平面向量专项训练

合集下载

平面向量习题及答案

平面向量习题及答案

平面向量习题及答案【篇一:平面向量练习题集答案】>典例精析题型一向量的有关概念【例1】下列命题:①向量ab的长度与ba的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量ab与向量cd是共线向量,则a、b、c、d必在同一直线上.其中真命题的序号是.【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;ab与cd是共线向量,则a、b、c、d可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.【变式训练1】下列各式:①|a|=a?a;②(a?b) ?c=a? (b?c);③oa-ob=ba;④在任意四边形abcd中,m为ad的中点,n为bc的中点,则ab +=2;其中正确的个数为( )a.1b.2c.3d.4【解析】选d.| a|=a?a正确;(a?b) ?c≠a? (b?c); oa-ob=ba 正确;如下图所示,mn=++且mn=++,两式相加可得2mn=ab+dc,即命题④正确;因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线,即得(a+b)⊥(a-b).所以命题①③④⑤正确.题型二与向量线性运算有关的问题【例2】如图,abcd是平行四边形,ac、bd交于点o,点m在线段do上,且=,点n在线段oc上,且=,设=a, =b,试用a、b表示,,1313.【解析】在?abcd中,ac,bd交于点o,111所以==(-)a-b),222=2=2(+)=2(a+b).11又=,=, 331所以=ad+=b+ 31115=b(a-b)=a, 3266111=+=+3 4412==(a+b)a+b). 3323所以=- 21511=(a+b)-+)=a. 36626【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形.所以? (+)=?0=0,故填0.题型三向量共线问题【例3】设两个非零向量a与b不共线.(1)若=a+b,=2a+8b,=3(a-b),求证:a,b,d三点共线;(2)试确定实数k,使ka+b和a+kb共线. 1【解析】(1)证明:因为=a+b,=2a+8b,=3(a-b),所以bd=bc+cd=2a+8b+3(a-b)=5(a+b)=5ab,所以ab, bd共线.又因为它们有公共点b,所以a,b,d三点共线.(2)因为ka+b和a+kb共线,因为a与b是不共线的两个非零向量,【点拨】(1)向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.【变式训练3】已知o是正三角形bac内部一点,+2+3=0,则△oac的面积与△oab的面积之比是(3a. 2c.2 2b. 31d. 3 )【解析】如图,在三角形abc中, oa+2ob+3oc=0,整理可得oa+oc+2(ob+oc)=0.1令三角形abc中ac边的中点为e,bc边的中点为f,则点o在点f与点e连线的处,即oe=2of. 32由于ab=2ef,oe=,所以ab=3oe, 31s△oacoe?h2==.故选b. 3s△oabab?h4总结提高1.向量共线也称向量平行,它与直线平行有区别,直线平行不包括共线(即重合)的情形,而向量平行则包括共线(即重合)的情形.2.判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3.当向量a与b共线同向时,|a+b|=|a|+|b|;当向量a与b共线反向时,|a+b|=||a|-|b||;当向量a与b不共线时,|a+b|<|a|+|b|.典例精析题型一平面向量基本定理的应用【例1】如图?abcd中,m,n分别是dc,bc中点.已知am=a,=b,试用a,b表示,ad与ac【解析】易知am=ad+dm 1=+, 21an=ab+bn=ab2ad, 1???a,??2即? ??1?b.?2?22所以=b-a),=2a-b). 332所以=+=a+b). 3【点拨】运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.【变式训练1】已知d为△abc的边bc上的中点,△abc所在平面内有一点p,满足++=0等于( ) 1b. 2c.1 d.2 1a. 3【解析】由于d为bc边上的中点,因此由向量加法的平行四边形法则,易知pb+pc=2pd,因此结合pa+bp+cp=0即得pa=2pd,因此易得p,a,d三点共线且d是pa=1,即选c.题型二向量的坐标运算【例2】已知a=(1,1),b=(x,1),u=a+2b,v=2a-b.(1)若u=3v,求x;(2)若u∥v,求x.【解析】因为a=(1,1),b=(x,1),所以u=(1,1)+2(x,1)=(1,1)+(2x,2)=(2x+1,3),v=2(1,1)-(x,1)=(2-x,1).(1)u=3v?(2x+1,3)=3(2-x,1)?(2x+1,3)=(6-3x,3),所以2x+1=6-3x,解得x=1.?2x?1??(2?x),?? 3????(2x+1)-3(2-x)=0?x=1.【点拨】对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视.+|a141+b|2的最大值为.值为284.题型三平行(共线)向量的坐标运算【例3】已知△abc的角a,b,c所对的边分别是a,b,c,设向量m=(a,b),n=(sin b,sin a),p=(b-2,a-2).(1)若m∥n,求证:△abc为等腰三角形;【解析】(1)证明:因为m∥n,所以asin a=bsin b.由正弦定理,得a2=b2,即a=b.所以△abc为等腰三角形.a(b-2)+b(a-2)=0,所以a+b=ab.由余弦定理,得4=a2+b2-ab=(a+b)2-3ab,所以(ab)2-3ab-4=0.所以ab=4或ab=-1(舍去).113所以s△abc=absin c3. 222【点拨】设m=(x1,y1),n=(x2,y2),则①m∥n?x1y2=x2y1;②m⊥n?x1x2+y1y2=0.【变式训练3】已知a,b,c分别为△abc的三个内角a,b,c的对边,向量m=(2cosc-1,-2),n=(cos c,cos c+1).若m⊥n,且a+b=10,则△abc周长的最小值为( )a.10-3c.10-23b.10+53d.10+231【解析】由m⊥n得2cos2c-3cos c-2=0,解得cos c=-cos c=2(舍去),所以c2=a2+b2-2abcos 2【篇二:高中数学平面向量测试题及答案】选择题:1。

