艺确定 根据污水水质分析,处理工艺确定为“预处理+脱盐”。其中预处理工艺需要降低水中总硬度、总碱度等,使出水水质满足膜脱盐设备的进水要求。对于水中的上述指标,均可通过“三法净水”处理技术进行有效降低去除,同时还可以进一步去除污水中的浊度、悬浮物等颗粒杂质。 由于处理出水作为循环水系统的补水,对于水质的含盐量要求并不高(新鲜水补水电导450-500uS/cm),而且随着回用设备的投运,循环水系统的含盐量逐渐降低,水质将逐渐改善,所以选择适度脱盐设备进行脱盐处理,即JR-EDR 电渗析脱盐设备。同时,JR-EDR电渗析脱盐设备具有运行成本低、膜抗污染性较强的特点,更适宜应用于污水回用处理。 设计技术工艺为:“三法净水”一体化设备+JR-EDR电渗析脱盐设备。1.2工艺流程框图 加酸、杀菌剂

冷却循环水处理方案

北京东方君悦大酒店循环冷却水处理方案 诚信绿洲 2016年12月

4.3 技术介绍 A)、不含重金属(Cr等),不以磷为基础的阻垢剂,排污水不造成公害,符合环境保护法规,可节省排污处理费用,并免除处理之麻烦。 B)、媲美铬酸盐法的防蚀效果。 C)、药品中所含之专用分散剂,克服了传统冷却水处理所常发生之结垢问题,碳酸钙阻垢能力达1200ppm。 D)、适合于循环水高倍浓缩操作,因此可节省水费及总操作费用。 我司处理方案分三部份,兹分别说明于后: a.结垢抑制 b.腐蚀抑制 c.微生物抑制 (A)结垢抑制 我司最新专用分散剂,可防止冷却水系统产生结垢物,甚至水中钙硬度高达1200ppm,亦有优异之分散作用,保持热传金属表面无结垢之虞,高浓缩情况排污水量减少,并产生下列优点: a. 降低成本:1、用水量减少。 2、用药量节省。 减废功能:水资源充分利用。 附带效益:因本处理方案可适应极差的水质,当补充水质较差时,本处理方案亦能有效因应,从而避免因水质变差导致停机或减量生产。 (B)腐蚀抑制 碳钢腐蚀抑制通常以无机磷酸盐作为阳极及阴极保护,形成坚韧之r-Fe2O3钝化保护膜,避免铁金属游离失去电子,有效抑制铁 材质腐蚀 Fe Fe2++2e- 另外,冷却水中磷酸钙及碳酸钙在阴极高pH位置形成覆盖性保护膜,避免水中O2来接受电子,阻止阴极半反应的发生,腐蚀问题将可彻底抑制 1/2O2+H2O+2e- 2OH- 如图所示 Fe + o-PO4(p-PO4) → r-Fe2O3 ANODIC ANODIC PASSVATION Ca + p-PO4→ Ca-p-PO4↓ CATHONIC

冶金工业废水处理技术

冶金工业废水处理技术 冶金工业产品繁多,生产流程各成系列,排放出大量废水,是污染环境的主要废水之一。冶金废水的主要特点是水量大、种类多、水质复杂多变。按废水来源和特点分类,主要有:冷却水,酸洗废水,除尘和煤气、烟气洗涤废水,冲渣废水以及由生产工艺中凝结、分离或溢出的废水等。 冷却水的处理 冷却水在冶金废水中所占的比例最大。钢铁厂的冷却水约占全部废水的70%。冷却水分间接冷却水和直接冷却水。间接冷却水,如高炉炉体、热风炉、热风阀、炼钢平炉、转炉和其他冶金炉炉套的冷却水,使用后水温升高,未受其他污染,冷却后,可循环使用。若采用汽化冷却工艺,则用水量可显著减少,部分热能可回收利用。直接冷却水,如轧钢机轧辊和辊道冷却水、金属铸锭冷却水等,因与产品接触,使用后不仅水温升高,水中还含有油、氧化铁皮和其他物质,如果外排,会对水体造成淤积和热污染,浮油会危害水生生物。处理方法是先经粗颗粒沉淀池或水力旋流器,除去粒度在100微米以上的颗粒,然后把废水送入沉淀,除去悬浮颗粒;为提高沉淀效果,可投加混凝剂和助凝剂;水中浮油可用刮板清除。废水经净化和降温后可循环使用。冷轧车间的直接冷却水,含有乳化油,必须先用化学混凝法、加热法或调节pH值等方法,破坏乳化油,然后进行上浮分离,或直接用超过滤法分离。所收集的废油可以再生,作燃料用。 酸洗废水的处理 轧钢等金属加工厂都产生酸洗废水,包括废酸和工件冲洗水。酸洗每吨钢材要排出1~2米废水,其中含有游离酸和金属离子等。如钢铁酸洗废水含大量铁离子和少量锌、铬、铅等金属离子。少量酸洗废水,可进行中和处理并回收铁盐;较大量的则可用冷冻法、喷雾燃烧法、隔膜渗析法等方法回收酸和铁盐或分离回收氧化铁。若采用中性电解工艺除氧化铁皮,就不会出酸洗废水。但电解液须经过滤或磁分离法处理,才能循环使用。 洗涤水的处理 冶金工厂的除尘废水和煤气、烟气洗涤水,主要是高炉煤气洗涤水、平炉和转炉烟气洗涤水、

