纤维材料改性国家重点实验室

纤维材料改性国家重点实验室
纤维材料改性国家重点实验室

纤维材料改性国家重点实验室

访问学者基金申请和管理办法

2009年4月

为促进国内外学术交流,以多种形式引进高层次人才,提高重点实验室的学术研究水平和教学水平,推动高水平学科建设和高层次创新人才培养的作用,根据教育部《关于在高等学校国家重点实验室和教育部重点实验室实行访问学者制度的意见》、《关于在高等学校国家重点实验室和教育部重点实验室重点实验室访问学者专项基金管理办法》的有关规定和《国家重点实验室建设管理办法》、国家教委《高等学校开放实验室管理办法》,结合本实验室具体情况,制定本条例。

一、实验室简介

纤维材料改性国家重点实验室于1992年开始筹建,1996年通过国家验收,并向国内外开放,2003、2008年两次通过国家评估。多年来,实验室坚持“开放、流动、联合、竞争”八字方针,以高分子科学为基础,以纤维材料为特色,瞄准纤维材料和高分子材料学科前沿,凝聚学科人才,广泛开展交流与合作。

目前周其凤院士任学术委员会主任,徐坚研究员任实验室主任。实验室现有固定人员50名,其中教授34名,副教授14名,50岁以下研究人员占64%。

实验室目前主要研究方向为:1)高性能纤维及复合材料;2)功能纤维与低维材料;3)环境友好和生物纤维材料。

2003年以来实验室共承担国家、部市委和合作科研400余项。其中获国家科技进步二等奖4项,省部级科技进步一等奖5项。发表学术论文1440篇,申请专利396项,授权129项。

“211”国家重点学科建设工程进一步赋予了纤维材料改性国家重点实验室以新的活力。作为国内纺织领域重要的国家重点实验室,实验室将为建设成国际纤维研究和交流中心而努力,为纤维材料学科的发展和实现我国纺织工业新的发展战略,为满足国民经济建设和国防建设重大需求做出新的贡献。

实验室设有科研工程和测试技术平台,包括:

工程技术平台:拥有熔体纺丝、复合纺丝、湿纺、干纺、冻胶纺丝、液晶纺丝、双螺杆共混挤出机、注塑机、聚合釜、反应挤出机、复合材料拉挤成型、复合材料缠绕成型、复合材料模压成型、树脂转移模压成型、刮膜成型、喷雾干燥等一系列纤维材料、高分子材料、复合材料的加工成型试验设备,同时建有碳纤

维、芳纶、高强高模聚乙烯纤维、Lyocell纤维、中空纤维膜、PBO纤维等多条试验生产线,可以进行扩大试验。

分析测试仪器平台:拥有NMR400、FTIR、SEM、TEM、AFM、HLGC、GPC、DSC、TGA、MDSC、DMA、GY-PC、POM、激光粒径仪、纤维接触角测定仪、毛细管流变仪、旋转流变仪、微型双螺杆共混-流变仪、HAAK双螺杆共混系统与流变仪、冲击试验仪、热变形温度仪、材料试验机等一系列先进的测试仪器。

科研平台技术队伍:实验室注重仪器设备的利用率、注重提高科研人员的工作效率,经过多年的努力,建立了一支业务水平高,工作效率高,具有良好服务意识的科研平台技术队伍。

二、访问学者基金资助对象

访问学者基金用于支持重点实验室聘请国内外知名专家学者来实验室开展科研教学工作所需费用,择优支持交叉学科、新兴学科、在国内外有较大影响的知名学者和专家,特别鼓励青年科研人员来实验室工作。优先资助与本实验室联合培养学生的研究人员。

重点实验室访问学者分为两种类型:来自境外的学者;境内而非本校的学者。获准资助后,要求访问学者一年内在本实验室工作的时间不少于30天。

三、基金申请指南

1.申报受理时间:每年9月30日截止。

2.基金申请

申请人认真填写《纤维材料改性国家重点实验室访问学者基金申请书》,一式二份。经所在单位(高校为学校一级)主管领导同意后,向实验室提出申请。现阶段申请经费一般为5-10万元/人。

3.基金审批

访问学者项目经专家评审、由本室学术委员会审批并确定资助金额。完全自带经费的访问学者项目,由实验室主任审批。获得通过的项目由实验室学术委员会主任及实验室主任签署批准意见后于11月底前通知申请者。

四、基金管理办法

1.访问学者基金的管理和使用

访问学者基金的使用严格按照国家重点实验室专项运行经费相关管理办法和东华大学财务管理规定执行。经费在学校财务单独建帐、单独核算、专款专用,任何单位和个人不得私自挪作它用。

访问学者项目获批后,实验室将设立配套资金用于提高访问学者科研设施和工作条件的改善。有关经费的开支由实验室主任核准在学校财务报销。

基金的使用范围限访问学者在重点实验室工作期间所需的费用,包括实验材料费、仪器使用费、国内考察及参加学术会议的旅差费、学术资料费等费用。

项目结束或终止时所余经费应上缴本实验室;自带经费的结余经费退回原拨款单位或个人。

2.访问学者项目的结题

访问学者完成访问计划后,需向实验室提交工作总结和研究报告;发表论文按照如下署名:实验室为第一完成单位,“纤维材料改性国家重点实验室”(英文: “State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University,China”);论文发表后,需向实验室提交论文抽印本或复印件。