高考数学专题训练:平面向量基本定理含详解

高考数学专题训练:平面向量基本定理含详解

高考数学专题训练:平面向量基本定理一、单选题1.在ABCD 中,点N 为对角线AC 上靠近A 点的三等分点,连结BN 并延长交AD 于M ,则MN = ()A .1136AB AD -+ B .1136AB AD -C .1344AB AD-D .3144AB AD-2.如图,在66⨯的方格中,已知向量,,a b c的起点和终点均在格点,且满足向量(),a xb yc x y R =+∈r r r,那么x y -=().A .0B .2-C .1D .23.如图,在正方形ABCD 中,M 是BC 的中点,若AC AM BD λμ=-,则λμ+=()A .43B .53C .1D .24.若a ,b 是两个不共线的向量,已知2MN a b =- ,2PN a kb =+ ,3PQ a b =-,若M ,N ,Q 三点共线,则k =()A .1-B .1C .32D .25.如图所示,M ,N 分别是ABC 的边AB ,AC 上的点,且2AM MB = ,2NC AN =,则向量MN =().A .1233AB AC - B .1233AB AC +C .1233AC AB-D .1233AC AB+6.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M 、N ,若12AB AM = ,AC nAN =,则n =()A .1B .32C .2D .37.如图所示,在ABC 中,2AB =,3BC =,60ABC ∠=︒,AD 为BC 边上的高,25AM AD = ;若AM AB BC λμ=+,则λμ+的值为()A .43B .815C .23D .4158.如图,在ABC 中,点M 是AB 上的点且满足3AM MB =,P 是CM 上的点,且15MP MC = ,设,AB a AC b == ,则AP = ()A .1124a b+ B .3155a b+ C .1142a b+ D .33105a b + 9.如图,ABC 中,D 为AB 上靠近B 的三等分点,点F 在线段CD 上,设AB a = ,AC b =,AF xa yb =+ ,则21x y+的最小值为()A .6B .7C .4+D .4+10.在ABC 中,90ACB ∠= ,CB a = ,CA b =,点D 是ABC 的外心,E 是AC 的中点,则CD +BE=()A .1122a b- B .12a b -- C .123a b- D .12a b-+ 11.在等边△ABC 中,D 为BC 的中点,点P 为△ACD 内一点(含边界),若14AP AB AC λ→→→=+,则λ的取值()A .13,44⎛⎫ ⎪⎝⎭B .11,42⎡⎫⎪⎢⎣⎭C .11,42⎡⎤⎢⎥⎣⎦D .13,44⎡⎤⎢⎥⎣⎦二、多选题12.在下列向量组中,可以把向量()3,2a →=表示出来的是()A .()()120,0,1,2e e →→==B .()()121,2,5,2e e →→=-=-C .()()123,5,6,10e e →→==D .()()122,3,2,3e e →→=-=13.四边形ABCD 中,//AB CD ,90A ∠=︒,22AB AD DC ==,3BC EC = ,2AE AF =,则下列表示错误的是()A .12CB AB AD=-+B .1133AF AB AD=+C .1263CF AB AD =- D .2133BF AB AD =-+ 14.如图,在OACB 中,E 是AC 的中点,F 是BC 上的一点,且4BC BF =,若OC mOE nOF =+uuu r uu u r uu u r,其中m ,n R ∈,则()A .107m n +=B .2-7m n =C .23m n =D .32m n=15.如图所示的各个向量中,下列结论不正确的是()A .3322PQ a b=+ B .3322PT a b=--C .3122PS a b =- D .32PR a b =+ 第II 卷(非选择题)请点击修改第II 卷的文字说明三、双空题16.如图,在OCB 中,点A 是BC 的中点,点D 是靠近点B 将OB 分成2:1的一个分点,DC 和OA 交于点E ,设OA a =,OB b= (1)用a ,b表示向量DC =u u u r __________;(2)若OE OA λ=,则λ=__________17.如图,在ABC 中,13BD BC =,点E 在线段AD 上移动(不含端点),若AE AB AC λμ=+ ,则λμ=___________,2λμ-的最小值为___________.18.如图,3AB AD = ,4AC AE = ,BE 与CD 交于P 点,若AP m AB n AC =+,则m =______,n =______.四、填空题19.如图,在ABC 中,13AN NC →→=,P 是BN 上的一点,若311AP AB AC m →→→=+,则实数m 的值为________.20.如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC AE AF λμ=+,其中,R λμ∈,则λμ+=________.五、解答题21.如图,ABC 中,点D 是AC 的中点,点E 是BD 的中点,设,BA a BC c ==.(1)用a ,c 表示向量A E;(2)若点F 在AC 上,且1455BF a c =+,求:AF CF .22.如图,在平行四边形ABCD 中,2BE EC = ,3CF FD =,BF 与DE 交于点G .(1)用AB ,AD 表示EF ;(2)用AB ,AD 表示AG .23.如图所示,ABC 中,AB a = ,AC b =,D 为AB 的中点,E 为CD 上的一点,且4DC EC =,AE 的延长线与BC 的交点为F .(1)用向量a ,b 表示A E;(2)用向量a ,b 表示AF,并求出:AE EF 和:BF FC 的值.参考答案:1.B 【解析】【分析】把向量,AB AD作为基底,根据题意可得M 为AD 的中点,然后根据向量的加减法法则和平面向量基本定理求解即可【详解】解:因为点N 为对角线AC 上靠近A 点的三等分点,所以2CN AN =,因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以2BC CNAM AN ==,所以12AM BC =,所以12AM AD =,MN AN AM=- 1132AC AD =- 11()32AB AD AD =+-1136AB AD =-,故选:B2.A 【解析】【分析】先设出水平向右的单位向量m 和水平向上的单位向量n,用单位向量表示题中的,,a b c ,结合(),a xb yc x y R =+∈r r r代入化简后联立方程组求解得到,x y 的值相减即可.【详解】设m 为水平向右的单位向量,n为水平向上的单位向量.则2a m n =- ,22b m n =+ ,24c m n =- .因为a xb yc =+ ,所以()()22224m n x m n y m n -=++- ,即()()22224m n x y m x y n -=++- .所以222241x y x y +=⎧⎨-=-⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩.所以11022x y -=-=.故选:A 3.C 【解析】【分析】根据向量的线性运算和平面向量基本定理得到()1 2AC AB AD λμλμ⎛⎫=++- ⎪⎝⎭,再与AC AB AD =+对比,得到λμ+=1即可.【详解】因为AC AB AD =+ ,12AM AB BM AB AD =+=+ , BD AD AB=-所以()()1122AC AM BD AB AD AD AB AB AD λμλμλμλμ⎛⎫⎛⎫=-=+--=++- ⎪ ⎪⎝⎭⎝⎭,所以λμ+=1.故选:C.4.B 【解析】【分析】利用向量的减法以及向量共线定理即可求解.【详解】由题意知,()1NQ PQ PN a k b =-=-+,因为M ,N ,Q 三点共线,故MN NQ λ=,即()21a b λa k b ⎡⎤-=-+⎣⎦ ,解得1λ=,1k =,5.C 【解析】根据平面向量基本定理,由平面向量的线性运算,利用题中条件直接计算,即可得出结果.【详解】因为2AM MB = ,2NC AN =,所以1233MN AN AM AC AB =-=- .故选:C.6.B 【解析】【分析】根据向量的共线定理可得解.【详解】连接AO ,由点O 是BC 的中点,则1122AO AB AC =+,又12AB AM = ,AC nAN = ,则1112242n AO AB AC AM =+=+ ,又O ,M ,N 三点共线,则1142n+=,解得32n =,故选:B.7.B【分析】根据题意求得1BD =,化简得到22515AM AB BC =+ ,结合AM AB BC λμ=+,求得,λμ的值,即可求解.【详解】在ABC 中,2AB =,3BC =,60ABC ∠=︒,AD 为BC 边上的高,可得cos 601BD AB == ,由222122()()5553515AM AD AB BD AB BC AB BC==+=+=+又因为AM AB BC λμ=+ ,所以22,515λμ==,所以815λμ+=.故选:B.8.B 【解析】【分析】先将AP 用AM ,MP 表示,然后AM ,MP 再用,a b表示即可.【详解】3313133()445455AM MB AM AB AP AM MP AB MC AB AC AM AB =⇒==+=+=+-=+,131555AC a b =+.故选:B 9.D 【解析】【分析】由题意,用向量,AD AC 表示出向量AF ,根据点F 在线段CD 上可得到312x y +=,再根据基本不等式即可求得答案.【详解】由于D 为AB 上靠近B 的三等分点,故23AD AB = ,所以32x AF xa yb x AB y AC AD y AC =+=+=+ ,又因为点F 在线段CD 上,所以312x y +=,故2121332()()422x x yy x y x y y x+=++=++,由题意可知0,0x y >>,故2132442x yx y y x+=++≥+当且仅当322x y y x =时,即1132x y -=-=时,等号取得,故选:D.10.D 【解析】【分析】根据题意得点D 是Rt ACB 的斜边AB 的中点,进而根据向量加减法运算求解即可.【详解】解:因为点D 是ABC 的外心,且90ACB ∠= ,所以点D 是Rt ACB 的斜边AB 的中点,所以()111222CD CB CA a b =+=+.又E 是AC 的中点,所以12BE BC CE a b =+=-+,所以12CD BE a b +=-+ .故选:D.11.D 【解析】【分析】过AB 靠近A 的四等分点作AC 的平行线分别交AD ,BC 于点E ,F ,过E ,F 分别作AB 的平行线交AC 于M ,N ,求出min 14λ=,max 34λ=,即得解.【详解】解;过AB 靠近A 的四等分点作AC 的平行线分别交AD ,BC 于点E ,F ,由题意知,点P 在线段EF 上,过E ,F 分别作AB 的平行线交AC 于M ,N (如图所示),由题得13,44AM AC AN AC →→→→==,即min 14λ=,max 34λ=.所以1344λ≤≤.故选:D.12.BD 【解析】【分析】根据12a e e λμ→→→=+,选项A :无解,故选项A 不能;选项B :解得2λ=,1μ=,故选项B 能.选项C :无解,故选项C 不能.选项D :解得513==1212λμ,,故选项D 能.【详解】解:根据12a e e λμ→→→=+,选项A :(3,2)(0λ=,0)(1μ+,2),则3μ=,22μ=,无解,故选项A 不能;选项B :(3,2)(1λ=-,2)(5μ+,2)-,则35λμ=-+,222λμ=-,解得,2λ=,1μ=,故选项B 能.选项C :(3,2)(3λ=,5)(6μ+,10),则336λμ=+,2510λμ=+,无解,故选项C 不能.选项D :(3,2)(2λ=,3)(2μ-+,3),则322λμ=+,233λμ=-+,解得513==1212λμ,,故选项D 能.故选:BD 13.AC 【解析】【分析】利用向量的线性运算将CB ,,,AF CF BF 用基底AB 和AD表示,与选项比较即可得正确选项.【详解】对于选项A :1122CB CD DA AB AB DA AB AB DA =++=-++=+,故选项A 不正确;()11121122112223223333AF AE AB BE AB AB DA AB DA AB AD ⎡⎤⎛⎫⎛⎫==+=-+=-=+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦故选项B 正确;1111223363CF CD DA AF AB AD AB AD AB AD =++=--++=--,故选项C 不正确,11213333BF AF AB AB AD AB AB AD =-=+-=-+,故选项D 正确;故选:AC.14.ABC 【解析】【分析】根据向量的线性运算法则及平面向量的基本定理,可得12OE OA OB =+ ,14OF OB OA =+,又OC OA OB =+,根据题意,化简计算,可得m ,n 的值,逐一分析选项,即可得答案.【详解】在平行四边形中OA BC = ,OB AC = ,OC OA OB =+,因为E 是AC 中点,所以1122AE AC OB ==,所以12OE OA AE OA OB =+=+ ,因为4BC BF =,所以11 44BF BC OA == ,所以14OF OB BF OB OA =+=+ ,因为OC mOE nOF =+uuu r uu u r uuu r ,所以1142OC m n OA m n OB ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以114112m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩,解得6747m n ⎧=⎪⎪⎨⎪=⎪⎩,所以107m n +=,27m n -=,23m n =,故选:ABC .15.BD 【解析】【分析】建立空间直角坐标系,可得向量(1,1),(1,1)a b ==- ,由此以向量(1,1),(1,1)a b ==-为基底分别表示PQ ,,,PT PS PR,由向量的坐标运算判断选项A,B,C,D,可得正确答案.【详解】如图,建立空间直角坐标系:则(1,1),(1,1)a b ==-,故3333(0,3)(1,1)(1,1)2222PQ a b ==+-=+,A 选项正确,3333(3,0)(1,1)(1,1)2222PT a b ==--=-,B 选项错误,3131(2,1)(1,1)(1,1)2222PS a b ==--=-,C 选项正确,3131(1,2)(1,1)(1,1)2222PR a b ==+-=+,D 选项错误,故选:BD.16.523a b-r r 45【解析】(1)由22=-=- OC OA OB a b ,2233OD ==,再结合DC OC OD =- ,即可得出答案;(2)由C ,E ,D 三点共线,可知存在实数μ,使得EC DC μ=,进而由又()2EC OC OE a b a λ=-=-- ,523=- DC a b ,可建立等式关系,从而得22513λμμ-=⎧⎪⎨=⎪⎩,求解即可.【详解】(1)因为点A 是BC 的中点,所以()12OA OB OC =+,所以22=-=- OC OA OB a b ,又点D 是靠近点B 将OB 分成2:1的一个分点,所以23OD OB = ,所以()252233DC OC OD a b b a b =-=--=- .(2)因为C ,E ,D 三点共线,所以存在实数μ,使得EC DC μ=,又()()22EC OC OE a b a a b λλ=-=--=-- ,523=-DC a b ,所以()5223a b a b λμ⎛⎫--=- ⎪⎝⎭ ,又a ,b不共线,则22513λμμ-=⎧⎪⎨=⎪⎩,解得45λ=.故答案为:(1)523a b -r r ;(2)45.【点睛】本题考查平面向量基本定理的应用,考查数学转化思想和计算能力,属于基础题.17.2116-【解析】【分析】先得出2133AD AB AC =+u u u r u u u r u u u r ,设出(01)AE x AD x =<<得出233x x AE AB AC =+ ,则2=,33x xλμ=,两问分别代入计算即可.【详解】因为在ABC 中,13BD BC =,所以1121()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,即2133AD AB AC =+u u u r u u u r u u u r .因为点E 在线段AD 上移动(不含端点),所以设(01)AE x AD x =<<.所以233x x AE AB AC =+ ,对比AE AB AC λμ=+ 可得2=,33x x λμ=.代入2=,33x x λμ=,得2323xx λμ==;代入2=,33x x λμ=可得22224=33(0931)x x x x x λμ⎛⎫--=- <⎝<⎪⎭,根据二次函数性质知当1334829x -=-=⨯时,()22min 43131=983816λμ⎛⎫--⨯=- ⎪⎝⎭.故答案为:12;16-18.311211【解析】【分析】通过向量三点共线定理,以及基底转化的方法,将AP 用,AB AC表示,根据平面向量基本定理,可以得到,m n 的值【详解】设1BP BE λ= ,2CP CD λ= ,可得()1114AP AB AC λλ=-+ ,()2213AP AC AB λλ=-+,所以2113λλ-=且2214λλ=-,可得1811λ=,2911λ=,代入上式从而可得()13111m λ=-=,12411n λ==.另外,也可用梅涅劳斯定理.由梅涅劳斯定理可知1CE AB DP EA BD PC⋅⋅=,因为3CE EA =,32=AB BD ,所以,29DP PC =,则923211111111AP AD AC AB AC =+=+ ,故311m =,211n =.故答案为;311,211.19.211【解析】【分析】解法1:先根据13AN NC →→=得到4AC AN →→=,从而可得3411AP AB N m A →→→=+,再根据三点共线定理,即可得到m 的值.解法2:根据图形和向量的转化用同一组基底AB AC →→,去表示AP →,根据图形可得:AP AB BP →→→=+,设BP BN λ→→=,通过向量线性运算可得:()14AP AB AC λλ→→→=-+,从而根据平面向量基本定理列方程组,解方程组得m 的值.【详解】解法1:因为13AN NC →→=,所以4AC AN →→=,又311AP AB AC m →→→=+,所以3411AP AB N m A →→→=+因为点,,P B N 三点共线,所以3+4111m =,解得:211m =.解法2:因为AP AB BP →→→=+,设BP BN λ→→=,所以AP AB BN λ→→→=+,因为13AN NC →→=,所以14AN AC →→=,又BN AN AB →→→=-,所以14BN AC AB →→→=-,所以()=4141AP AB AC AB AB AC λλλ→→→→→→⎛⎫=+-+ ⎝-⎪⎭,又311AP AB AC m →→→=+,所以31114m λλ⎧-=⎪⎪⎨⎪=⎪⎩解得:8=11211m λ⎧⎪⎪⎨⎪=⎪⎩,所以211m =.故答案为:211.【点睛】本题主要考查平面向量的线性运算、三点共线定理,平面向量基本定理的运用,属于基础题.20.43【解析】【分析】设,AB a AD b ==,根据题意得到11,22AE a b AF a b =+=+ ,得到2()3AC AE AF =+ ,进而得到23λμ==,即可求解.【详解】设,AB a AD b ==,因为E 和F 分别是边CD 和BC 的中点,可得11,22AE a b AF a b =+=+,又因为AC a b =+,所以2()3AC AE AF =+ ,因为AC AE AF λμ=+ ,所以23λμ==,所以43λμ+=.故答案为:43.21.(1)1344AE c a =-;(2):4:1AF CF =.【解析】【分析】(1)由于点D 是AC 的中点,点E 是BD 的中点,所以12AD AC = ,1()2AE AB AD =+,而AC BC BA c a =-=-,从而可求得结果,(2)设AF AC λ= ,从而可得BF BA AF BA AC λ=+=+ ,再用a ,c表示,然后结合1455BF a c =+,可求得λ的值,从而可求得:AF CF 的值【详解】(1)因为AC BC BA c a =-=-,点D 是AC 的中点,所以11()22AD AC c a ==- ,因为点E 是BD 的中点,所以1111113()()2222444AE AB AD AB AD a c a c a =+=+=-+-=-.(2)设AF AC λ=,所以()(1)BF BA AF BA AC a c a a c λλλλ=+=+=+-=-+ .又1455BF a c =+ ,所以45λ=,所以45AF AC =,所以:4:1AF CF =.22.(1)3143EF AB AD =-+ (2)1839AG AB AD=+ 【解析】【分析】(1)利用平面向量基本定理结合已知条件求解即可,(2)过E 作EH ∥BF ,交CD 于H ,则由平行线分线段成比例结合已知条件可得3FB HE =,13FG HE = ,从而可得83GB HE = ,再将HE 用AB ,AD表示,代入化简可得结果(1)因为在平行四边形ABCD 中,2BE EC = ,3CF FD =,所以1133CE CB AD ==- ,3344CF CD AB ==- ,所以3143EF CF CE AB AD=-=-+(2)过E 作EH ∥BF ,交CD 于H ,因为2BE EC = ,所以12CH FH =,因为3CF FD = ,所以3CFFD=,所以::1:2:1DF FH HC =,因为EH ∥BF ,2BE EC =,所以13EH CE FB CB ==,所以3FB HE = 因为12DF FH =,EH ∥BF ,所以13FG DF HE DH ==,所以13FG HE = ,所以18333GB FB FG HE HE HE =-=-= ,因为11113434HE CE CH CB CD AD AB =-=-=-+ ,所以8118233493GB AD AB AD AB ⎛⎫=-+=-+ ⎪⎝⎭ ,所以28183939AG AB BG AB GB AB AB AD AB AD=+=-=-+=+ 23.(1)1384AE a b=+(2)1677AF a b =+,7,6【解析】【分析】(1)由已知得()4AC AD AC AE -=- ,3144AE AC AD =+,D 为AB 的中点,可得答案;(2)设BF t BC =,得()1AF tb t a =+- ,设AF AE λ= ,可得1384AE a b =+ ,即384AF a b λλ=+ ,由a ,b不共线和平面向量基本定理求得λ、t ,可得答案.(1)答案第15页,共15页根据题意因为:4DC EC = ,所以()4AC AD AC AE -=- ,所以3144AE AC AD =+ ,D 为AB 的中点,AB a = ,AC b = ,所以12AD a = ,1384AE a b =+ .(2)因为B ,F ,C 三点共线,设BF t BC = ,所以()1AF t AB t AC =-+ ,即()1AF tb t a =+- ,A ,F ,E 三点共线,设AF AE λ=,由(1)可知1384AE a b =+ ,即384AF a b λλ=+ ,a ,b 不共线,由平面向量基本定理,所以1834t t λλ⎧=-⎪⎪⎨⎪=⎪⎩,所以87λ=,67t =,所以87AF AE = ,67BF BC = ,则:AE EF 的值为7,:BF FC 的值为6.。