循环水处理标准GB

新版国标《工业循环冷却水处理设计规范》G B50050-2007释义新版国标《工业循环冷却水处理设计规范》GB50050-2007要实施了,杭州冠洁工业清洗水处理科 技有限公司与您共同学习,共同提高。 国标《工业循环冷却水处理设计规范》GB50050-2007 说明 1. 新版国标《工业循环冷却水处理设计规范》GB50050-2007规范修订的背景、意义及其特点 1.1 我国《标准化法实施条例》规定:“标准实施后,制定标准的部门应按科学技术的发展和经济建设的需要适时进行复审,标准复审周期一般不超过五年”。我们这本《工业循环冷却水处理规范》第一版是GBJ80-83,第二版,也就是现行版GB50050-95,发布至今已达12年之久,远远超过了标准化的规定,所以要进行修订。 1.2 循环冷却水处理技术的发展 我国循环冷却水处理药剂及技术虽然起步较晚,但紧跟国外的发展趋势,并结合国情进行研究开发和推广应用,具有起点高、发展快的特点。在消化吸收的基础上,先后开发出HEDP、ATMP、EDTMP、PAA、DDM(G4)、聚马、马丙、聚季铵盐。瞄准具有70 年代水平的聚磷酸盐/膦酸盐/聚合物/杂环化合物的循环冷却水处理“磷系复合配方”,进行研究开发,填补了国内空白,满足了大化肥循环冷却水处理药剂国产化的要求。80 年代,随着石油装置和大型冶金装置的引进,对栗田、Nalco Drew、片山等国外著名公司的循环水处理剂及冷却水处理技术进行消化吸收。一大批新的循环水处理剂配方相继开发成功,使我国的循环冷却水处

理技术又取得了重要进展,在磷系复合配方的基础上,开发出“磷系碱性水处理配方”、“全有机水处理配方”、“钼系水处理配方”和“硅系水处理配方”。实现了循环冷却水在自然平衡pH 条件下的碱性条件下运行,这类水处理配方除具有“磷系复合配方”的优点外,还避免了加酸操作带来的失误,深受用户的欢迎。90 年代以来,随着水处理技术的进一步提高,国内水处理剂及技术开始出口。同时新型膦酸盐、新型水处理杀生剂的不断开发成功,水处理药剂的前沿研究与国外水平基本接近。“全有机水处理剂配方”应用比重不断提高,与此同时,低磷、无磷、无金属水处理配方不断推向市场。 我国的循环冷却水处理是20 世纪70 年代后期从国外引进磷系配方开始的,至今已取得了巨大的进步,说明我国的水处理药剂应用水平不低,表1 为我国循环冷却水处理配方发展过程。 表1 我国循环冷却水处理配方发展 年代配方 1975~1979 聚磷酸盐/膦酸盐/聚丙烯酸(用酸调pH) 聚磷酸盐/膦酸盐/锌/聚丙烯酸(用酸调pH) 1980~1985 多元醇磷酸酯/锌/磺化木质素(用酸调pH) 1980~1985 膦酸盐/聚合物或共聚物(碱性处理) 硅酸盐或钼酸盐配方 1986~1992 磷酸盐/二元、三元共聚物全有机配方,系统可连续运行1~2 年1993 新型膦酸盐及新型共聚物开始进入市场,碱性处理比重在提高 1998 开始开发无磷无金属配方 目前循环冷却水处理已经在我国各个行业的循环水系统中得到应用。不论是国产

