最优控制理论

最优控制理论
最优控制理论

最优控制理论

本词条由“科普中国”百科科学词条编写与应用工作项目提供专业内容并参与编辑

最优控制理论(optimal control theory),是现代控制理论的一个主要分支,着重于研究使控制系统的性能指标实现最优化的基本条件和综合方法。最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。

1简介

这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的动态规划和庞特里亚金等人提出的最大值原理。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。

2研究内容

最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。

例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。苏联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。

3主要方法

为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优

控制问题的主要方法有古典变分法、极大值原理和动态规划。

古典变分法

研究对泛函求极值的一种数学方法。古典变分法只能用在控制变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。

极大值原理

极大值原理,是分析力学中哈密顿方法的推广。极大值原理的突出优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足的条件。

动态规划

动态规划是数学规划的一种,同样可用于控制变量受限制的情况,是一种很适合于在计算机上进行计算的比较有效的方法。

最优控制理论已被应用于最省燃料控制系统、最小能耗控制系统、线性调节器等。

4优化技术

最优控制的实现离不开最优化技术,最优化技术是研究和解决最优化问题的一门学科,它研究和解决如何从一切可能的方案中寻找最优的方案。也就是说,最优化技术是研究和解决如何将最优化问题表示为数学模型以及如何根据数学模型尽快求出其最优解这两大问题。一般而言,用最优化方法解决实际工程问题可分为三步进行:

①根据所提出的最优化问题,建立最优化问题的数学模型,确定变量,列出约束条件和目标函数;

②对所建立的数学模型进行具体分析和研究,选择合适的最优化方法;

③根据最优化方法的算法列出程序框图和编写程序,用计算机求出最优解,并对算法的收敛性、通用性、简便性、计算效率及误差等作出评价。

5求解方法

所谓最优化问题,就是寻找一个最优控制方案或最优控制规律,使系统能最优地达到预期的目标。在最优化问题的数学模型建立后,主要问题是如何通过不同的求解方法解决寻优问题。一般而言,最优化方式有

离线静态优化方式和在线动态优化方式,而最优化问题的求解方法大致可分为四类:

1.解析法

对于目标函数及约束条件具有简单而明确的数学表达式的最优化问题,通常可采用解析法来解决。其求解方法是先按照函数极值的必要条件,用数学分析方法求出其解析解,然后按照充分条件或问题的实际物理意义间接地确定最优解。

这种方法适用于性能指标及约束有明显解析表达式的情况。其一般步是先用求导方法或变分法求出最优控制的必要条件,得到一组方程或不等式,然后求解这组方程或不等式,得到最优控制的解析解即为所求的最优控制。解析法大致可分为两大类。第一类,无约束时,采用微分法或变分法。第二类,有约束时,采用极大值原理或动态规划。[1]

(1)变分法:当控制向量不受约束时,引入哈密顿函数,应用变分法可以导出最优控制的必要条件,即正则方程、控制方程、边界条件、横截条件。

(2)极大值原理:在用变分法求解最优控制问题时,是假定控制向量u(O)不受任何限制,即容许控制集合可以看成是整个P维控制空间开集,控制变分u是任意的,同时还要求哈密顿出数H对u连续可微,但在实际工程上,控制变量往往受到一定的限制,这时可以用极大值原理来求解最优控制问题,这种方法其实是由变分法引申而来的,但由于它能应用于控制变量u(t)受边界限制的情况,并且不要求哈密顿出数H对u 连续可微,因此获得了广泛的应用。

(3)动态规划:极大值原理一样,是处理控制向量限制在一定闭集内的最优控制问题的有效数学方法,它把复杂的最优控制间题变为多级决策过程的递推函数关系,其基础和核心时最优性原理即在一个多级决策问题中无论初始状态和初始决策如何,当把其中的任何一级和状态再作为初始级和初始状态时,如下的决定对与这一级开始往后的多级决策过程的一部分必定仍然是一个最优决策。因此,利用这一最优性原理必然可把一个多级决策问题化为最优的单级决策问题并且本级决策与本级以前的任何决策无关,只与本级的初始位置和初始决策有关。对于连续系统用动态规划法求最优控制问题时,可以先把连续系统离散化,用有限差分方程近似代替连续方程,然后用离散动态规划法求解。

2.数值解法(直接法)

对于目标函数较为复杂或无明确的数学表达式或无法用解析法求解的最优化问题,通常可采用直接法来解决。直接法的基本思想,就是用直接搜索方法经过一系列的迭代以产生点的序列,使之逐步接近到最优点。直接法常常是根据经验或实验而得到的。[1]

性能指标比较复杂或不能用变量显函数表示时,可以采用直接搜索法,经过若干次迭代搜索到最优点,数值计算法可以分为两大类:

(1)区间消去法,又称为一维搜索法,适用于求解单变量极值问题。主要有黄金分割法、多项式插值法等。(2)爬山法,又称多维搜索法,适用于求解多变量极值问题。主要有坐标轮转法、步长加速法等。

3.解析与数值相结合的寻优方法(梯度型法)

是一种解析与数值计算相结合的方法。主要包括两大类:一种是无约束梯度法,如陡降法、拟牛顿法等。第二类是有约束梯度法,如可行方向法、梯度投影法。

4.网络最优化方法

这种方法以网络图作为数学模型,用图论方法进行搜索的寻优方法。

6最新进展

在线优化方法

基于对象数学模型的离线优化方法是一种理想化方法。这是因为尽管工业过程(对象)被设计得按一定的正常工况连续运行,但是环境的变动、触媒和设备的老化以及原料成分的变动等因素形成了对工业过程的扰动,因此原来设计的工况条件就不是最优的。

解决此类问题的常见方法。

(1)局部参数最优化和整体最优化设计方法

局部参数最优化方法的基本思想是:按照参考模型和被控过程输出之差来调整控制器可调参数,使输出误差平方的积分达到最小。这样可使被控过程和参考模型尽快地精确一致。

此外,静态最优与动态最优相结合,可变局部最优为整体最优。整体最优由总体目标函数体现。整体最优由两部分组成:一种是静态最优(或离线最优),它的目标函数在一段时间或一定范围内是不变的;另一种是动态最优(或在线最优),它是指整个工业过程的最优化。工业过程是一个动态过程,要让一个系统始终处于最优化状态,必须随时排除各种干扰,协调好各局部优化参数或各现场控制器,从而达到整个系统最优。

(2)预测控制中的滚动优化算法

预测控制,又称基于模型的控制(Model-based Control),是70年代后期兴起的一种新型优化控制算法。但

它与通常的离散最优控制算法不同,不是采用一个不变的全局优化目标,而是采用滚动式的有限时域优化策略。这意味着优化过程不是一次离线进行,而是反复在线进行的。这种有限化目标的局部性使其在理想情况下只能得到全局的次优解,但其滚动实施,却能顾及由于模型失配、时变、干扰等引起的不确定性,及时进行弥补,始终把新的优化建立在实际的基础之上,使控制保持实际上的最优。这种启发式的滚动优化策略,兼顾了对未来充分长时间内的理想优化和实际存在的不确定性的影响。在复杂的工业环境中,这比建立在理想条件下的最优控制更加实际有效。