高中数学必修二 专题03 平面向量的应用(课时训练)(含答案)

高中数学必修二  专题03 平面向量的应用(课时训练)(含答案)

专题03 平面向量的应用A 组 基础巩固1.(2020·山东高三期中)(多选题)下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同【答案】AD【解析】单位向量的模均为1,故A 正确;向量共线包括同向和反向,故B 不正确;向量是矢量,不能比较大小,故C 不正确;根据相等向量的概念知,D 正确.故选:AD2. (2020·北京高二学业考试)(多选题)给出下面四个命题,其中是真命题的是( ) A .0AB BA B .AB BC AC C .AB AC BC += D .00AB +=【答案】AB 【解析】因为0AB BA AB AB ,正确;AB BC AC ,由向量加法知正确;AB AC BC +=,不满足加法运算法则,错误; 0,AB AB +=,所以00AB +=错误.故选:A B .3.最早发现勾股定理的人应是我国西周时期的数学家商高,根据记载,商高曾经和周公讨论过“勾3股4弦5”的问题,我国的《九章算术》也有记载.所以,商高比毕达哥拉斯早500多年发现勾股定理.现有ABC 满足“勾3股4弦5”,如图所示,其中4AB =,D 为弦BC 上一点(不含端点),且ABD 满足勾股定理,则()CB CA AD -⋅=( )A.14425B.25144C.16925D.25169【答案】A【解析】由题意求出125AD =2212144()()525AD CB CA AD AB AD AB AD AD AB -==⋅===,故选A. 4.(多选题)ABC ∆是边长为2的等边三角形,已知向量,a b 满足2AB a =,2AC a b =+,则下列结论中正确的是( )A .a 为单位向量B .b 为单位向量C .a b ⊥D .(4)a b BC +⊥【答案】AD【解析】∵等边三角形ABC 的边长为2,2AB a =,∴||2||2AB a ==,∴||1a =,故A 正确;∵2AC AB BC a BC =+=+,∴BC b =,∴||2b =,故B 错误;由于2,AB a BC b ==,∴a 与b 的夹角为120°,故C 错误; 又∵21(4)4||412402a b BC a b b ⎛⎫+⋅=⋅+=⨯⨯⨯-+= ⎪⎝⎭, ∴(4)a b BC +⊥,故D 正确.5. (2020·北京高二学业考试)已知平面向量满足 ,且与夹角为60°,那么等于( )A .B .C .D .1【答案】C【解析】因为,故选:C. 6.已知O 为ABC ∆内部一点,且5()2AB OB OC =+,则AOB BOC S S ∆∆=( ) A. 1 B. 54 C. 2 D.52 ,a b 1a b ==a b a b ⋅14131211cos 1122a b a b θ⋅=⋅⋅=⨯⨯=【答案】:D.【解析】由题意,5()2OB OA OB OC -=+,即2350OA OB OC ++=。

平面向量的数量积专项训练(1对1培训)

平面向量的数量积专项训练(1对1培训)