循环水处理方案

方宇润滑油循环水系统粘泥清除方案 1、方宇润滑油循环水系统现状 2014年8月30日系统出现泄漏情况,初步打压确认有三台换热器存在泄漏情况。31日查看打开的换热器情况,换热器中有大量粘泥沉积呈现灰白色,触感光滑,有油分,垢类以软垢形式存在,垢下换热器管程凹凸不平,有大量锈蚀。循环水呈现黄绿色,凉水塔池壁有大量藻类。系统情况见下图。 2、原因分析 粘泥沉积主要由于前期除油清洗后,排污不顺,进水管道(直径1米)和回水管道(直径1米)中残存的粘泥没有完全排除系统,再次运行期间逐渐沉积到管道中引起垢下腐蚀(主要是点蚀现象),腐蚀物沉积形成管道的凹凸不平的表面;前期工艺介质泄漏,油泥沉积对设备已经造成相当程度的腐蚀,后续粘泥沉积致使系统设备性能继续恶化,形成腐蚀穿孔;另外,可能换热器壳程内防腐不好,造成物料对管道的腐蚀引起泄漏。 3、处理办法 (1)确定泄漏设备的数量并更换或修复; (2)使用硫酸调节系统pH值在6左右; (3)加入氧化型杀菌剂200~250ppm运行6~8小时; (4)加入非氧化型杀菌剂200ppm,粘泥剥离剂200~250ppm运行12~24小时; (5)测定循环水浊度至不再上升或略有下降,大量排水置换至循环水浊度达到运行要求。 (6)打开换热器观察系统中粘泥附着情况,根据现状决定是否进行再一次的剥离。 (7)系统打压确定是否有其他设备泄漏,更换或修复。 (8)剥离完毕系统转入正常运行,补加阻垢剂和杀菌剂控制设备的腐蚀和结垢。 4、后续运行建议 (1)系统中换热器做好内防腐; (2)系统加设氧化型杀菌剂连续加药装置或二氧化氯发生器,实现系统中

氧化型杀菌剂的连续加药,保证系统水中余氯维持在0.5左右;(3)系统加设挂片器,检测系统水对设备的腐蚀速率; (4)系统补水线加设流量计,统计各补水的补充量,更好的控制系统的浓缩倍数; (5)系统做好排污。 山东化友化学有限公司 2014年9月1日

工业循环冷却水处理设计规范2007

工业循环冷却水处理设计规范 中华人民共和国国家标准 GB50050--2007 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment 中华人民共和国建设部 关于发布国家标准《工业循环冷却水处理设计规范》的公告 中华人民共和国建设部公告第742号 现批准《工业循环冷却水处理设计规范》为国家标准,编号为GB50050-2007,自2008年5月1日起实施。其中,第3.1.6(2、4、5、6)、3.1.7、3.2.7、6.1.6、8.1.7、8.2.1、8.2.2、8.5.1(1、2、3、4、5、6、7)、8.5.4条(款)为强制性条文,必须严格执行。原《工业循环冷却水处理设计规范》GB50050-95同时废止。本标准由建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部 二〇〇七年十月二十五日 1 总则 1.0.1 为了贯彻国家节约水资源和保护环境的方针政策,促进工业冷却水的循环利用和污水资源化,有效控制和降低循环冷却水所产生的各种危害,保证设备的换热效率和使用年限,减少排污水对环境的污染,使工业循环冷却水处理设计做到技术先进,经济实用,安全可靠,制定本规范。 1.0.2 本规范适用于以地表水、地下水和再生水作为补充水的新建、扩建、改建工程的循环冷却水处理设计。 1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1.0.4 工业循环冷却水处理设计应不断地吸取国内外先进的生产实践经验和科研成果,积极稳妥地采用新技术。 1.0.5 工业循环冷却水处理设计除应按本规范执行外,还应符合国家有关现行标准和规范的规定。 2 术语、符号 2.1 术语 2.1.1 循环冷却水系统Recirculating Cooling Water System 以水作为冷却介质,并循环运行的一种给水系统,由换热设备、冷却设备、处理设施、水泵、管道及其它有关设施组成。 2.1.2 间冷开式循环冷却水系统(间冷开式系统)Indirect Open Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与大气直接接触散热的循环冷却水系统。2.1.3 间冷闭式循环冷却水系统(闭式系统)Indirect Closed Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与冷却介质也是间接传热的循环冷却水系