预测控制的优化模式具有鲜明的特点:它的离散形式的有限优化目标及滚动推进的实施过程,使得在控制的全过程中实现动态优化,而在控制的每一步实现静态参数优化。用这种思路,可以处理更复杂的情况,例如有约束、多目标、非线性乃至非参数等。吸取规划中的分层思想,还可把目标按其重要性及类型分层,实施不同层次的优化。显然,可把大系统控制中分层决策的思想和人工智能方法引入预测控制,形成多层智能预测控制的模式。这种多层智能预测控制方法的,将克服单一模型的预测控制算法的不足,是当前研究的重要方向之一。

(3)稳态递阶控制

对复杂的大工业过程(对象)的控制常采用集散控制模式。这时计算机在线稳态优化常采用递阶控制结构。这种结构既有控制层又有优化层,而优化层是一个两级结构,由局部决策单元级和协调器组成。其优化进程是:各决策单元并行响应子过程优化,由上一级决策单元(协调器)协调各优化进程,各决策单元和协调器通过相互迭代找到最优解。这里必须提到波兰学者Findeisen等所作出的重要贡献。

由于工业过程较精确的数学模型不易求得,而且工业过程(对象)往往呈非线性及慢时变性,因此波兰学者Findesien提出:优化算法中采用模型求得的解是开环优化解。在大工业过程在线稳态控制的设计阶段,开环解可以用来决定最优工作点。但在实际使用上,这个解未必能使工业过程处于最优工况,相反还会违反约束。他们提出的全新思想是:从实际过程提取关联变量的稳态信息,并反馈至上一层协调器(全局反馈)或局部决策单元(局部反馈),并用它修正基于模型求出的的最优解,使之接近真实最优解。

(4)系统优化和参数估计的集成研究方法

稳态递阶控制的难点是,实际过程的输入输出特性是未知的。波兰学者提出的反馈校正机制,得到的只能是一个次优解。但其主要缺点在于一般很难准确估计次优解偏离最优解的程度,而且次优解的次优程度往往依赖于初始点的选取。一个自然的想法是将优化和参数估计分开处理并交替进行,直到迭代收敛到一个解。这样计算机的在线优化控制就包括两部分任务:在粗模型(粗模型通常是能够得到的)基础上的优化和设定点下的修正模型。这种方法称为系统优化和参数估计的集成研究方法。(Integrated System

Optimizationand Parameter Estimation)

智能优化方法

对于越来越多的复杂控制对象,一方面,人们所要求的控制性能不再单纯的局限于一两个指标;另一方面,上述各种优化方法,都是基于优化问题具有精确的数学模型基础之上的。但是许多实际工程问题是很难或不可能得到其精确的数学模型的。这就限制了上述经典优化方法的实际应用。随着模糊理论、神经网络等智能技术和计算机技术的发展。

智能式的优化方法得到了重视和发展。

(1)神经网络优化方法

人工神经网络的研究起源于1943年和Mc Culloch和Pitts的工作。在优化方面,1982年Hopfield首先引入Lyapuov能量函数用于判断网络的稳定性,提出了Hopfield单层离散模型;Hopfield和Tank又发展了Hopfield 单层连续模型。1986年,Hopfield和Tank将电子电路与Hopfield模型直接对应,实现了硬件模拟;Kennedy 和Chua基于非线性电路理论提出了模拟电路模型,并使用系统微分方程的Lyapuov函数研究了电子电路的稳定性。这些工作都有力地促进了对神经网络优化方法的研究。

根据神经网络理论,神经网络能量函数的极小点对应于系统的稳定平衡点,这样能量函数极小点的求解就转换为求解系统的稳定平衡点。随着时间的演化,网络的运动轨道在空间中总是朝着能量函数减小的方向运动,最终到达系统的平衡点——即能量函数的极小点。因此如果把神经网络动力系统的稳定吸引子考虑为适当的能量函数(或增广能量函数)的极小点,优化计算就从一初始点随着系统流到达某一极小点。如果将全局优化的概念用于控制系统,则控制系统的目标函数最终将达到希望的最小点。这就是神经优化计算的基本原理。

与一般的数学规划一样,神经网络方法也存在着重分析次数较多的弱点,如何与结构的近似重分析等结构优化技术结合,减少迭代次数是今后进一步研究的方向之一。

由于Hopfield模型能同时适用于离散问题和连续问题,因此可望有效地解决控制工程中普遍存在的混合离散变量非线性优化问题。

(2)遗传算法

遗传算法和遗传规划是一种新兴的搜索寻优技术。它仿效生物的进化和遗传,根据“优胜劣汰”原则,使所要求解决的问题从初始解逐步地逼近最优解。在许多情况下,遗传算法明显优于传统的优化方法。该算法允

许所求解的问题是非线性的和不连续的,并能从整个可行解空间寻找全局最优解和次优解,避免只得到局部最优解。这样可以为我们提供更多有用的参考信息,以便更好地进行系统控制。同时其搜索最优解的过程是有指导性的,避免了一般优化算法的维数灾难问题。遗传算法的这些优点随着计算机技术的发展,在控制领域中将发挥越来越大的作用。

研究表明,遗传算法是一种具有很大潜力的结构优化方法。它用于解决非线性结构优化、动力结构优化、形状优化、拓扑优化等复杂优化问题,具有较大的优势。

(3)模糊优化方法

最优化问题一直是模糊理论应用最为广泛的领域之一。

自从Bellman和Zadeh在70年代初期对这一研究作出开创性工作以来,其主要研究集中在一般意义下的理论研究、模糊线性规划、多目标模糊规划、以及模糊规划理论在随机规划及许多实际问题中的应用。主要的研究方法是利用模糊集的a截集或确定模糊集的隶属函数将模糊规划问题转化为经典的规划问题来解决。模糊优化方法与普通优化方法的要求相同,仍然是寻求一个控制方案(即一组设计变量),满足给定的约束条件,并使目标函数为最优值,区别仅在于其中包含有模糊因素。普通优化可以归结为求解一个普通数学规划问题,模糊规划则可归结为求解一个模糊数学规划(fuzzymathematicalprogramming)问题。包含控制变量、目标函数和约束条件,但其中控制变量、目标函数和约束条件可能都是模糊的,也可能某一方面是模糊的而其它方面是清晰的。例如模糊约束的优化设计问题中模糊因素是包含在约束条件(如几何约束、性能约束和人文约束等)中的。求解模糊数学规划问题的基本思想是把模糊优化转化为非模糊优化即普通优化问题。方法可分为两类:一类是给出模糊解(fuzzysolution);另一类是给出一个特定的清晰解(crispsolution)。必须指出,上述解法都是对于模糊线性规划(fuzzylinearprogramming)提出的。然而大多数实际工程问题是由非线形模糊规划(fuzzynonlinearprogramming)加以描述的。于是有人提出了水平截集法、限界搜索法和最大水平法等,并取得了一些可喜的成果。