平面向量的数量积专项训练一.选择题:1.已知9,1,36-=∙==b a b a ,则的夹角为与b a ( )A .1200 B.1500 C.600 D.3002.已知下列命题:.2)).(4,)).(3,).2,).1222222222b b a a b a b a b a a b ab a a a +∙-=-∙=∙=∙=其中真命题的个数有 ( )A.1个B.2个C.3个D.4个3.等于则设向量))((),1,2(),2,1(b a b a b a +∙-=-= ( )A.(1,1)B.(-4,-4)C.-4D.(-2,-2)4. 是,则中,若已知ABC B C A C C B A B C A B A B A ABC ∆∙+∙+∙=∆ 2 ( )A.等边三角形B. 锐角三角形 C .直角三角形 D.钝角三角形5.已知12,5,3=∙==b a b a 且,则向量a 在向量b 方向上的投影为 ( ) A.512 B.3 C.4 D.5 6.点O 在△ABC 内部且满足0 =++C O B O A O ,则△ABC 的面积与四边形ABOC 的面积之比是 ( )A.0B.23 C. 45 D. 34 7.若),3,2(),1,(x b x a == ,那么22b a b a +∙的取值范围是 ( ) A. )22,(-∞ B. ⎥⎦⎤⎢⎣⎡42,0 C. ⎥⎦⎤⎢⎣⎡-42,42 D. [)+∞,22 8.若a +b =c ,a -b =d 且向量c 与d 垂直,则一定有………………………( )A 、a =bB 、|a |=|b |C 、a ⊥bD 、|a |=|b |且a ⊥b9.关于向量a 、b ,下列命题中正确的是………………………………………( )A 、a -b =a +(-b )B 、a -a =0C 、|a -b |=|a |-|b |D 、a //b ⇒存在唯一的λ使得b =λa10.已知a =(m-2,m+3),b =(2m+1,m-2)且a 与b 的夹角大于90°,则实数m ( )A 、m >2或m <-4/3B 、-4/3<m <2C 、m ≠2D 、m ≠2且m ≠-4/3二.填空题:11.若|a |=2,|b |=2,a 与b 的夹角为45°,要使k b -a 与a 垂直,则k=12.====N M BC M C N N A b D A a B A ABCD 的中心,则为中,平行四边形,3,,______________。

高考数学一轮复习平面向量多选题专项训练复习题含答案

高考数学一轮复习平面向量多选题专项训练复习题含答案

高考数学一轮复习平面向量多选题专项训练复习题含答案一、平面向量多选题1.若a →,b →,c →是任意的非零向量,则下列叙述正确的是( ) A .若a b →→=,则a b →→= B .若a c b c →→→→⋅=⋅,则a b →→= C .若//a b →→,//b c →→,则//a c →→D .若a b a b →→→→+=-,则a b →→⊥答案:ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应,若,则向量长度相等,方向相同,故,故正确; 对于,当且时,,但,可以不相等,故错误; 对应,若,,则方向相同解析:ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应A ,若a b =,则向量,a b 长度相等,方向相同,故||||a b =,故A 正确; 对于B ,当a c ⊥且b c ⊥时,··0a c b c ==,但a ,b 可以不相等,故B 错误; 对应C ,若//a b ,//b c ,则,a b 方向相同或相反,,b c 方向相同或相反, 故,a c 的方向相同或相反,故//a c ,故C 正确;对应D ,若||||a b a b +=-,则22222?2?a a b b a a b b ++=-+,∴0a b =,∴a b ⊥,故D 正确.故选:ACD 【点睛】本题考查平面向量的有关定义,性质,数量积与向量间的关系,属于中档题. 2.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是( )A .()0a b c -⋅=B .()0a b c a +-⋅= C .()0a c b a --⋅=D .2a b c ++=答案:ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解解析:ABC 【分析】作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】 如下图所示:对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,a b AB BC AB AD DB -=-=-=,()0a b c DB AC ∴-⋅=⋅=,A 选项正确;对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()00a b c a a +-⋅=⋅=,B 选项正确;对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则()0a c b a --⋅=,C 选项正确;对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误. 故选:ABC. 【点睛】本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题. 3.下列说法中正确的是( )A .对于向量,,a b c ,有()()a b c a b c ⋅⋅=⋅⋅B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的充分而不必要条件D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则0λμ+=答案:BCD 【分析】.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断 【详解】解:.向量数量积不满足结合律,故错误, .,解析:BCD 【分析】A .向量数量积不满足结合律进行判断B .判断两个向量是否共线即可C .结合向量数量积与夹角关系进行判断D .根据向量线性运算进行判断 【详解】解:A .向量数量积不满足结合律,故A 错误,B .1257-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180︒,此时0m n <成立,当0m n <成立时,则m 与n 夹角满足90180θ︒<︒,则m 与n 不一定反向共线,即“存在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件成立,故C 正确,D .由23CD CB =得2233CD AB AC =-,则23λ=,23μ=-,则22033λμ+=-=,故D 正确故正确的是BCD ,故选:BCD . 【点睛】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.4.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案:D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题. 5.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅<D .2S =答案:BCD 【分析】本题先确定B 是的中点,P 是的一个三等分点,判断选项A 错误,选项C 正确;再通过向量的线性运算判断选项B 正确;最后求出,故选项D 正确. 【详解】 解:因为,,所以B 是的中点,P 是的解析:BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确; 因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题. 6.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C =B .若sin 2sin 2A B =,则a b =C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C答案:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题.7.已知ABC ∆是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )A .1AB CE ⋅=- B .0OE OC +=C .32OA OB OC ++=D .ED 在BC 方向上的投影为76答案:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,解析:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则CE AB ⊥,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:所以,123(0,0),(1,0),(1,0),3),()3E A B C D -, 设123(0,),3),(1,),(,33O y y BO y DO y ∈==--,BO ∥DO , 所以2313y y =-,解得:3y =, 即O 是CE 中点,0OE OC +=,所以选项B 正确;322OA OB OC OE OC OE ++=+==,所以选项C 正确; 因为CE AB ⊥,0AB CE ⋅=,所以选项A 错误;123(3ED =,(1,3)BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,所以选项D 正确.故选:BCD 【点睛】此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算.8.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )A .2AB AB AC B .2BC CB AC C .2ACAB BDD .2BDBA BDBC BD答案:AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】对于A ,,故A 正确; 对于B ,,故B 错误; 对于C ,,故C 错误; 对于D ,, ,故D 正确. 故选:AD. 【点睛】 本题考查三角形解析:AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】 对于A ,2cos AB AB AC AB AC A AB ACAB AC,故A 正确;对于B ,2cos cos CB CB AC CB AC C CB AC C CB ACCB AC,故B 错误; 对于C ,2cos cos BD AB BD AB BD ABD AB BD ABD AB BDBDAB,故C 错误; 对于D ,2cos BD BA BDBA BD ABD BA BD BD BA,2cos BD BC BDBC BD CBD BC BDBD BC,故D 正确.故选:AD. 【点睛】本题考查三角形中的向量的数量积问题,属于基础题.9.设向量a ,b 满足1a b ==,且25b a -=,则以下结论正确的是( ) A .a b ⊥B .2a b +=C .2a b -=D .,60a b =︒答案:AC 【分析】由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】,且,平方得,即,可得,故A 正确; ,可得,故B 错误; ,可得,故C 正确; 由可得,故D 错误; 故选:AC 【点睛】解析:AC 【分析】由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】1a b ==,且25b a -=,平方得22445b a a b +-⋅=,即0a b ⋅=,可得a b ⊥,故A正确;()22222a ba b a b +=++⋅=,可得2a b +=,故B 错误; ()22222a b a b a b -=+-⋅=,可得2a b -=,故C 正确;由0a b ⋅=可得,90a b =︒,故D 错误;故选:AC 【点睛】本题考查向量数量积的性质以及向量的模的求法,属于基础题.10.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( )A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+ 答案:ABD 【分析】根据向量的加减法运算法则依次讨论即可的答案. 【详解】解:如图,根据题意得为三等分点靠近点的点.对于A 选项,根据向量加法的平行四边形法则易得,故A 正确; 对于B 选项,,由于为三解析:ABD 【分析】根据向量的加减法运算法则依次讨论即可的答案. 【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点. 对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确;对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD本题考查向量加法与减法的运算法则,是基础题.11.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-答案:BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故解析:BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;对于C 选项:cos 248BD BA BC BA BC B BA BC BA⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题. 12.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=答案:ABD 【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项.表示与向量同方向的单位向量,所以正确,正确,所以AB 正确,当不是单位向量时,不正确, ,所以D 正确. 故选:ABD解析:ABD 【分析】首先理解aa表示与向量a 同方向的单位向量,然后分别判断选项.【详解】a a 表示与向量a 同方向的单位向量,所以1aa =正确,//a a a 正确,所以AB 正确,当a 不是单位向量时,aa a=不正确,cos 0a a aa a a a a a a⋅==⨯=,所以D 正确. 故选:ABD 【点睛】本题重点考查向量a a 的理解,和简单计算,应用,属于基础题型,本题的关键是理解a a表示与向量a 同方向的单位向量.13.点P 是ABC ∆所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC ∆的形状不可能是( ) A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形答案:AD 【解析】 【分析】由条件可得,再两边平方即可得答案. 【详解】∵P 是所在平面内一点,且, ∴, 即, ∴,两边平方并化简得, ∴,∴,则一定是直角三角形,也有可能是等腰直角三角形, 故解析:AD 【解析】 【分析】由条件可得||||AB AC AC AB -=+,再两边平方即可得答案. 【详解】∵P 是ABC ∆所在平面内一点,且|||2|0PB PC PB PC PA --+-=, ∴|||()()|0CB PB PA PC PA --+-=, 即||||CB AC AB =+, ∴||||AB AC AC AB -=+, 两边平方并化简得0AC AB ⋅=, ∴AC AB ⊥,∴90A ︒∠=,则ABC ∆一定是直角三角形,也有可能是等腰直角三角形, 故不可能是钝角三角形,等边三角形, 故选:AD. 【点睛】本题考查向量在几何中的应用,考查计算能力,是基础题.14.某人在A 处向正东方向走xkm 后到达B 处,他向右转150°,然后朝新方向走3km 到达C处,,那么x 的值为( )A B .C .D .3答案:AB 【分析】由余弦定理得,化简即得解. 【详解】由题意得,由余弦定理得, 解得或. 故选:AB. 【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.解析:AB 【分析】由余弦定理得293cos306x x︒+-=,化简即得解.【详解】由题意得30ABC ︒∠=,由余弦定理得293cos306x x︒+-=,解得x =x 故选:AB. 【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平. 15.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( ) A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得()11122122e e e e λμλλμ+=+D .若存在实数,λμ使得120e e λμ+=,则0λμ==答案:AD 【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确. 【详解】由平面向量基本定理可知,A 、D 是正确的. 对于B,由平面向量基本解析:AD 【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为0时,λ有无数个,故不正确.【详解】由平面向量基本定理可知,A 、D 是正确的.对于B ,由平面向量基本定理可知,如果一个平面的基底确定, 那么任意一个向量在此基底下的实数对是唯一的,所以不正确; 对于C ,当两向量的系数均为零,即12120λλμμ====时, 这样的λ有无数个,所以不正确. 故选:AD . 【点睛】本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.二、平面向量及其应用选择题16.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进50 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )A .32B 2C .312D 21 解析:C【分析】易求30ACB ∠=︒,在ABC 中,由正弦定理可求BC ,在BCD 中,由正弦定理可求sin BDC ∠,再由90BDC θ∠=+︒可得答案. 【详解】45CBD ∠=︒,30ACB ∴∠=︒,在ABC 中,由正弦定理,得sin sin BC AB CAB ACB =∠∠,即50sin15sin30BC =︒︒,解得25(62)BC =-, 在BCD 中,由正弦定理,得sin sin BC CD BDC CBD=∠∠25(62)50sin 45-=︒, 31sin BDC -∴∠=31sin(90)θ-+︒= 31cos θ-∴=故选:C . 【点睛】该题考查正弦定理在实际问题中的应用,由实际问题恰当构建数学模型是解题关键. 17.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭解析:D 【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x的取值范围. 【详解】设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭,又因为()1AO xAB x AC =+-, 所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭. 故选:D 【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.18.奔驰定理:已知O 是ABC ∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地称其为“奔驰定理”若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则必有( )A .sin sin sin 0A OAB OBC OC ⋅+⋅+⋅=B .cos cos cos 0A OA B OBC OC ⋅+⋅+⋅=C .tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=D .sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅= 解析:C 【分析】利用已知条件得到O 为垂心,再根据四边形内角为2π及对顶角相等,得到AOB C π∠=-,再根据数量积的定义、投影的定义、比例关系得到::cos :cos :cos OA OB OC A B C =,进而求出::A B C S S S 的值,最后再结合“奔驰定理”得到答案. 【详解】如图,因为OA OB OB OC OC OA ⋅=⋅=⋅,所以()00OB OA OC OB CA ⋅-=⇒⋅=,同理0OA BC ⋅=,0OC AB ⋅=, 所以O 为ABC ∆的垂心。