钢铁工业主要水处理系统

与钢铁工业节水问题紧密相关的另一个问题是钢铁工业用水的处理,只有水处理问题得到有效的解决,节水工作才能真正取得成效。国外大钢铁企业的经验证明,正确使用水处理剂,可以有效解决水循环系统的结垢问题,不仅延长了系统使用寿命,节约水资源,而且可以实现污水零排放,节水和环保效果非常显著。 在钢铁工业中,需要进行水处理的系统主要是: (1)炼铁厂:高炉、热风炉冷却净循环水处理系统;高炉煤气洗涤水浊循环系统;高炉炉渣水循环系统;鼓风机站净循环水处理系统。 (2)炼钢厂:氧气转炉烟气净化污水处理系统;转炉间接冷却循环水处理系统;电炉净循环冷却水系统;转炉软化冷却水系统;电炉软水冷却水系统;转炉污泥处理系统;电炉真空处理污水处理系统。 (3)连铸厂:结晶器软水闭路循环水系统;二次冷却浊循环水系统;污泥脱水处理系统。 (4)热轧厂:热轧净循环水处理系统;热轧浊循环水处理系统;过滤器反洗水处理系统;含油、含乳化液废水处理系统;污泥处理系统。 (5)冷轧厂:间接冷却开路循环水处理系统;酸碱废水处理系统;含油、含乳化液废水处理系统;污泥处理系统。 水处理剂中用量较大的有三类:絮凝剂;杀菌灭藻剂;阻垢缓蚀剂。絮凝剂亦称混凝剂,其作用是澄凝水中的悬浮物,降低水的浊度,通常用无机盐絮凝剂添加少量有机高分子絮凝剂,溶于水中与所处理水均匀混合而使悬浮物大部沉降。杀菌灭藻剂亦称杀生剂,其作用是控制或清除水中的细菌和水藻。阻垢缓蚀剂主要用于循环冷却水中,提高水的浓缩倍数,降低排污量以实现节水,并降低换热器和管道的结垢和腐蚀。 针对钢铁工业的特点,水处理剂的使用需注意以下几点: (1)在钢铁企业中,具有高热流密度的设备较多,这与化工工业有着显著的不同。因此,开发应用耐高温、低公害或无公害的阻垢缓蚀剂,是钢铁工业水处理剂的研发方向之一。 (2)结垢堵塞问题突出。高炉煤气洗涤循环水的水质成分很复杂,由于矿石中氧化钙的溶入,造成管道结垢,喷头堵塞,影响生产正常运行。在转炉炼钢过程中,投入造渣剂石灰,部分石灰细粉被烟气带出,在烟气洗涤塔中与循环水生成氢氧化钙,随后与烟气中的二氧化碳反应生成碳酸钙,造成洗涤塔中喷嘴堵塞,输水管道断面减少,阻力增加,浪费能源。在高炉煤气洗涤和转炉烟气净化浊循环水中,也需要解决洗涤水中大量悬浮物以及严重结垢问题。这些方面均需要开发优质的聚凝剂、分散剂及除硬稳定剂。 (3)连铸及轧钢浊循环水主要是细小的氧化铁皮悬浮物及循环水中油的去除问题。这类循环水的水处理工艺是沉淀、除油、过滤、冷却。水处理药剂主要采用絮凝剂、助凝剂、除油剂及少量的阻垢分散剂等。目前国内生产的絮凝剂主要是铝盐及铁盐,助凝剂主要是聚丙烯酰胺类高分子药剂。与国外同类产品相比,使用效果较差。因此,开发适用于钢铁企业的高效絮凝剂、助凝剂、除油剂是当务之急。

循环水系统加药系统方案

循环水系统加药系统方案

2000m3/h,2×1500m3/h 循环水系统投药系统 设 计 方 案 苏州得润水处理设备有限公司 2010年10月

目录 一、概述 (1) 二、循环冷却水处理设计的原则和要求 (1) 三、工艺流程的确定 (2) 四、循环水系统设计参数 (3) 五、设计规范标准 (7) 六、药剂选用原则 (8) 七、补充水及旁滤处理 (8) 八、循环水处理 (8) 九、清洗与预膜处理 (12) 十、药剂的选用及投药量 (14) 十一、投药设备的选型 (16) 十二、供货清单 (17) 十三、设备的投资概算 (17)