在控制领域中,模糊控制与自学习算法、模糊控制与遗传算法相融合,通过改进学习算法、遗传算法,按给定优化性能指标,对被控对象进行逐步寻优学习,从而能够有效地确定模糊控制器的结构和参数。

7案例分析

最优控制理论在电力系统励磁控制中的应用

随着现代控制理论及其实际应用的不断发展,运用现代控制理论进行电力系统运行性能的最优化控制的研究工作有了迅速的发展,对如何按最优化的方法设计多参量的励磁调节器也取得了很大进展。

(1)基于非线性最优和PID技术的综合励磁调节器

对于非线性系统的同步发电机而言,当它偏离系统工作点或系统发生较大扰动时,如果仍然采用基于PID 技术的电力系统稳定器,就会出现误差。为此,可以将其用基于非线性最优控制技术的励磁调节器。但是,非线性最优控制调节器存在着对电压控制能力较弱的缺点,所以用一种能够将非线性最优励磁调节器和PID 技术的电力系统稳定器有机结合的新型励磁调节器的设计原理。

此综合励磁调节器是利用非线性最优控制理论的研究成果,其在非线性的励磁控制中采用了精确线性化的数学方法,不存在平衡点线性化后的舍入误差,因此该控制的数学模型在理论上对发电机的所有运行点都是精确的;同时针对非线性的励磁控制调压能力较弱的特点,又增加了PID环节,使其具有较强的电压调节特性此装置在小机组试验中取得非常好的实验效果,在平衡点附近运行和偏离平衡点较多时都具有很好的调节特性。

(2)自适应最优励磁控制器

将自适应控制理论与最优控制理论相结合,通过多变量参数辨识、最优反馈系数计算和控制算法运算三个环节,可以实现同步发电机励磁的自适应最优控制。

此发电机自适应最优励磁方案,通过采用由带可变遗忘因子的最小二乘算法构成的多变量实时辨识器,使系统状态方程的系数矩阵A和B中的元素值随系统运行工况的变化而变化,再经过最优反馈系数计算,实现了同步电机的自适应最优励磁控制。

虽然使用线性最优控制理论求取反馈系数,但由于状态方程的系数矩阵中的元素值随系统运行工况的变化而变化,因而控制作用体现了电力系统的非线性特性,本质上是一种非线性控制。

数字仿真试验结果表明,该励磁控制系统能够自动跟踪系统运行工作状况,在线辨识不断变化的系统参数,使控制作用始终处于最优状态。从而改善了控制系统的动态品质,可以提高电力系统运行的稳定性。(3)基于神经网络逆系统方法的非线性励磁控制

神经网络逆系统方法将神经网络对非线性函数逼近学习能力和逆系统方法的线性化能力相结合,构造出物理可实现的神经网络逆系统,从而实现了对被控系统的大范围线性化,能够在无需系统参数的情况下构造出伪线性复合系统,从而将非线性系统的控制问题转化为线性系的控制问题。

在大干扰情况下,神经网络逆系统方法的控制器暂态时间很短,超调量很小,有效地改善了系统的暂态响应品质,提高了电力系统的稳定性,此控制器还具有很好的鲁棒性能。另外,神经网络逆系统方法无需知

道原系统的数学模型以及参数,,也不需要测量被控系统的状态量,仅需要知道被控系统可逆及输入输出微分方程的阶数,且结构简单,易于工程实现。

(4)基于灰色预测控制算法的最优励磁控制

预测控制是一种计算机算法,它采用多步预测的方式增加了反映过程未来变化趋势的信息量,因而能克服不确定性因素和复杂变化的影响。灰色预测控制是预测控制的一个分支,它需建立灰微分方程,能较好地对系统作全面的分析。应用GM(1,N)对发电机的功率偏差、转速偏差、电压偏差序列值进行建模,经全面分析后求出各状态量的预测值,同时根据最优控制理论求出以预测值为状态变量的被控励磁控制系统的最优反馈增益,从而得出具有预测信息的最优励磁控制量。

灰色预测控制理论中灰色建模和“超前控制”的思想较好地弥补了线性最优控制理论中精确线性化和“事后控制”对单机无穷大系统的仿真结果表明,此励磁控制具有响应速度快、准确度高的特点,使电力系统在大小扰动下均能表现出较好的动态特性。

最优控制在控制领域中的应用

目前研究最优控制理论最活跃的领域有神经网络优化、模拟退火算法、趋化性算法、遗传算法、鲁棒控制、预测控制、混沌优化控制以及稳态递阶控制等。[2]

(1)Hopfield 神经网络优化

人工神经网络设计一般基于专家的经验和实践。应用最广泛的是误差反向传播神经网络,简称BP网络,是一种具有3层或3层以上的阶层型神经网络。根据神经网络理论,网络总是朝着能量函数递减的方向运动,并最后到达系统的平衡点。也就是说:Hopfield能量函数的极小点就是系统稳定的平衡点,只要得到系统的平衡点即得到能量函数的极小点。如果把全局优化理论运用到控制系统中,则控制系统的目标函数最终到达的正是所希望的最小点。

(2)模拟退火算法

1983年,Kirkpatrick与其合作者提出了模拟退火(SA)的方法,它是求解单目标多变量最优化问题的一项Monte-Caula技术。该法是一种物理过程的人工模拟,它基于液体结晶或金属的退火过程。液体和金属物体在加热至一定温度后,它们所有的分子、原子在状态空间D中自由运动。随着温度的下降,这些分子、原子逐渐停留在不同的状态。当温度降到相当低时,这些分子、原子则重新以一定的结构排列,形成了一个全部由有序排列的原子构成的晶体结构。模拟退火法已广泛应用于生产调度、神经网络训练、图像处理等方面。

(3)趋化性算法

趋化性算法(CA)是模拟细菌生长过程中的趋光性原理而提出的一种随机优化方法。它的特点是结构简单、使用方便。在搜索过程中,CA只向使解的性能变好的方向搜索,能否跳出局部极小点依赖于方差的大小,其全局搜索能力比模拟退火方法和遗传算法差,但局部搜索能力较强,收敛速度较快。

(4)遗传算法

遗传算法(GA)是一种模拟自然选择和遗传的随机搜索算法,是模拟自然界中按“优胜劣汰”法则进行进化过程的一种高度并行、随机和自适应的优化算法。它将问题的求解表示成“染色体”的适者生存过程,通过“染色体”群的一代代不断进化,包括复制、交叉和变异等操作,最终收敛于“最适应环境”的个体,从而求得问题的最优解或满意解。GA是一种通用的优化算法,其编码技术和遗传操作比较简单,优化不受限制型条件的约束,而其2个最显著特点则是隐含并行性和全局解空间搜索。随着计算机技术的发展,GA愈来愈得到人们的重视,并在机器学习、模式识别、图像处理、神经网络、优化控制、组合优化、VLSI设计、遗传学等领域得到了成功应用。

(5)鲁棒控制

鲁棒控制是针对不确定性系统的控制系统的设计方法,其理论主要研究的问题是不确定性系统的描述方法、鲁棒控制系统的分析和设计方法以及鲁棒控制理论的应用领域。鲁棒控制理论发展的最突出的标志之一是H∞控制。H∞控制从本质上可以说是频域内的最优控制理论。鲁棒控制与最优控制结合解决许多如线性二次型控制、电机调速、跟踪控制、采样控制、离散系统的镇定、扰动抑制等实际问题。