高考数学压轴专题安庆备战高考《平面向量》专项训练解析含答案

高考数学压轴专题安庆备战高考《平面向量》专项训练解析含答案

高考数学《平面向量》练习题一、选择题 1.如图,已知1OA OB ==u u u v u uu v ,2OC =u u u v ,4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB u u u v u u u v u u u v =+,则m n等于( )A .57B .75C .37D .73【答案】A【解析】【分析】依题意建立直角坐标系,根据已知角,可得点B 、C 的坐标,利用向量相等建立关于m 、n 的方程,求解即可. 【详解】以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立直角坐标系如图所示:因为1OA OB ==u u u r u u u r ,且4tan 3AOB ∠=-,∴34cos sin 55AOB AOB ∠=-∠=,, ∴A (1,0),B (3455-,),又令θAOC ∠=,则θ=AOB BOC ∠-∠,∴413tan θ413--=-=7, 又如图点C 在∠AOB 内,∴cos θ=210,sin θ=7210,又2OC u u u v =C (1755,),∵OC mOA nOB =+u u u r u u u r u u u r ,(m ,n ∈R ),∴(1755,)=(m,0)+(3455n n -,)=(m 35n -,45n ) 即15= m 35n -,7455n =,解得n=74,m=54,∴57m n =, 故选A .【点睛】 本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.2.如图,在梯形ABCD 中, 2DC AB =u u u r u u u r, P 为线段CD 上一点,且12DP PC =,E 为BC 的中点, 若EP AB AD λμ=+u u u r u u u r u u u r (λ, R μ∈),则λμ+的值为( )A .13B .13- C .0 D .12【答案】B【解析】【分析】直接利用向量的线性运算,化简求得1526EP AD AB =-u u u v u u u v u u u v ,求得,λμ的值,即可得到答案. 【详解】由题意,根据向量的运算法则,可得:()1214111232326EP EC CP BC CD AC AB AB AC AB u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =+=+=--=- ()1111522626AD AB AB AD AB =+-=-u u u v u u u v u u u v u u u v u u u v 又因为EP AB AD λμ=+u u u v u u u v u u u v ,所以51,62λμ=-=, 所以511623λμ+=-+=-,故选B. 【点睛】 本题主要考查了向量的线性运算及其应用,其中解答中熟记向量的线性运算法则,合理应用向量的三角形法则化简向量EP u u u v是解答的关键,着重考查了运算与求解能力,属于基础题.3.延长线段AB 到点C ,使得2AB BC =u u u r u u u r ,O AB ∉,2OD OA =u u u v u u u v ,则( )A .1263BD OA OC =-u u u v u u u v u u u vB .5263BD OA OC =-u u u v u u u v u u u v C .5163BD OA OC =-u u u v u u u v u u u v D .1163BD OA OC =+u u u v u u u v u u u v 【答案】A【解析】【分析】利用向量的加法、减法的几何意义,即可得答案;【详解】Q BD OD OB =-u u u v u u u v u u u v ,()22123333OB OA AC OA OC OA OA OC =+=+-=+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,12OD OA =u u u v u u u v , ∴1263BD OA OC =-u u u v u u u v u u u v , 故选:A.【点睛】 本题考查向量的线性运算,考查函数与方程思想、转化与化归思想,考查运算求解能力.4.已知a =r 2b =r ,且()(2)b a a b -⊥+r r r r ,则向量a r 在向量b r 方向上的投影为( )A .-4B .-2C .2D .4 【答案】D【解析】【分析】 根据向量垂直,数量积为0,求出a b r r g ,即求向量a r 在向量b r 方向上的投影a b b ⋅r r r . 【详解】()(2),()(2)0b a a b b a a b -⊥+∴-+=r r r r r r r r Q g ,即2220b a a b -+=r r r r g .2,8a b a b ==∴=r r r r Q g ,所以a r 在b r 方向上的投影为4a b b⋅=r r r . 故选:D .【点睛】本题考查向量的投影,属于基础题.5.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r( )A .2133BA AC +u u u r u u u rB .2133BA AC -u u u r u u u r C .1233BA AC +u u u r u u u rD .4233BA AC +u u u r u u u r 【答案】A【解析】【分析】连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论.【详解】解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,则()()221121332333OD BO BE BA BC BA BA AC BA AC ===⨯+=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选:A.【点睛】本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题.6.已知()4,3a =r ,()5,12b =-r 则向量a r 在b r 方向上的投影为( )A .165-B .165C .1613-D .1613【答案】C【解析】【分析】 先计算出16a b r r ⋅=-,再求出b r ,代入向量a r 在b r 方向上的投影a b b⋅r r r 可得 【详解】()4,3a =r Q ,()5,12b =-r ,4531216a b ⋅=⨯-⨯=-r r , 则向量a r 在b r 方向上的投影为1613a b b⋅-=r r r , 故选:C.【点睛】 本题考查平面向量的数量积投影的知识点. 若,a b r r 的夹角为θ,向量a r 在b r 方向上的投影为cos a θ⋅r 或a b b⋅r r r 7.已知向量(sin ,cos )a αα=r ,(1,2)b =r , 则以下说法不正确的是( ) A .若//a b r r ,则1tan 2α= B .若a b ⊥r r ,则1tan 2α=C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r 1 【答案】B【解析】【分析】根据向量平行、垂直、模以及向量的数量积的坐标运算即可判断.【详解】A 选项,若//a b r r,则2sin cos αα=,即1tan 2α=,A 正确. B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,若()f a b α=⋅r r 取得最大值时,则())f ααϕ=+,取得最大值时,()sin 1αϕ+=,2,2k k Z παϕπ+=+∈,又tan 2ϕ=,则1tan 2α=,则C 正确.D 选项,||a b -==r r 的最大值为1=,选项D 正确.故选:B .【点睛】本题主要考查向量的坐标运算,以及模的求法,掌握向量平行、垂直、数量积的坐标运算是解题的关键,是基础题.8.已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =u u u r u u u r ,则PO 的最大值为( ) A .7 B .6 C .5 D .4【答案】C【解析】【分析】 设(),P x y ,(),B m n ,根据3PB PA =u u u r u u u r 可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值.【详解】 设(),P x y ,(),B m n ,故(),PB m x n y =--u u u r ,(),2PA x y =--u u u r .由3PB PA =u u u r u u u r 可得363m x x n y y-=-⎧⎨-=-⎩,故262m x n y =-⎧⎨=-⎩, 因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2, 故PO 的最大值为325+=,故选:C.【点睛】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.9.已知ABC V 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=u u u r u u u r( )A .1B .2-C .12D .12- 【答案】C【解析】【分析】 以,BA BC u u u r u u u r 为基底,将,AD BE u u u r u u u r用基底表示,根据向量数量积的运算律,即可求解.【详解】222,,33BD DC BD BC AD BD BA BC BA ===-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,11,22AE EC BE BC BA=∴=+u u u r u u u r u u u r , 211()()322AD BE BC BA BC BA ⋅=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r 22111362BC BC BA BA =-⋅-u u u r u u u r u u u r u u u r 111123622=-⨯⨯⨯=. 故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.10.如图,AB ,CD 是半径为1的圆O 的两条直径,3AE EO =u u u v u u u v ,则•EC ED u u u v u u u v的值是( )A .45-B .1516-C .14-D .58- 【答案】B【解析】【分析】根据向量表示化简数量积,即得结果.【详解】 ()()()()•••EC ED EO OC EO OD EO OC EO OC =++=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2221151416EO OC ⎛⎫=-=-=- ⎪⎝⎭u u u v u u u v ,选B. 【点睛】本题考查向量数量积,考查基本分析求解能力,属基础题.11.已知向量(1,2)a =v ,(3,4)b =-v ,则a v 在b v 方向上的投影为A 13B .22C .1D .655【答案】C【解析】【分析】根据a v 在b v 方向上的投影定义求解.【详解】 a v 在b v 方向上的投影为(1,2)(3,4)381(3,4)5a b b⋅⋅--+===-r r r , 选C.【点睛】本题考查a v 在b v方向上的投影定义,考查基本求解能力. 12.在ABC V 中,D 、P 分别为BC 、AD 的中点,且BP AB AC λμ=+u u u r u u u r u u u r ,则λμ+=( )A .13-B .13C .12-D .12 【答案】C【解析】【分析】由向量的加减法运算,求得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r,进而得出()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r ,列式分别求出λ和μ,即可求得λμ+.【详解】解:已知D 、P 分别为BC 、AD 的中点,由向量的加减法运算,得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r, 2AB AD DB BD PD =+=-+u u u r u u u r u u u r u u u r u u u r , 2AC AD DC BD PD =+=+u u u r u u u r u u u r u u u r u u u r , 又()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r Q ,则1221μλλμ-=⎧⎨+=-⎩, 则12λμ+=-. 故选:C.【点睛】本题考查平面向量的加减法运算以及向量的基本定理的应用.13.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,225+=8λμ,则双曲线的离心率为( ) A .23 B 35 C 32 D .98【答案】A【解析】【分析】先根据已知求出,u λ,再代入225+=8λμ求出双曲线的离心率. 【详解】 由题得双曲线的渐近线方程为b y x a =±,设F(c,0),则2(,),(,),(,),bc bc b A c B c P c a a a- 因为(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,所以2(,)((),())b bc c u c u a aλλ=+-. 所以,,b u c u c λλ+=-=解之得,.22b c c b u c c λ+-== 因为225+=8λμ,所以22522()(),3, 3.22833b c c b c e c c a +-+=∴=∴= 故答案为A【点睛】 本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力.解答本题的关键是根据(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v 求出,u λ.14.在ABC V 中,AD AB ⊥,3,BC BD =u u u r u u u r ||1AD =u u u r ,则AC AD ⋅u u u r u u u r 的值为( ) A .1B .2C .3D .4 【答案】C【解析】【分析】 由题意转化(3)AC AD AB BD AD ⋅=+⋅u u u r u u u r u u u r u u u r u u u r ,利用数量积的分配律即得解.【详解】AD AB ⊥Q ,3,BC BD =u u u r u u u r ||1AD =u u u r ,()(3)AC AD AB BC AD AB BD AD ∴⋅=+⋅=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r2333AB AD BD AD AD =⋅+⋅==u u u r u u u r u u u r u u u r u u u r故选:C【点睛】本题考查了平面向量基本定理和向量数量积综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.15.如图,在ABC V 中,已知D 是BC 边延长线上一点,若2B C C D =u u u v u u u v,点E 为线段AD 的中点,34AE AB AC λ=+u u u v u u u v u u u v ,则λ=( )A .14B .14-C .13D .13- 【答案】B【解析】【分析】由12AE AD =u u u r u u u r ,AD BD BA =-u u u r u u u r u u u r ,AC BC BA =-u u u r u u u r u u u r ,32BD BC =u u u r u u u r ,代入化简即可得出. 【详解】13,,,22AE AD AD BD BA BD BC BC AC AB ==-==-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,带人可得()13132244AE AC AB AB AB AC ⎡⎤=-+=-+⎢⎥⎣⎦u u u v u u u v u u u v u u u v u u u v u u u v ,可得14λ=-, 故选B.【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.16.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D【解析】【分析】【详解】 因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v ,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v , 而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v ,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则 1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u u v u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D17.设a r ,b r 不共线,3AB a b =+u u u r r r ,2BC a b =+u u u r r r ,3CD a mb =+u u u r r r ,若A ,C ,D 三点共线,则实数m 的值是( )A .23B .15C .72D .152【答案】D【解析】【分析】 计算25AC a b =+u u u r r r ,得到()253a b a mb λ+=+r r r r ,解得答案. 【详解】 ∵3AB a b =+u u u r r r ,2BC a b =+u u u r r r ,∴25AC AB BC a b =+=+u u u r u u u r u u u r r r ,∵A ,C ,D 三点共线,∴AC CD λ=u u u r u u u r ,即()253a b a mb λ+=+r r r r , ∴235m λλ=⎧⎨=⎩,解得23152m λ⎧=⎪⎪⎨⎪=⎪⎩. 故选:D .【点睛】本题考查了根据向量共线求参数,意在考查学生的计算能力和转化能力.18.已知点1F ,2F 分别是椭圆2222:1(0)x y C a b a b +=>>的左,右焦点,过原点O 且倾斜角为60°的直线l 与椭圆C 的一个交点为M ,且1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r ,则椭圆C 的离心率为( )A1B.2 C .12 D.2 【答案】A【解析】【分析】 由1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r 两边平方,得120MF MF ⋅=u u u u r u u u u r ,在12Rt MF F V 中,求出2MF ,1MF ,,a c 的关系,求出离心率可得选项. 【详解】 将1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r 两边平方,得120MF MF ⋅=u u u u r u u u u r ,即12121||2MF MF OM F F c ⊥==,.又60MOF ∠=︒,∴2MF c =,1MF =,∴2a c =+,∴1c e a==. 故选:A.【点睛】 考查了向量的数量积,椭圆的定义,离心率的求法,关键在于得出关于,a c 的关系,属于中档题.19.已知向量(sin ,cos )a αα=r ,(1,2)b =r ,则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α=C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r 1 【答案】B【解析】【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()f α的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性.【详解】A 选项,若//a b r r ,则2sin cos αα=,即1tan 2α=,A 正确.B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,si (n )2cos in()f a b ααααϕ+==⋅=+r r ,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确.D 选项,由向量减法、模的几何意义可知||a b -r r 1,此时a =r ,,a b r r 反向.故选项D 正确.故选:B【点睛】本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.20.已知向量(),1a x =-r , (b =r ,若a b ⊥r r ,则a =r ( )A B C .2 D .4【答案】C【解析】由a b r r ⊥,(),1a x =-r , (b r =,可得:x 0x ,==,即)1a =-r所以2a ==r 故选C。