一、概述 在冷却水循环使用的过程中,通过冷却构筑物的传热与传质交换,循环水中Ca2+、Mg2+、CL-、 2 SO等离子,溶解性固体,悬浮物相应增加,空气中污染物 4 如尘土、杂物、可溶性气体和换热器物料渗漏等均可进入循环水,致使微生物大量繁殖和在循环冷却水系统的管道中产生结垢、腐蚀和粘泥,造成换热器换热效率降低,能源浪费,过水断面减少,通水能力降低,甚至使设备管道腐蚀穿孔,酿成事故。 循环冷却水处理的目的就在于消除或减少结垢、腐蚀和生物粘泥等危害,使系统可靠地运行。 循环水中能产生的盐垢有许多种,如碳酸钙、硫酸钙、碳酸镁、氢氧化锰、硅酸钙等,其中以碳酸钙垢最为常见,危害最大。 二、循环冷却水处理设计的原则和要求 1、安全生产、保护环境、节约能源、节约用水是在工业循环冷 却水处理设计中需要贯彻的国家技术方针政策的几个重要方面。在符合 安全生产要求方面:循环冷却水处理不当,首先会使用权冷却设备产生 不同程度的结垢和腐蚀,导致能耗增加,严重时不仅会损坏设备,而且 会引起工厂停车、停产和减产的生产事故,造成极大的经济损失。因此,安全生产首先应保证循环冷却水处理设施连续、稳定地运行并能达到预 期的处理要求。其次,在循环冷却水处理的各个环节如循环水处理、旁 流水处理、补充水处理及辅助生产设施如仓库、加药间等,设计中都应 考虑生产上安全操作的要求。特别是使用的各种药剂如酸、碱、阻垢剂、杀菌灭藻剂等,常常是有腐蚀性、有素,对人体有害的。因此,对各种 药剂的贮存、运输、配制和使用,设计上都必须有保证工作人员卫生、 安全的设施。并按使用药剂的特性,具体考虑其防火、防腐、防素、防 尘等安全生产要求。 2、循环冷却水处理,可以概括为去除悬浮物、控制泥垢、控制 腐蚀及微生物等四个方面。 3、敞开式循环冷却水系统中冷却水吸收热量后,以冷却塔与大

工业循环水常遇问题及解决方案

工业循环水常遇问题及解决方案 一、工业循环水 随着工业生产得发展,水用量急剧增加,很多地区已经出现供水不足得现象,节约用水刻不容缓!冷却水占工业用水主体,提高其重复利用率、循环使用就是节水节能得必须手段 二、循环水运行过程中常产生得问题 在工业生产得工艺条件下,工业循环水水质常会发生一系列变化,对生产造成危害,如:腐蚀、结垢、菌藻、粘泥等。这些问题如果得不到有效得解决,则无法进行安全生产,造成巨大得工业损失。 1 >水垢 由于循环水在冷却过程中不断地蒸发,使水中含盐浓度不断增高,超过某些盐类得溶解度而沉淀。常见得有碳酸钙、磷酸钙、硅酸镁等垢。 碳酸钙 碳酸钙就是工业循环冷却水中最常见得水垢,主要就是Ca (HC03)2 在循环冷却水得运行中受热分解成C02与CaC03o 磷酸钙 为了抑制系统材质得腐蚀,常常要加入聚磷酸盐来作为缓蚀剂,当水 温升高时,聚磷酸盐会分解为正磷酸盐。 硅酸镂