(6)预测控制

预测控制又称为基于模型的控制,是一类新型计算机优化控制算法,其本质特征是预测模型,滚动优化和反馈校正。滚动优化反复在线进行,不同时刻优化性能指标的时间区域及绝对形式均不同。这种滚动优化能对系统因多种因素而引起的不确定性进行及时弥补,始终把新的优化建立在实际的基础之上,使控制系统保持实际上的最优。

(7)混沌优化控制

混沌是一种普遍的非线性现象,是指在确定性非线性系统中不需附加任何随机因素亦可出现类似随机的行为,但存在精致的内在规律性。混沌运动具有随机性、遍历性、规律性等特点。混沌运动的基本特征是运动轨道的不稳定性,表现为对初值的敏感依赖性或对小扰动的极端敏感性。混沌运动在一定的范围内按其自身的规律不重复地遍历所有状态,这种遍历性可被用来进行优化搜索且能避免陷入局部极小。因此,混

沌优化技术已成为一种新兴的搜索优化技术。

(8)稳态递阶控制

递阶控制是一种计算机在线稳态优化的控制结构,其指导思想是将一大系统分解为若干个互相关联的子系统,即把大系统的最优控制问题分解为各子系统的问题。在各个子系统之上设置一协调器,判断所得的子系统求解子问题结果是否适合整个大系统的最优控制,若否,则指示各子系统修改子问题并重新计算。通过协调器的相互迭代求解即可得到最优解。

最优控制理论在其他领域的应用

最优控制理论在管理科学方面的应用已取得了很多极有价值的应用成果。其中代表性的是美国学者S.P.塞申和G.L.汤普生所著的《最优化管理》一书[3]。书中概述了最优控制理论在金融中的最优投资、生产与库存、推销、机器设备的保养与更换等问题的应用;在经济方面的应用主要是根据宏观经济相互依赖关系的计量经济模型提供经济预测,解释经济问题的动态行为。朱道立编著的《大系统优化理论与应用》中运用最优控制理论建立经济模型,用GRG算法来解释经济问题,形成经济学科中的经济最优控制[4]。许多专家在研究动态最优稳定性经济政策中也论证了最优控制在经济方面的突出作用。在自然资源和人口方面可以应用最优控制理论来分配不可再生资源和可再生资源。此外,最优控制在人才分配方面的应用也有研究报道。

参考资料

1.丁群燕,曾鑫. 求解动态系统最优控制的主要数学方法[J]. 黄冈职业技术学院学报2003(01).

2.高桂革. 最优控制理论的发展与展望[J]. 上海电机学院学报,2005,03:33-35+39.

3.SP塞申,GL汤普生.最优化管理:宇航出版社,1986.

4.朱道立.大系统优化理论与应用:上海交通大学出版社,1997.

最优控制读书报告

最优控制读书报告 学院 专业 班级 姓名 学号

最优控制理论是现在控制理论的一个重要组成部分。控制理论发展到今天,经历了古典控制理论和现代控制理论两个重要发展阶段,现已进入了以大系统理论和智能控制理论为核心的第三个阶段。对于确定性系统的最优控制理论,实际是从20世纪50年代才开始真正发展起来的,它以1956年原苏联数学家庞特里亚金(Pontryagin)提出的极大值原理和1957年贝尔曼提出的动态规划法为标志。这些理论一开始被应用于航空航天领域,这是由于导弹、卫星等都是复杂的MIMO非线性系统,而且在性能上有极其严格的要求。时至今日,随着数字技术和电子计算机的快速发展,最优控制的应用已不仅仅局限于高端的航空航天领域,而更加渗入到生产过程、军事行动、经济活动以及人类的其他有目的的活动中。最优控制的发展成果主要包括分布式参数的最优控制、随机最优控制、自适应控制、大系统最优控制、微分对策等,可以这样讲,最有控制理论对于国民经济和国防事业起着非常重要的作用。 这个学期开设的最优控制课程,主要介绍的是静态优化,经典变分法以及极小值原理。对于静态优化的方法,解决的主要是如何求解函数的极值问题;变分法则被用来求解泛函的极值问题;极小值原理的方法,适用于类似最短时间控制、最少燃料控制的问题。另外,在这些的基础上,我们还学习研究了线性系统二次型指标的最优控制,即线性二次型问题(LQR)。 类似其他的控制理论与控制工程的专业课程,最优控制的基础不但是有关自动化、控制方面的内容,很大一部分可以说是高等数学,以及更加深刻的数学知识和理论。就这门课程而言,遇到的第一个比较重要的数学命题,就是关于泛函的问题。在学习泛函之前,我们都对于函数的定义非常清楚,简而言之,泛函就是“函数的函数”。在动态系统最优控制问题中,其性能指标就是一个泛函,而性能指标最优即泛函达到极值。

现代控制理论在电机中的应用

现代控制理论与电机控制 刘北 070301071 电气工程及其自动化0703班 现代控制理论在电机控制中的具体应用: 自70年代异步电动机矢量变换控制方法提出,至今已获得了迅猛的发展。这种理论的主要思想是将异步电动机模拟成直流机,通过坐标变换的方法,分别控制励磁电流分量与转矩电流分量,从而获得与直流电动机一样良好的动态调速特性。这种控制方法现已较成熟,已经产品化,且产品质量较稳定。因为这种方法采用了坐标变换,所以对控制器的运算速度、处理能力等性能要求较高。近年来,围绕着矢量变换控制的缺陷,如系统结构复杂、非线性和电机参数变化影响系统性能等等问题,国内、外学者进行了大量的研究。伴随着推进矢量控制、直接转矩控制和无传感器控制技术进一步向前发展的是人工智能控制,这是电机现代控制技术的前沿性课题,已取得阶段性的研究成果,并正在逐步实用化。 矢量控制和直接转矩控制技术的一个新的发展方向是直接驱动技术,这种零方式消除了传统机械传动链带来的一系列不良影响,极大地提高了系统的快速响应能力和运动精度。但是,这种机械上的简化,导致了电机控制上的难度。为此,需要电机控制技术的进一步提高和创新。这正是电机现代控制技术有待深入研究和具有广阔开发前景的新领域。 电机的现代控制技术与先进制造装备息息相关,已在为先进制造技术的重要研究领域之一,国内很多学者和科技人员正在从事这方面的研究和开发。 一、三相感应电动机的矢量控制 1、 定、转子磁动势矢量 三相感应电动机是机电能量转换装置,这种的物理基础是电磁间的相互作用或者磁场能量的变化。因此,磁场是机电能量转换的媒介,是非常重要的物理量。为此,对各种电动机都要了解磁场在电动机空间内的分布情况。感应电动机内磁场是由定、转子三相绕组的磁动势产生的,首先要确定电动机内磁动势的分布情况。对定子三相绕组而言,当通以三相电流A i 、B i 、C i 时,分别产生沿着各自绕组轴线脉动的空间磁动势波,取其基波并记为A f 、B f 、C f ,显然它们都是空间矢量。对于分布和短矩绕组,定义正向电流产生的空间磁动势波基波的轴线为该相绕组的轴线,亦即A f 、B f 、C f 是以ABC 为轴线沿圆周正弦分布的空间矢量,各自的幅值是变化的,取决于相电流的瞬时值,即有