平面向量的线性运算及其坐标表示最有效训练题

平面向量的线性运算及其坐标表示最有效训练题(限时30分钟)1.下列各命题中:①向量AB 的长度与向量BA 的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤向量AB 与向量CD 是共线向量,则点,,,A B C D 必在同一条直线上;⑥有向线段就是向量,向量就是有向线段.假命题的个数为( )A .2 B.3 C.4 D.52.已知向量a ,b 不共线,c ka b =+(k R ∈),d a b =-.如果//c d ,那么( ).A. 1k =且c d 与同向B. 1k =且c d 与反向C. -1k = 且c d 与同向D. -1k =且c d 与反向3. R λ∈,则下列命题中正确的是( ).A. a a λλ=B. a a λλ=C. a a λλ=D. 0a λ>4.若向量(1,1)a =,(1,1)b =-,(1,2)c =-,则c =( ).A. 1322a b -+B. 13-22a bC. 31--22a bD. 31-+22a b 5.已知△ABC 和点M 满足0MA MB MC ++=.若存在实数m 使得AB AC mAM +=成立,则m =( ).A. 2B. 3C. 4D.56.已知平面上不共线的四点O,A,B,C ,若320OA OB OC -+=,则AB BC =_________.7.已知71(,)22a =,17(,)22b =-,c 的模长是1,且c 与a 所成的角与c 与b 所成的角相等,c =_______.8.点M 是△ABC 所在平面内的一点,且满足3144AM AB AC =+,则△ABM 与△ABC 的 面积之比为____________.9.设两个非零向量a 与b 不共线,(1)若AB a b =+,28BC a b =+,3()CD a b =-.求证: A,B,D 三点共线;(2)试确定实数k 使ka b +和a kb +共线.。

平面向量的数量积(绝对好)

1 平面向量的数量积专项基础训练一、选择题(每小题5分,共20分)1.已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于( ) A .-1 B .-12 C.12D .1 2.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( ) A. 5 B.10 C .2 5 D .103. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 4. 在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于( ) A .-32 B .-23 C.23D.32 二、填空题(每小题5分,共15分)5.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.6.在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________.7. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是___.三、解答题)8.已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°.(1)求b ;(2)若c 与b 同向,且a 与c -a 垂直,求c .9.设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.能力提升1.在△ABC 中,AB =2,AC =3,AB →·BC →=1,则BC 等于( ) A. 3 B.7 C .2 2 D.232. 已知|a |=6,|b |=3,a·b =-12,则向量a 在向量b 方向上的投影是( )A .-4B .4C .-2D .23.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|P A |2+|PB |2|PC |2等于( ) A .2 B .4 C .5 D .10二、填空题(每小题5分,共15分)4.设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a |=________.5.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.。