水中得Si02量过高,加上水得硬度较高,生成非常难处理得硅酸钙(镁)硕垢。水垢得质地比较致密,大大得降低了传热效率,0、6毫米得垢厚就使传热系 数降低了20%。 2、污垢 污垢主要由水中得有机物、微生物菌落与分泌物、泥沙、粉尘等构成。垢得 质地松软,阻隔传热、阻隔水流、引起垢下腐蚀,缩短设备使用寿命。 、3、电化学腐蚀 循环水对换热设备得腐蚀,主要就是电化腐蚀。产生原因有设备制造缺陷、 水中充足得氧乞、水中腐蚀性离子(Cl-、Fe2+、Cu2+)以及微生物分泌得黏液 所生成得污垢等因素。如果不加控制,极短得时间便使换热器、输水管路设备报废。 4、微生物粘泥 循环水中溶有充足得氧气、合适得温度及富养条件,很适合微生物得生长繁殖。如不及时控制将迅速导致水质恶化、发臭、变黑。冷却塔大量黏垢沉积甚至堵寒,冷却散热效果大幅下降,设备腐蚀加剧。 工业循环水处理技术 5、水垢得控制方法 从冷却水中去除成垢钙离子 从水中除去Ca2+,使水软化,则碳酸钙就无法结晶析出,也就形不成水垢, 主要两种方法。 ①离子交换树脂法 离子交换树脂法就就是让水通过离子交换树脂,将Ca2+、Mg2+从水中置换出

新版国标《工业循环冷却水处理设计规范》GB50050-2007学习释义

新版国标《工业循环冷却水处理设计规范》GB50050-2007学习释义国标《工业循环冷却水处理设计规范》GB50050-2007说明 1. 新版国标《工业循环冷却水处理设计规范》GB50050-2007规范修订的背景、意义及其特点 1.1 我国《标准化法实施条例》规定:“标准实施后,制定标准的部门应按科学技术的发展和经济建设的需要适时进行复审,标准复审周期一般不超过五年”。我们这本《工业循环冷却水处理规范》第一版是GBJ80-83,第二版,也就是现行版GB50050-95,发布至今已达12年之久,远远超过了标准化的规定,所以要进行修订。 1.2 循环冷却水处理技术的发展 我国循环冷却水处理药剂及技术虽然起步较晚,但紧跟国外的发展趋势,并结合国情进行研究开发和推广应用,具有起点高、发展快的特点。在消化吸收的基础上,先后开发出HEDP、ATMP、EDTMP、PAA、DDM(G4)、聚马、马丙、聚季铵盐。瞄准具有70 年代水平的聚磷酸盐/膦酸盐/聚合物/杂环化合物的循环冷却水处理“磷系复合配方”,进行研究开发,填补了国内空白,满足了大化肥循环冷却水处理药剂国产化的要求。80 年代,随着石油装置和大型冶金装置的引进,对栗田、Nalco Drew、片山等国外著名公司的循环水处理剂及冷却水处理技术进行消化吸收。一大批新的循环水处理剂配方相继开发成功,使我国的循环冷却水处理技术又取得了重要进展,在磷系复合配方的基础上,开发出“磷系碱性水处理配方”、“全有机水处理配方”、“钼系水处理配方”和“硅系水处理配方”。实现了循环冷却水在自然平衡pH 条件下的碱性条件下运行,这类水处理配方除具有“磷系复合配方”的优点外,还避免了加酸操作带来的失误,深受用户的欢迎。90 年代以来,随着水处理技术的进一步提高,国内水处理剂及技术开始出口。同时新型膦酸盐、新型水处理杀生剂的不断开发成功,水处理药剂的前沿研究与国外水平基本接近。“全有机水处理剂配方”应用比重不断提高,与此同时,低磷、无磷、无金属水处理配方不断推向市场。我国的循环冷却水处理是20 世纪70 年代后期从国外引进磷系配方开始的,至今已取得了巨大的进步,说明我国的水处理药剂应用水平不低,表1 为我国循环冷却水处理配方发展过程。