最优控制理论课程总结

《最优控制理论》 课程总结 姓名:肖凯文 班级:自动化1002班 学号:0909100902 任课老师:彭辉

摘要:最优控制理论是现代控制理论的核心,控制理论的发展来源于控制对象的要求。尽50年来,科学技术的迅速发展,对许多被控对象,如宇宙飞船、导弹、卫星、和现代工业设备的生产过程等的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。这就要求人们对控制问题都必须从最优控制的角度去进行研究分析和设计。最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使某一性能指标达到最优值[1]。 关键字:最优控制理论,现代控制理论,时域数学模型,频域数学模型,控制率Abstract: The Optimal Control Theory is the core of the Modern Control Theory,the development of control theory comes from the requires of the controlled objects.During the 50 years, the rapid development of the scientific technology puts more stricter requires forward to mang controlled objects,such as the spacecraft,the guide missile,the satellite,the productive process of modern industrial facilities,and so on,and requests some performance indexes that will be best in mang cases.To the control problem,it requests people to research ,analyse,and devise from the point of view of the Optimal Control Theory. There are mang major problems of the Optimal Control Theory studying,such as the building the time domain’s model or the frenquency domain’s model according to the controlled objects,controlling a control law with admitting, making the controlled objects to work according to the scheduled requires, and making the performance index to reseach to a best optimal value. Keywords: The Optimal Control Theroy, The Modern Control Theroy, The Time Domaint’s Model, The Frequency domain’s Model,The Control Law

现代控制理论概述及实际应用意义

13/2012 59 现代控制理论概述及实际应用意义 王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院 【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究 方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义 1.引言 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。 2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。 2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 科学技术的发展不仅需要迅速 地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。 2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。 20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.360docs.net/doc/e0118541.html,ndau)在自适应控制理论和应用方面作出了贡献。 与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。 3.现代控制理论的内容及研究方法 现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。 (1)系统辨识 系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。 (2)最优控制问题 在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。 (3)自适应控制问题 在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

现代控制理论及应用

现代控制理论及应用李嗣福教授、博士生导师 中国科学技术大学自动化系

一、现代控制理论及应用发展简介 1. 控制理论及应用发展概况 2. 自动控制系统和自动控制理论 以单容水槽水位控制和电加热器温度控制为例说明什么是自动控制、控制律(或控制策略)、自动控制系统以及自动控制系统组成结构和自动控制理论所研究的内容。 2.1自动控制:利用自动化仪表实现人的预期控制目标。 2.2自动控制系统及其组成结构 自动控制系统:指为实现自动控制目标由自动化仪表与被控对象所联接成闭环系统。 自动控制系统组成结构:是由被控对象、测量代表、控制器或调节器和执行器构成反馈闭环结构,其形式有单回路形式和串级双回路形式。 控制系统性能指标:定性的有稳(定性)、准(确性)、快(速性)。 控制律(或控制策略、控制算法):控制系统中控制器或调节器所采用的控制策略,即用系统偏差量如何确定控制量的数学表示式。 2.3自动控制系统类型主要有:按系统参数输入信号形式分:定值控制系统或调节系统和随动系统。 按系统结构形式分:前馈控制系统(即开环系统)和反馈控制系统以及复合控制系统; 按系统中被控对象的控制输入量数目和被控输出量数目分:单变量控制系统和多变量控制系统; 按被控对象特性分:线性控制系统和非线性控制系统; 按系统中的信号形式分:模拟(或时间连续)控制系统、数字(或时间离散)控制系统以及混合控制系统。 2.4自动控制理论:研究自动控制系统分析与综合设计的理论和方法。 3. 古典(传统)控制理论: 采用数学变换方法(即拉普拉斯变换和富里叶变换)按照系统输出量

与输入量之间的数学关系(即系统外部特性)研究控制系统分析和综合设计问题。具体方法有:根轨迹法;频率响应法。 主要特点:理论方法的物理概念清晰,易于理解;设计出控制律一般较简单,易于仪表实现 主要缺点: ① 设计需要凭经验试凑,设计结果与设计经验关系很大; ② 系统分析和设计只着眼于系统外部特性; ③一般只能处理单变量系统分析和设计问题,而不能处理复杂的多变量系统分析和设计。 4. 现代控制理论及其主要内容 现代控制理论:狭义的是指60年代发展起来的采用状态空间方法研究实现最优控制目标的控制系统综合设计理论。广义的是指60年代以来发展起来的所有新的控制理论与方法。 控制系统状态空间设计理论: (1) 用一阶微方程组表征系统动态特性,一般形式(连续系统)为 )()()(t BU t AX t X +=——状态方程(连续的一阶微分方程组) )()(t CX t Y =——输出方程 离散系统: )()()1(t BU t AX k X +=+——状态方程(离散的一阶差分方程组) )()(k CX k Y = k ——为大于等于零整数,表示离散时间序号; ?????? ??? ???=)() ()()(21k x k x k x k X n ——状态向量,其中)(k x i ,()n i ,,1 =为状态变量; ????? ???? ???=)() ()()(21k u k u k u k U m ——输入向量,其中)(k u i , ()m i ,,1 =为各路输入;

最优控制理论的发展与展望

最优控制理论的发展与展 望 Last revision on 21 December 2020

最优控制理论的发展与展望 摘要:回顾最优控制的基本思想、常用方法及其应用,并对其今后的发展方向和面临的困难提出一些看法。 关键词:最优控制:最优化技术;遗传算法;预测控制 Abstract: The basic idea, method and application of optimal control are reviewed, and the direction of its development and possible difficulties are predicted. Keywords: optimal control; optimal Technology;Genetic Algorithm;Predictive Control 1引言 最优控制理论是本世纪60年代迅速发展的现代控制理论中的主要内容之一,它研究和解决如何从一切可能的方案中寻找一个最优的方案。1948年维纳等人发表《控制论一关于动物和机器中控制与通信的科学》论文,引进信息、反馈和控制等概念,为最优控制理论诞生和发展奠定了基础。我国着名学者钱学森在1954年编着的《工程控制论》直接促进了最优控制理论的发展与形成。在最优控制理论的形成和发展过程中,具有开创性的研究成果和开辟求解最优控制问题新途径的工作,主要是美国着名学者贝尔曼的“动态规划”和原苏联着名学者庞特里亚金的“最大值原理”。此外,构成最优控制理论及现代最优化技术理论基础的代表性工作,还有库恩和图克共同推导的关于不等式约束条件下的非线性最优必要条件(库恩一图克定理)及卡尔曼的关于随机控制系统最优滤波器等口 2最优控制理论的几个重要内容 最优控制理论的基本思想 最优控制理论是现代控制理论中的核心内容之一。其主要实质是:在满足一定约束条件下,寻求最优控制规律(或控制策略),使得系统在规定的性能指标(目标函数)下具有最优值,即寻找一个容许的控制规律使动态系统(受控对象、从初始状态转移到某种要求的终端状态,保证所规足的性能指标达到最小(大)值。