全国通用2023高中数学必修二第六章平面向量及其应用必考考点训练

全国通用2023高中数学必修二第六章平面向量及其应用必考考点训练单选题1、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =c =2a ,则cosB 等于( ) A .18B .14C .13D .12 答案:B分析:直接利用余弦定理计算可得. 解:因为b =c =2a ,所以cosB =a 2+c 2−b 22ac=a 2+4a 2−4a 22a×2a=14.故选:B2、在锐角△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sinBsinC 3sinA=cosA a+cosC c,且S △ABC =√34(a 2+b 2−c 2),则c 2a+b 的取值范围是( ) A .(6,2√3]B .(6,4√3]C .[12,√33)D .[√3,2) 答案:D分析:根据给定条件利用正弦定理、余弦定理、三角形面积定理求出角C 及边c ,再求出a +b 的范围即可计算作答.在锐角△ABC 中,由余弦定理及三角形面积定理得:S △ABC =√34(a 2+b 2−c 2)=√32abcosC =12absinC , 即有tanC =√3,而C ∈(0,π2),则C =π3,又sinBsinC 3sinA=cosA a+cosC c,由正弦定理、余弦定理得,b⋅√323a =b 2+c 2−a 22bca +a 2+b 2−c 22abc,化简得:c =2√3,由正弦定理有:asinA =bsinB =csinC =√3√32=4,即a =4sinA ,b =4sinB ,△ABC 是锐角三角形且C =π3,有A ∈(0,π2),B =2π3−A ∈(0,π2),解得A ∈(π6,π2),因此a +b =4(sinA +sinB)=4[sinA +sin(2π3−A)] =4(sinA +√32cosA +12sinA)=4√3sin(A +π6),由A ∈(π6,π2)得:A +π6∈(π3,2π3),sin(A +π6)∈(√32,1], 所以c 2a+b =4√3sin(A+π6)∈[√3,2).故选:D小提示:思路点睛:涉及求三角形周长范围问题,时常利用三角形正弦定理,转化为关于某个角的函数,再借助三角函数的性质求解.3、在△ABC中,sin2A=sinBsinC,若∠A=π3,则∠B的大小是()A.π6B.π4C.π3D.2π3答案:C分析:由正弦定理边角互化,以及结合余弦定理,即可判断△ABC的形状,即可判断选项.因为sin2A=sinBsinC,所以a2=bc,由余弦定理可知a2=b2+c2−2bccosπ3=b2+c2−bc=bc,即(b−c)2=0,得b=c,所以△ABC是等边三角形,∠B=π3.故选:C4、设a⃗,b⃗⃗均为单位向量,且|a⃗−b⃗⃗|=1,则|a⃗−2b⃗⃗|=()A.√3B.√7C.3D.7答案:A分析:由已知,利用向量数量积的运算律求得a⃗⋅b⃗⃗=12,又|a⃗−2b⃗⃗|2=a⃗2−4a⃗⋅b⃗⃗+4b⃗⃗2即可求|a⃗−2b⃗⃗|. 由题设,|a⃗−b⃗⃗|2=a⃗2−2a⃗⋅b⃗⃗+b⃗⃗2=1,又a⃗,b⃗⃗均为单位向量,∴a⃗⋅b⃗⃗=12,∴|a⃗−2b⃗⃗|2=a⃗2−4a⃗⋅b⃗⃗+4b⃗⃗2=3,则|a⃗−2b⃗⃗|=√3.故选:A5、已知向量a⃗=(1,1),b⃗⃗=(−2,3),那么|a⃗−2b⃗⃗|=()A.5B.5√2C.8D.√74答案:B分析:根据平面向量模的坐标运算公式,即可求出结果.因为向量a⃗=(1,1),b⃗⃗=(−2,3),所以a⃗−2b⃗⃗=(5,−5)|a ⃗−2b ⃗⃗|=√52+(−5)2=5√2. 故选:B.6、下列命题中假命题是( ) A .向量AB⃗⃗⃗⃗⃗ 与BA ⃗⃗⃗⃗⃗ 的长度相等 B .两个相等的向量,若起点相同,则终点也相同 C .只有零向量的模等于0 D .共线的单位向量都相等 答案:D分析:利用相反向量的概念可判断A 选项的正误;利用相等向量的定义可判断B 选项的正误;利用零向量的定义可判断C 选项的正误;利用共线向量的定义可判断D 选项的正误.对于A 选项,AB⃗⃗⃗⃗⃗ 与BA ⃗⃗⃗⃗⃗ 互为相反向量,这两个向量的长度相等,A 选项正确; 对于B 选项,两个相等的向量,长度相等,方向相同,若两个相等向量的起点相同,则终点也相同,B 选项正确; 对于C 选项,只有零向量的模等于0,C 选项正确;对于D 选项,共线的单位向量是相等向量或相反向量,D 选项错误. 故选:D.小提示:本题考查平面向量的相关概念,考查相等向量、相反向量、共线向量以及零向量的定义的应用,属于基础题.7、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc = A .6B .5C .4D .3 答案:A分析:利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 详解:由已知及正弦定理可得a 2−b 2=4c 2,由余弦定理推论可得 −14=cosA =b 2+c 2−a 22bc , ∴c 2−4c 22bc=−14 , ∴3c 2b =14 , ∴b c =32×4=6,故选A .小提示:本题考查正弦定理及余弦定理推论的应用. 8、如图,四边形ABCD 是平行四边形,则12AC ⃗⃗⃗⃗⃗ +12BD⃗⃗⃗⃗⃗⃗ =( )A .AB ⃗⃗⃗⃗⃗ B .CD ⃗⃗⃗⃗⃗C .CB ⃗⃗⃗⃗⃗D .AD ⃗⃗⃗⃗⃗ 答案:D分析:由平面向量的加减法法则进行计算. 由题意得AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ , 所以12AC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ . 故选:D.9、若|AB ⃗⃗⃗⃗⃗ |=5,|AC ⃗⃗⃗⃗⃗ |=8,则|BC ⃗⃗⃗⃗⃗ |的取值范围是( ) A .[3,8]B .(3,8) C .[3,13]D .(3,13) 答案:C分析:利用向量模的三角不等式可求得|BC⃗⃗⃗⃗⃗ |的取值范围. 因为|BC ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |,所以,||AC ⃗⃗⃗⃗⃗ |−|AB ⃗⃗⃗⃗⃗ ||≤|BC ⃗⃗⃗⃗⃗ |≤|AC ⃗⃗⃗⃗⃗ |+|AB ⃗⃗⃗⃗⃗ |,即3≤|BC ⃗⃗⃗⃗⃗ |≤13. 故选:C.10、在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ ,则|AP ⃗⃗⃗⃗⃗ |的最大值为( ) A .2√73B .83C .2√193D .2√133答案:D分析:以A 为原点,以AB 所在的直线为x 轴,建立坐标系,设点P 为(x,y),根据向量的坐标运算可得y =√3(x −2),当直线y =√3(x −2)与直线BC 相交时|AP⃗⃗⃗⃗⃗ |最大,问题得以解决 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系, ∵AB =3,AC =2,∠BAC =60°,∴A(0,0),B(3,0),C(1,√3),设点P 为(x,y),0⩽x ⩽3,0⩽y ⩽√3, ∵ AP⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ , ∴(x ,y)=23(3,0)+λ(1,√3)=(2+λ,√3λ), ∴ {x =2+λy =√3λ , ∴y =√3(x −2),① 直线BC 的方程为y =−√32(x −3),②,联立①②,解得{x =73y =√33, 此时|AP⃗⃗⃗⃗⃗ |最大, ∴|AP|=√499+13=2√133, 故选:D .小提示:本题考查了向量在几何中的应用,考查了向量的坐标运算,解题的关键是建立直角坐标系将几何运算转化为坐标运算,同时考查了学生的数形结合的能力,属于中档题 填空题11、已知向量a ⃗,b ⃗⃗,其中|a ⃗|=1,|b ⃗⃗|=2,且(a ⃗−2b ⃗⃗)⊥(3a ⃗+b ⃗⃗),则向量a ⃗与b ⃗⃗的夹角等于____; 答案:2π3##120°分析:利用夹角公式求出向量a ⃗与b⃗⃗的夹角.因为(a ⃗−2b ⃗⃗)⊥(3a ⃗+b ⃗⃗),所以(a ⃗−2b ⃗⃗)·(3a ⃗+b ⃗⃗)=0,即3a →2−5a →·b →−2b →2=0,所以5a →·b →=3−8=−5,所以a ·→b →=−1.而a ⃗·b ⃗⃗=|a ⃗||b ⃗⃗|cos⟨a ⃗,b ⃗⃗⟩=−1,所以cos⟨a ⃗,b ⃗⃗⟩=−12, 因为⟨a ⃗,b ⃗⃗⟩∈[0,π],所以⟨a ⃗,b ⃗⃗⟩=2π3. 所以答案是:2π312、已知△ABC 为正三角形,则下列各式中成立的是___________.(填序号)①|AB⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |;②|AB ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |;③|AB ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ |=|CA ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ |;④|CA ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ |=|AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ |. 答案:①②③分析:设D,E,F 分别为AB,BC,AC 的中点,根据平面向量的加法和减法的运算法则逐一判断即可得出答案. 对于①,|AB⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ |=|CB ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |,故①成立; 对于②,设D,E,F 分别为AB,BC,AC 的中点, 则AE =CD =BF =√32AB , |AB⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ |=|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |=|2AE ⃗⃗⃗⃗⃗ |=√3|AB ⃗⃗⃗⃗⃗ |, |BC⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ |=|2BF ⃗⃗⃗⃗⃗ |=√3|BA ⃗⃗⃗⃗⃗ |, 所以|AB⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |,故②成立; 对于③,|CA⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ |=|CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ |=|2CD ⃗⃗⃗⃗⃗ |=√3|AB ⃗⃗⃗⃗⃗ |, 所以|AB⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ |=|CA ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ |,故③正确; 对于④,|AB⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ |=|CB ⃗⃗⃗⃗⃗ |=|AB ⃗⃗⃗⃗⃗ |≠|CA ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ |,故④不成立. 所以答案是:①②③.13、如图,直径AB =4的半圆,D 为圆心,点C 在半圆弧上,∠ADC =π3,线段AC 上有动点P ,则DP ⃗⃗⃗⃗⃗ ⋅BA⃗⃗⃗⃗⃗ 的最小值为______.答案:4分析:设AP ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ (0≤λ≤1),可得出DP ⃗⃗⃗⃗⃗ =(1−λ)DA ⃗⃗⃗⃗⃗ +λDC ⃗⃗⃗⃗⃗ ,计算得出DA ⃗⃗⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ =2,利用平面向量数量积的运算性质可得出DP ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ 关于λ的表达式,结合λ的取值范围可求得DP ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ 的最小值. 设AP⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ (0≤λ≤1), 则DP ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ +λ(DC ⃗⃗⃗⃗⃗ −DA ⃗⃗⃗⃗⃗ )=(1−λ)DA ⃗⃗⃗⃗⃗ +λDC⃗⃗⃗⃗⃗ , ∵∠ADC =π3,|DC ⃗⃗⃗⃗⃗ |=|DA ⃗⃗⃗⃗⃗ |=12|BA ⃗⃗⃗⃗⃗ |=2,则DA ⃗⃗⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ =|DA ⃗⃗⃗⃗⃗ |⋅|DC ⃗⃗⃗⃗⃗ |cos π3=2, 所以,DP ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =[(1−λ)DA ⃗⃗⃗⃗⃗ +λDC ⃗⃗⃗⃗⃗ ]⋅2DA ⃗⃗⃗⃗⃗ =2(1−λ)DA ⃗⃗⃗⃗⃗ 2+2λDA ⃗⃗⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ =2×22(1−λ)+2λ×2=8−4λ∈[4,8]. 因此,DP ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ 的最小值为4. 所以答案是:4.小提示:方法点睛:求两个向量的数量积有三种方法: (1)利用定义:(2)利用向量的坐标运算; (3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 解答题14、已知向量a 与b ⃗ 的夹角为120∘,|a |=3,|b ⃗ |=2. (1)求(2a +b ⃗ )⋅(a −2b ⃗ )的值; (2)求|2a +b ⃗ |的值. 答案:(1)19;(2)2√7.分析:(1)由向量数量积的定义计算即可求解;(2)先计算|2a+b⃗|2=(2a+b⃗)2的值,再开方即可求解.(1)因为|a|=3,|b⃗|=2,且a,b⃗的夹角为120∘,所以a⋅b⃗=|a|⋅|b⃗|⋅cos120∘=3×2×(−12)=−3,所以(2a+b⃗)⋅(a−2b⃗)=2a2−3a⋅b⃗−2b⃗2=2|a|2−3a⋅b⃗−2|b⃗|2=2×9−3×(−3)−2×4=19;(2)|2a+b⃗|2=(2a+b⃗)2=4|a|2+4a⋅b⃗+|b⃗|2=36−12+4=28,所以|2a+b⃗|=2√7.15、已知f(x)=√3cos2x+2sin(3π2+x)sin(π−x),x∈R,(1)求f(x)的最小正周期及单调递减区间;(2)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且f(A)=−√3,a=4,求BC边上的高的最大值.答案:(1)最小正周期为π;单调递减区间为[kπ-π12,kπ+5π12](k∈Z);(2)2√3.分析:(1)整理得f(x)=2cos(2x+π6),可得其最小正周期及单调递减区间;(2)由f(A)=−√3,可得A=π3,设BC边上的高为ℎ,所以有12aℎ=12bcsinA⇒ℎ=√38bc,由余弦定理可知:a2=b2+c2−2bccosA ,得出bc≤16,最后可得ℎ最大值.解:(1)f(x)=√3cos2x+2sin(3π2+x)sin(π−x)=√3cos2x−2cosxsinx=√3cos2x−sin2x=2cos(2x+π6).f(x)的最小正周期为:T=2π|2|=π;当2kπ≤2x+π6≤2kπ+π(k∈Z)时,即当kπ-π12≤x≤kπ+5π12(k∈Z)时,函数f(x)单调递减,所以函数f(x)单调递减区间为:[kπ-π12,kπ+5π12](k∈Z);(2)因为f(A)=−√3,所以f(A)=2cos(2A+π6)=−√3⇒cos(2A+π6)=−√32,∵A∈(0,π2),∴2A+π6∈(π6,7π6),∴2A+π6=5π6,∴A=π3.设BC边上的高为ℎ,所以有12aℎ=12bcsinA⇒ℎ=√38bc,由余弦定理可知:a2=b2+c2−2bccosA ,∴ 16=b2+c2−bc,∵b2+c2≥2bc,∴bc≤16(当用仅当b=c时,取等号),所以ℎ=√38bc≤2√3,因此BC边上的高的最大值2√3.。