工业循环水知识

工业循环水系统的技术管理 在水资源日益缺乏的今天,如何利用好水资源, 对耗水大户石化企业来说,显得特别重要。它不但影响企业的经济效益,而且还关系到企业的生存和发展,我厂8万t/年硫酸循环冷却水系统,经过十余年的运行,取得了良好效果,下面就循环冷却水系统的技术管理做一探讨。 1 循环冷却水系统工艺流程的改进 我厂循环冷却水系统原工艺流程为:冷水池→ 冷水泵→管壳式换热器→热水池→热水泵→冷却塔→冷水池。共有6台水泵同时运行,无备用机。冷热水池置于地下,故采用真空起泵方法,在运行时,如果有一台泵泄压,就会造成冷热水池液位不平衡而冒池,严重时会影响到其他泵泄压,造成系统停车。针对这一现象,我们进行了深入研究和测试,对其工艺流程进行了该进,取消了热水池和热水泵,将热水泵改为冷水泵使用,改进后的工艺流程为:冷水池→ 冷水泵→管壳式换热器→冷却塔→冷水池。这一改进,不但解决了冒池现象同时也解决了无备机的问题,并且降低了电耗和泵的维修费用,取得了可观的经济效益。 2 冷却塔的技术管理 2.1 风机的选型与维护 风机的选型是否合理,将影响到冷却效果和能耗大小。原有风机为铝合金叶片,15kW圆锥齿轮减速机,经过三年时间的运行,暴露出冷却效果差、能耗高、噪音大的缺点,通过改造,我们更换成玻璃钢叶片11kW行星齿轮减速机,工作效率提高10%左右。 2.2 填料的安装及维护 我厂冷却塔填料采用的是改性硬乙稀斜波片, 每年定期清理两次填料,去除填料间隙中的污垢,在清理时要注意轻拿轻放,防止破损。装填料时要循中心给水管盘成圆形,不要拉得过紧,但也要贴合防止松动,相邻层斜波要交叉错置叠放,每层要校核水平,外围与塔壁贴合良好,这样就可以保证分水均匀,与空气接触良好。 3 循环冷却水处理技术管理 3.1 阻垢、缓蚀 最初的水处理药剂分为两大类,阻垢或缓蚀的, 但后来发现冷却水的结垢和腐蚀现象是相互关联的,水中阻垢剂含量高会引起腐蚀,缓蚀剂含量高会增大结垢的可能,现在工业循环水大都采用复合型水处理药剂,既有阻垢功能,又有缓蚀效应,如HEDP。既使这样,要在实际操作中保持既不腐蚀又不能结垢的平衡也是非常困难的,所以在投入正常运行前,对系统进行预处理是非常必要的,它能在腐蚀结垢发生前在系统内建立一层钝化膜。我厂循环冷却水预处理程序为①投加DC—S213剂浓度至标准2~3倍,②循环24~36h,pH值维持在6~7,温度20 ~30℃。③钝化后系统降至标准水平2.8~ 5.2ppm。 3.2 有机物的生长

反渗透浓水用于循环水的处理方案知识讲解

反渗透浓水用于循环水的处理方案

技术方案 天津**钢铁有限公司 反渗透浓水用于发电循环水系统 处理方案 北京奥博水处理有限责任公司 2016年1月19日 天津荣程联合集团钢铁有限公司 反渗透浓水用于发电循环水系统 处理方案 一、前言: 当今,环保形势的日益紧迫,地下水及地表水也日益匮乏,废水回用迫在眉睫。北京市奥博水处理有限公司多年来一直致力于工业循环冷却水处理药剂和废水回用技术的研究,已取得了多项发明专利和研究成果。在当前形势下,奥博公司愿为荣程钢铁健康发展助一臂之力。特作出循环冷却水系统处理方案如下: 二、基本情况: 1、25MW机组一台,循环水系统保有水量2400m3,循环量5000m3/h。 2、循环水系统结垢、腐蚀情况不详。 3、换热器材质:不锈钢。 4、废水水质 项目

水样 碱度(mmol/L)硬度(mmol/L) CI- (mg/L) Ca2+ (mg/L) SO42- (mg/L) 浊度(NTU) PH 值 反渗透浓水7.0 38 5150

204 961.4 1.01 7.20 三、处理目标: 将反渗透浓水全部用于循环水系统,,通过投加发明专利药剂,得到常年不结垢不腐蚀,而且零排放。 四、处理理念: 1、循环冷却水系统是废水深度处理的最佳设施。 ①循环冷却水系统具备了废水处理所需的厌氧、好氧及无限循环的最佳环境。废水停留时间长,直到变成水蒸气为止。 ②循环水中具有好氧、厌氧、产气、产酸、产碱的多种微生物群落,对废水中的有机物、氨氮、酚、氰等有害物质的降解更全面、更充分、更彻底。 ③循环水系统保有水量大,抗废水冲击能力强,对废水有很好的稀释作用,有利于各种微生物的生长繁殖和对有机物的代谢及降解。 ④循环水在通过循环泵后的加压和换热器的加温过程中,对有机物的氧化还原反应起到了促进或催化作用。 ⑤循环水中的Mg2+、废水中有NH3-N、药剂中有PO43-,有利于形成MgNH4PO4沉淀析出,是废水脱氮的最佳补充方法。 2、未经深度处理的废水是循环水的最佳水源。

相关文档
最新文档