最优控制应用概述

最优控制的应用概述 1.引言 最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。最优控制是最优化方法的一个应用。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,是经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。 最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼(Kalman)等人又提出了可控制性及可观测性概念,建立了最优估计理论。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。最优控制理论的实现离不开最优化技术。控制系统最优化问题,包括性能指标的合理选择以及最优化控制系统的设计,而性能指标在很大程度上决定了最优控制性能和最优控制形式。最优化技术就是研究和解决最优化问题,主要包括两个需要研究和解决的方面:一个是如何将最优化问题表示为数学模型;另一个是如何根据数学模型尽快求出其最优解。 2.最优控制问题 所谓最优控制问题,就是指 在给定条件下,对给定系统确定 一种控制规律,使该系统能在规 定的性能指标下具有最优值。也 就是说最优控制就是要寻找容 许的控制作用(规律)使动态系 统(受控系统)从初始状态转移 到某种要求的终端状态,且保证 所规定的性能指标(目标函数)图1 最优控制问题示意图 达到最大(小)值。 最优控制问题的示意图如图1所示。其本质乃是一变分学问题。经典变分理论只能解决一类简单的最优控制问题。为满足工程实践的需要,20世纪50年代中期,出现了现代变分理论。最常用的方法就是极大值原理和动态规划。最优控制在被控对象参数已知的情况下,已成为设计复杂系统的有效方法之一。

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

3.有电路如图1-28所示。以电压U(t)为输入量,求以电感中的电流和电 容上的电压作为状态变量的状态方程,和以电阻 R 2上的电压作为输出 量的输出方程。 4.建立图P12所示系统的状态空间表达式。 M 2 1 f(t) 5.两输入u i ,U 2,两输出y i ,y 的系统,其模拟结构图如图 1-30所示, 练习题 ,输出为,试自选状态变量并列写出其状 2. 有电路如图所示,设输入为 态空间表达式。 C ri _ l- ------- s R 2 U i U ci L u A ------ — 2 R i

试求其状态空间表达式和传递函数阵。 6.系统的结构如图所示。以图中所标记的 x 1、x 2、x 3作为状态变量,推 导其状态空间表达式。 其中,u 、y 分别为系统的输入、 输出,1、 2 试求图中所示的电网络中,以电感 L i 、L 2上的支电流x i 、X 2作为状态 变量的状态空间表达式。这里 u 是恒流源的电流值,输出 y 是R 3上的 支路电压。 8. 已知系统的微分方程 y y 4y 5y 3u ,试列写出状态空间表达式。 9. 已知系统的微分方程 2y 3y u u , 试列写出状态空间表达式。 10. 已知系统的微分方程 y 2y 3y 5y 5u 7u ,试列写出状态空间 表达式。 7. 3均为标量。

11. 系统的动态特性由下列微分方程描述 y 5 y 7 y 3y u 3u 2u 列写其相应的状态空间表达式,并画出相应的模拟结构图。 12. 已知系统传递函数 W(s) 坐 卫 2 ,试求出系统的约旦标准型 s(s 2)(s 3) 的实现,并画出相应的模拟结构图 13. 给定下列状态空间表达式 X 1 0 1 0 X 1 0 X 2 2 3 0 X 2 1 u X 3 1 1 3 X 3 2 X 1 y 0 0 1 x 2 X 3 (1)画出其模拟结构图;(2)求系统的传递函数 14. 已知下列传递函数,试用直接分解法建立其状态空间表达式,并画出状 态变量图。 15. 列写图所示系统的状态空间表达式。 16. 求下列矩阵的特征矢量 0 1 0 A 3 0 2 12 7 6 17. 将下列状态空间表达式化成约旦标准型(并联分解) (1)g(s ) s 3 s 1 3 2 s 6s 11s 6 ⑵ g(s ) s 2 2s 3 3 c 2 s 2s 3s 1

最优控制理论的发展与展望

最优控制理论的发展与展望 摘要:回顾最优控制的基本思想、常用方法及其应用,并对其今后的发展方向和面临的困难提出一些看法。 关键词:最优控制:最优化技术;遗传算法;预测控制 Abstract: The basic idea, method and application of optimal control are reviewed, and the direction of its development and possible difficulties are predicted. Keywords: optimal control; optimal Technology;Genetic Algorithm ;Predictive Control 1 引言 最优控制理论是本世纪60 年代迅速发展的现代控制理论中的主要内容之一, 它研究和解决如何从一切可能的方案中寻找一个最优的方案。1948 年维纳等人发表《控制论一关于动物和机器中控制与通信的科学》论文,引进信息、反馈和控制等概念,为最优控制理论诞生和发展奠定了基础。我国著名学者钱学森在1954 年编著的《工程控制论》直接促进了最优控制理论的发展与形成。在最优控制理论的形成和发展过程中,具有开创性的研究成果和开辟求解最优控制问题新途径的工作,主要是美国著名学者贝尔曼的“动态规划”和原苏联著名学者庞特里亚金的“最大值原 理” 。此外,构成最优控制理论及现代最优化技术理论基础的代表性工作,还有库恩和图克共同推导的关于不等式约束条件下的非线性最优必要条件(库恩一图克定理)及卡尔曼的关于随机控制系统最优滤波器等口 2 最优控制理论的几个重要内容 2.1 最优控制理论的基本思想最优控制理论是现代控制理论中的核心内容之一。其主要实质是:在满足一定约束条件下,寻求最优控制规律(或控制策略),使得系统在规定的性能指标(目标函数)下具有最优值,即寻找一个容许的控制规律使动态系统(受控对象、从初始状态转移到某种要求的终端状态,保证所规足的性能指标达到最小(大)值。 2.2 最优控制问题的常用方法 ?变分法 ?最小值原理 ?动态规划 2.3 最优化技术概述及基本方法一般最优化方法解决实际工程问题可分为三步: ①据 所提出的最优化问题,建立数学模型,确定变量,列出约束条件和目标函 数;②对所建立的数学模型进行具体分析和研究,选择最优化求解方法:③根据最 优化方法的算法列出程序框图和编写语言程序,用计算机求出最优解,并对算法的

现代控制理论的应用----王力2011117322

现代控制理论的应用----王力2011117322 现代控制理论的应用 2011117322 王力物联网工程现代控制理论:狭义的是指60年代发展起来的采用状态空间方法研究实现最优控制目标的控制系统综合设计理论;广义的