平面向量中常见的结论与专项训练

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章平面向量 一、选择题

1 .(2012年高考(重庆文))设xR ,向量(,1),(1,2),axb且ab ,则||ab

( ) A.5 B.10 C.25 D.10

2 .(2012年高考(重庆理))设,xyR,向量4,2,,1,1,cybxa,且cbca//,,则_______ba ( ) A.5 B.10 C.25 D.10 3 .(2012年高考(浙江文))设a,b是两个非零向量. ( ) A.若|a+b|=|a|-|b|,则a⊥b B.若a⊥b,则|a+b|=|a|-|b| C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λa D.若存在实数λ,使得b=λa,则|a+b|=|a|-|b| 4 .(2012年高考(浙江理))设a,b是两个非零向量. ( ) A.若|a+b|=|a|-|b|,则a⊥b B.若a⊥b,则|a+b|=|a|-|b| C.若|a+b|=|a|-|b|,则存在实数λ,使得a=λb D.若存在实数λ,使得a=λb,则|a+b|=|a|-|b|

5 .(2012年高考(天津文))在ABC中,90A,1AB,设点,PQ满

足,(1),APABAQACR.若2BQCP,则 ( ) A.13 B.23 C.43 D.2 6 .(2012年高考(天津理))已知△ABC为等边三角形,=2AB,设点P,Q满足=APAB,=(1)AQAC,R,若3=2BQCP,则= ( )

A.12 B.122 C.1102 D.3222 7 .(2012年高考(辽宁文))已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x = ( )

A.—1 B.—12 C.12 D.1 8 .(2012年高考(辽宁理))已知两个非零向量a,b满足|a+b|=|ab|,则下面结论正确的是 ( ) A.a∥b B.a⊥b C.{0,1,3} D.a+b=ab 9 .(2012年高考(广东文))(向量、创新)对任意两个非零的平面向量和,定义 



,若平面向量a、b满足0ab,a与b的夹角0,4,且ab和

ba都在集合

2

nnZ



中,则ab ( )

A.12 B.1 C.32 D.52 10 .(2012年高考(广东文))(向量)若向量1,2AB,3,4BC,则AC ( ) A.4,6 B.4,6 C.2,2 D.2,2 11 .(2012年高考(福建文))已知向量(1,2),(2,1)axb,则ab的充要条件是 ( ) A.12x B.1x C.5x D.0x 12 .(2012年高考(大纲文))ABC中,AB边的高为CD,若

CBa,CAb,0ab,||1a,||2b,则AD ( )

A.1133ab B.2233ab C.3355ab D.4455ab



13 .(2012年高考(湖南理))在△ABC中,AB=2,AC=3,ABBC= 1则___BC. ( )

A.3 B.7 C.22 D.23 14 .(2012年高考(广东理))对任意两个非零的平面向量和,定义,若平面

向量a、b满足0ab,a与b的夹角0,4,且ab和ba都在集合2

nnZ



中,则ab ( ) A.12 B.1 C.32 D.52

15 .(2012年高考(广东理))(向量)若向量2,3BA,4,7CA,则BC ( ) A.2,4 B.2,4 C.6,10 D.6,10 16 .(2012年高考(大纲理))ABC中,AB边上的高为CD,若

,,0,||1,||2CBaCAbabab,则AD ( )

A.1133ab B.2233ab C.3355ab D.4455ab 17.(2012年高考(安徽理))在平面直角坐标系中,(0,0),(6,8)OP,将向量OP按逆时针旋 转34后,得向量OQ则点Q的坐标是 ( ) A.(72,2) B.(72,2) C.(46,2) D.(46,2) 二、填空题 10.(2012年高考(浙江文))在△ABC中,M是BC的中点,AM=3,BC=10,则ABAC=________. 11.(2012年高考(上海文))在知形ABCD中,边AB、AD的长分别为2、1. 若M、N分别是边BC、CD上

的点,且满足||||||||CDCNBCBM,则ANAM的取值范围是_________ .

12.(2012年高考(课标文))已知向量a,b夹角为045,且|a|=1,|2ab|=10,则|b|=_______. 13.(2012年高考(江西文))设单位向量(,),(2,1)mxyb。若mb,则|2|xy_______________。

14.(2012年高考(湖南文))如图4,在平行四边形ABCD中 ,AP⊥BD,垂足为P,3AP且APAC= _____.

AD

BC

P

15.(2012年高考(湖北文))已知向量(1,0),(1,1)ab,则 (Ⅰ)与2ab同向的单位向量的坐标表示为____________; (Ⅱ)向量3ba与向量a夹角的余弦值为____________. 16.(2012年高考(北京文))已知正方形ABCD的边长为1,点E是AB边上的动点,则DECB

的值为________. 17.(2012年高考(安徽文))设向量(1,2),(1,1),(2,)ambmcm,若()ac⊥b,则a_____.

18、.(2012年高考(新课标理))已知向量,ab夹角为45 ,且1,210aab;则_____b 19、.(2012年高考(浙江理))在ABC中,M是BC的中点,AM=3,BC=10,则ABAC=______________.

20、.(2012年高考(上海理))在平行四边形ABCD中,∠A=3, 边AB、AD的长分别为2、1. 若M、N分别

是边BC、CD上的点,且满足||||||||CDCNBCBM,则ANAM的取值范围是_________ .

21、.(2012年高考(江苏))如图,在矩形ABCD中,22ABBC,,点E为BC的中点,点F在边CD上,若2ABAF,则AEBF的值是___.

22.(2012年高考(北京理))已知正方形ABCD的边长为1,点E是AB边上的动点,则DECB的值为________;

DEDC的最大值为________.

23.(2012年高考(安徽理))若平面向量,ab满足:23ab;则ab的最小值是_____ 参考答案 一、选择题 1. 【答案】B

【解析】0202ababxx,22|||(2,1)(1,2)|3(1)10ab 【考点定位】本题主要考查向量的数量积运算及向量垂直的充要条件,本题属于基础题,只要计算正确即可得到全分. 2 【答案】B

【解析】由02402acacxx,由//422bcyy,

故22||(21)(12)10ab. 【考点定位】本题主要考查两个向量垂直和平行的坐标表示,模长公式.解决问题的关键在于根据ac、//bc,得到,xy的值,只要记住两个向量垂直,平行和向量的模的坐标形式的充要条件,就不会出错,注意数字的运算. 3. 【答案】C 【命题意图】本题考查的是平面向量,主要考查向量加法运算,向量的共线含义,向量的垂直关系. 【解析】利用排除法可得选项C是正确的,∵|a+b|=|a|-|b|,则a,b共线,即存在实 数λ,使得a=λb.如选项A:|a+b|=|a|-|b|时,a,b可为异向的共线向量;选项B:若a⊥b,由正方形得|a+b|=|a|-|b|不成立;选项D:若存在实数λ,使得a=λb,a,b可为同向的

共线向量,此时显然|a+b|=|a|-|b|不成立. 4、 【答案】C 【解析】利用排除法可得选项C是正确的,∵|a+b|=|a|-|b|,则a,b共线,即存在实 数λ,使得a=λb.如选项A:|a+b|=|a|-|b|时,a,b可为异向的共线向量;选项B:若a⊥b,由正方形得|a+b|=|a|-|b|不成立;选项D:若存在实数λ,使得a=λb,a,b可为同向的共线向量,此时显然|a+b|=|a|-|b|不成立.

5. 【解析】如图,设cACbAB, ,则0,2,1cbcb,又

cbAQBABQ)1(,bcAPCACP,由2CPBQ得

2)1(4)1()(])1([22bcbccb,即32,23,选B.

6、 【答案】A 【命题意图】本试题以等边三角形为载体,主要考查了向量加减法的几何意义,平面向量基本定理,共线向量定理及其数量积的综合运用. 【解析】

∵=BQAQAB=(1)ACAB,=CPAPAC=ABAC,

又∵3=2BQCP,且C

B

APQ

相关文档
最新文档