是指60年代以来发展起来的所有新的控制理论与方法。 采用状态观测器对系统状态进行估计(或称重构)实际反馈控制主要优点是理论体系严谨完整;可获得理想的最优控制性能,设计过程较少依赖经验试凑;主要缺点是要求系统模型准确,否则实际控制性能并非最优,即控制系统鲁棒差;理论较抽象,缺乏直观性,不易理解,需要较多数学知识;性能指标函数中的加权Q和R选取无定量准则可循,也需凭经验选取,故设计结果也与设计人员有关。 自动控制系统是指为实现自动控制目标由自动化仪表与被控对象所联接成闭环系统。其组成结构是由被控对象、测量代表、控制器或调节器和执行器构成反馈闭环结构,其形式有单回路形式和串级双回路形式;性能指标:定性的有稳(定性)、准(确性)、快(速性);控制律(或控制策略、控制算法):控制系统中控制器或调节器所采用的控制策略,即用系统偏差量如何确定控制量的数学表示式。 现代控制理论主要应用于航空类飞行器控制现代控制理论是基 于时域的系统分析方法,目前基本都是高端如火箭发射,导弹制导之类的复杂系统基于动态矩阵的预测控制等。比如在汽车中运用的自适应控制,汽车制动防抱死系统的控制,自适应估计等定速巡航系统的初衷是让车辆运行在最佳的发动机转速—油耗平衡点,汽车发动机的转速跟扭矩、油耗是有一定比例关系的,单位距离油耗最省的发动机转速所对应的速度就是巡航速度,这个定速巡航巡航系统就是个典型的现代控制系统,车辆快了,它帮你松油门,车辆慢了,它帮你踩。现代控制理论的应用于实际存在的很大的问题是系统模型是否准确

现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异

现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异 建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论它是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论非线性系统的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对分析某些类型的非线性系统提供了有力的理论工具。 最优控制理论最优控制理论是设计最优控制系统的理论基础,主要研究受控系统在指定性能指标实现最优时的控制规律及其综合方法。在最优控制理论中,用于综合最优控制系统的主要

最优控制理论考试重点

1.最优控制问题的性能指标 (1)积分型性能指标(拉格朗日型):? = f t t dt t t u t x L u J 0 ]),(),([)( 反映控制过程偏差在某种意义下的平均或控制过程的快速性,同时能反映燃料或能量的消耗。 (2)末值型性能指标(梅耶型):]),([)(f f t t x u J φ=,接近目标集程度,即末态控制精度的度量。 (3)综合性能指标(鲍尔扎型):? +=f t t f f dt t t u t x L t t x u J 0 ]),(),([]),([)(φ。 2.最优控制问题的数学模型 给定系统的状态方程:]),(),([)(t t u t x f t x =? ;状态方程的边界条件:???∈===S t x t t x t x t t f f )(,)(,0 00; 给定性能指标:? + =f t t f f dt t t u t x L t t x u J 0 ]),(),([]),([)(φ;允许控制域u(t):U t u ∈)(。 3.最优控制应用的几种类型:最短时间控制,最小能量控制,线性调节器,最少燃料消耗控制,线性跟踪器。 4.选取性能指标注意: 应能反映对系统的主要技术条件要求,便于对最优控制进行求解,所导出最优控制易于实现。 5.边界条件:指状态向量在起点或终点的所有容许值的集合。 6.横截条件:依据性能指标的要求,从容许值的集合中选择哪一点作为始态或终态的问题。 1.泛函:对于某一类函数y(·)中的每一个函数y(x),变量J 都有一个值与之相对应,那么变量J 称作依赖于函数y(x)的泛函。记为:J=J[y(x)],y(x)称为泛函的宗量。宗量的变分:)()(0x y x y y -=δ。 2.泛函的连续性:对任意给定的正数ε,总存在另一个正数δ,当 ,...)()(,...,)()(,)()()()(000δδδ<-<-<-x y x y x y x y x y x y k k 时,ε<-)]([)]([0x y J x y J ,则称泛函J[y(x)]在点y 0(x)处是连续的,而此时y(x)与y 0(x)具有k 阶接近度。 )]([x y J 满足:(1))]([)]([)]()([2121x y J x y J x y x y J +=+,(2))]([)]([x y aJ x ay J =则称其为线性泛函。 3.泛函的变分(计算题) 设泛函J[y(x)]为连续泛函,则泛函增量的线性主部称为泛函的变分,记为:J δ。泛函的变分是唯一的。 泛函J[y(x)] 的求解:0)]()([)]([=+?? = εεδε δx y x y J x y J 。 dt t x t x t L J f t t ? =0 )](),(,[ ,则dt t x t x t x t x t L t x t x t x t x t L J f t t )}()()](),(,[)()()](),(,[{0 δδ??+??=?。

最优控制理论在汽车控制系统中运用

最优控制理论在汽车控制系统中运用 董凤鸿1,张皓2 (1 北京科技大学2010级信计2班 41040317) (2 北京科技大学2012级信计2班 41064044) 摘要: 随着人们生活水平的提高,汽车已经开始走进百姓的生活中。随着人们对汽车消费的增加,越来越多的人开始更多的关注的不仅仅是汽车本身,更多的开始关注汽车的安全性及舒适性。由此,各大汽车厂商更具消费者的需求开始着重研究带有主动控制能力的汽车控制系统。本文引入最优控制理论对当今比较流行的汽车悬挂系统、汽车防抱制动系统(简称ABS 系统)和无级变速器控制系统进行优化。由此达到优化汽车安全性、经济性和舒适性。 关键词: 最优控制理论、悬挂系统、防抱制动系统、无级变速器控制系统 一、引言 汽车防抱制动系统(简称ABS系统) ,实质上是一种制动力的自动调节装置。这种装置使汽车制动系统的结构发生了质的变化,它不仅能充分发挥制动器的制动性能,提高制动减速度和缩短制动距离,而且能有效地提高汽车制动时的方向稳定性,大大改善汽车的行驶安全性。悬挂系统是指车身与车轴之间连接的所有组合体零件的总称,悬挂系统直接影响着汽车的安全性、稳定性和舒适性,是汽车的重要组成部分之一。目前,降低汽车能源消耗和减少废气排放已成为汽车行业最关注的问题,大量试验表明,装有无级变速器(CVT)的汽车比装有传统有级变速器的汽车在改善汽车燃油经济性和排放等方面具有更大的潜力,这是因为CVT连续变化的传动比可以使发动机转速独立于负载和车速的变化,最大限度地发挥发动机的经济性和动力性。 二、正文 (一)、汽车防抱制动系统最优控制 1、方法介绍 最优控制是基于状态空间法的现代控制理论方法。它可以根据车辆一地面系统的数学模型,用状态空间的概念,在时间域内研究汽车防抱制动系统。是一种基于模型分析型的控制系统,它根据防抱系统的各项控制要求,按最优化原理求得控制系统的最优控制指标。我们知道:现代控制理论应用得成功与否,关键在于数学模型是否准确。为此必须首先研究用状态变量表示的防抱系统的数学模型。 2、模型建立 为了便于分析首先作如下假设: (1)车轮承受的载荷为常数; (2)不计迎风阻力和滚动阻力;

最优控制理论及应用

最优控制理论及应用作业 线性二次型最优控制器 院(系)自动化学院 专业班级自硕1602 学生姓名郭正一 学生学号S2016**** 2016年11月2日

线性二次型最优控制器 ****1) 1)北京*****,北京 100083 摘要课后题进行仿真(>﹏<。)。 关键词最优控制器;线性二次型 Linear Quadratic Optimal Controller …… *****1 1) *******g, Beijing 100083, China ABSTRACT I am so sorry for not good at modeling, so I can only use an after-school exercises for simulation. KEY WORDS Optimal Controller; Linear Quadratic 1 问题提出 构造的的系统方程如下: . x =010001023?? ? ? ?--??X+011?? ? ? ???U Y=(1 0 0)X 性能指标为J=T 0[+U RU]T X QX dt ∞ ?,其中Q ,R 为 Q=123000 000a a a ?? ? ? ??? R=[0.01] 要设计状态反馈控制器,使J 最小 Q 矩阵参数选择如下: 1a =100 2a =3a =1 2问题分析 由于代数李卡蒂方程求解过程中仅涉及矩阵运算,所以很适合用MATLAB 软件处理,在MATLAB 的控制系统分析与设计工具箱中提供了求解代数李卡蒂方程的函数lpr(),其具体调用方式如下:

2 [K,P,E]=lpr(A,B,Q,R) 2程序仿真 在MATLAB 环境中,执行下面的M 文件 A=[0 1 0;0 0 1;0 -2 -3]; B=[0;0;1]; C=[1 0 0]; D=[0]; Q=[100 0 0;0 1 0;0 0 1]; R=[0.01]; [k,p,e]=lqr(A,B,Q,R); disp('卡尔曼增益'); k %阶跃响应 k1=k(1); Ac=A-B*k; Bc=B*k1; Cc=C; Dc=D; figure(1) step(Ac,Bc,Cc,Dc) title(‘最优控制后的阶跃响应’); 运行后结果如下 卡尔曼增益 k = 100. 0000 53.1200 11. 6711 即状态反馈控制器k = [100. 0000 53. 1200 11. 6711] ,系统输出响应的仿真。 图1最优控制后的阶跃响应 Fig.1Step response after optimal control 为了研究Q 矩阵参数变化对最优控制器设计的影响,现改变Q 矩阵参数如下: 1a =1,2a =1,3a =1 在运行上述M 文件后得到下面的结果 改变Q 矩阵后卡尔曼增益 K=10.0000 16.5022 8.9166

现代控制理论在汽车行业的应用

现代控制理论在汽车领域的应用 现代控制理论发展于20 世纪50 年代末,它以状态空间方法为主,研究控制系统状态的运动规律,通过反馈系统解决某些非线性和时变系统的控制问题,用于多输入多输出反馈控制系统,可以实现最优控制规律。 作为一名车辆工程专业的研究生,现代控制理论在我所学的领域上也有很多应用。比如说现代控制理论在内燃机振动主动控制中的应用、在汽车防抱死制动系统中的应用、在汽车悬架控制中的应用等等,下面我将根据自己查阅的资料对这三种应用进行简单介绍。 已有文献阐明了现代控制理论在内燃机振动主动控制领域的应用现状,阐述了各种控制理论与内燃机振动系统的关系。以现代控制理论中有代表性的最优控制、自适应控制、鲁棒控制为重点分析了现代智能控制理论在振动系统控制中应用的可能性与发展,指出了内燃机振动主动控制领域今后一段时间内的研究重点与方向。内燃机的振动是有害的,对于有害的振动,人们总是在想方设法将其消减甚至消除。消减振动一般从两个方面着眼:一是耗散振动能,二是抑制激振力。耗能的方法有加装阻尼摩擦片、附带质量冲击块;抑制激振力的方法有提高系统刚度、加装动力减振器或是主动对振动系统施加同频反向的抑振力。通过控制系统对振动主体主动施加抑振力即振动的动态控制(也称有源控制、主动控制)。该控制系统一般由振动体(内燃机振动系统如曲轴)、振动信息采集器(对于旋转振动系统多用涡流传感器和光电传感器,对于整机多用弹簧质量加速度传感器)、变送器、处理器、控制器、执行器、显示与调节器等部件组成。其中控制器是系统的核心,控制器的设计应依据振动体即被控对象的特性进行。本文将依据内燃机的振动的特性探讨控制器设计中运用的各种控制理论问题以及在振动动态控制上各种现代控制理论应用的可能性。 汽车防抱制动系统(简称ABS)实质上是一种制动力自动调节装置。这种装置使汽车制动系统的结构发生了质的变化,它不仅能充分发挥制动器的制动性能,提高制动减速度和缩短制动距离,而且能有效地提高汽车制动时的方向稳定性,大大改善汽车的行驶安全性。汽车防抱制动系统是一个典型的最优控制系统设计问题,有文献讨论了它的状态变量的选择,状态方程的建立和性能指标的确定等与实际系统有关的问题,对于最优控制规律的计算和系统的设计,将直接引用现

最优控制

最优控制 学院 专业 班级 姓名 学号

1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。钱学森1954年所着的《工程控制论》直接促进了最优控制理论的发展和形成。 最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。 从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。 例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。苏联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。 最优控制理论-主要方法 解决最优控制问题的主要方法 解决最优控制问题,必须建立描述受控运动过程的运动方程 为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。

《现代控制理论》复习提纲2017

现代控制理论复习提纲 第一章: 绪论 (1)现代控制理论的基本内容 包括:系统辨识、线性系统理论、最优控制、自适应控制、最优滤波 (2)现代控制理论与经典控制理论的区别 第二章:控制系统的状态空间描述 1.状态空间的基本概念; 系统、系统变量的组成、外部描述和内部描述、状态变量、状态向量、状态空间、状态方程、状态空间表达式、输出方程 2.状态变量图 概念、绘制步骤; 3.由系统微分方程建立状态空间表达式的建立; 1.2.1 第三章:线性控制系统的动态分析 1.状态转移矩阵的性质及其计算方法 (1)状态转移矩阵的基本定义; (2)几个特殊的矩阵指数; (3)状态转移矩阵的基本性质(以课本上的5个为主); (4)状态转移矩阵的计算方法 掌握: 2.2.2 方法一:定义法 方法二:拉普拉斯变换法例题2-2 第四章:线性系统的能控性和能观测性 (1)状态能控性的概念 状态能控、系统能控、系统不完全能控、状态能达 (2)线性定常连续系统的状态能控性判别 包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据 掌握秩判据、PBH判据的计算

(3)状态能观测性的概念 状态能观测、系统能观测、系统不能观测 (4)线性定常连续系统的状态能观测性判别 包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据 掌握秩判据、PBH判据的计算 (5)能控标准型和能观测标准型 只有状态完全能控的系统才能变换成能控标准型,掌握能控标准I型和II型的只有状态完全能观测的系统才能变换成能控标准型,掌握能观测标准I型和II型的计算方法 第五章:控制系统的稳定性分析 (1)平衡状态 (2)李雅普诺夫稳定性定义: 李雅普诺夫意义下的稳定概念、渐进稳定概念、大范围稳定概念、不稳定性概念(3)线性定常连续系统的稳定性分析 例4-6 第六章线性系统的综合 (1)状态反馈与输出反馈 (2)反馈控制对能控性与观测性的影响

相关文档
最新文档