实验室将对项目完成情况组织有关专家进行评议,对完成情况优秀者在下一年度基金申报中予以优先资助。课题结束后所取得的相关论文专利、鉴定或评议、经济效益等成果应及时告知实验室。

访问学者完成的研究论文、获奖、鉴定等成果凡署名重点实验室,实验室将按重点实验室有关奖励条理给予奖励。

4. 项目成果归属和转让须知

项目的研究成果归本实验室及研究者所在单位共享,由本实验室研究基金资助的课题,论文发表或专利转让需取得实验室同意。部分及全部自带经费来实验室工作的课题,其研究报告及学术论文由研究者以双方单位人员的名义署名,论文发表或专利转让需取得双方单位人员的名义署名,论文发表或专利转让需取得双方单位同意。

改性涤纶的染色

改性涤纶的染色 改性涤纶的品种较多,有化学改性和物理改性两类。物理改性主要是采用等离子体表面改性;化学改性主要以增加涤纶纤维分子结构中的非结晶部分,提高这一部分的分子间活动性能,即在聚酯纤维的大分子链中引入不对称的第三单体或极性基团。因此出现了不同改性纤维,如CDP,ECDP和ADP纤维。 CDP纤维是在涤纶中引入第三单体——磺酸基,通常为间苯二甲酸磺酸钠,包括α-—磺酸基—1,3—苯二甲酸,4—磺酸基—1,3—苯二甲酸和5—磺酸基—1,3—苯二甲酸。目前,CDP纤维多数采用间位第三单体,有时也用对位第三单体或同时加入此两种单体。CDP纤维根据所用改性剂的不同又分为高压型(高温型)即CDP纤维和常压型(低温型、易染型)即ECDP纤维。前者是在涤纶中引入第三单体磺酸基团及酸度较小的磷酸基团化合物,可用阳离子染料染色,但染色必须在110~130℃。后者除采用上述相同的第三单体外,还应加入第四单体如脂肪族二羧酸、二醇等改变纤维的非结晶区和扩大其分子活动性,同时降低玻璃化温度,因此可用阳离子染料在常压沸染下染色。 涤纶改性纤维除上述酸改性外,还有阴离子染料可染型(anionicdyeable polyester)简称ADP纤维,ADP纤维主要是在聚酯大分子链中引入碱性极性基团,疏松纤维内部结构,从而可使酸性染料上染。 分散阳离子染料: 具有阴离子性特性。因此很适合改性涤纶(CDP)纤维及其混纺产品的染色。与阴离子染料相容性好,可一浴法染色。 染料的溶解:用适量的50℃以下水搅拌至完全溶解。 染色:用冰醋酸调节pH=4-4.5,30分钟升温至120℃,保温30分钟。 可染阳离子染料: 部分阳离子染料也适合改性涤纶(CDP)纤维的染色:如:阳离子金黄X-GL、红X-2GL,红X-GRL、翠蓝X-GB、蓝X-BL、黑FDLT等。

碳纤维表面改性

碳纤维表面处理研究现状

碳纤维表面处理研究现状 摘要:综述了碳纤维的应用领域,当前国内外的碳纤维的生产状况,分析了各种碳纤维表面处理的研究现状以及各方法的优缺点。分析结果表明:国外对我国碳纤维生 产进行了技术封锁,我国工业化碳纤维生产与日本等国有较大差距。电化学氧化法对碳纤维表面处理效果较好,处理后碳纤维表面活性基团数量明显增多,生产条件易于控制,该方法很好应用于工业生产。 关键词:碳纤维;表面处理;电化学氧化法; 引言 随着国防科技要求的不断提高,航天航空、军事武器等高科技设备对材料的性能要求的提高,碳纤维复合材料以其耐高温,耐摩擦、导电、导热、耐腐蚀、高比强度等特点被广泛的应用于这些领域。国外碳纤维材料生产研发较早,现今以日本,美国等国家的生产技术领先于世界。 碳纤维按其加工的先驱体不同可以分为:粘胶基碳纤维、沥青基碳纤维、聚丙烯腈基(PAN)碳纤维。碳纤维作为一种增强相与金属、陶瓷、树脂等结合使复合材料的性能得到很大提高。碳纤维表面的活性基团较少,表面光滑,为更好的与基体材料结合,需要在材料复合前对纤维进行一定表面处理。碳纤维表面处理按当前的研究现 状可以分为氧化法和非氧化法。在此对纤维的生产状况做出一些介绍以及纤维表面处理的各种方法做比较。 1碳纤维应用领域及国内外生产状况 碳纤维复合材料具有卓越的物化性能,被广泛应用于航天航空、国防军事、体育用品、风能发电、石油开采以及医疗器械⑴。 碳纤维被用于制造飞机、航天器、卫星等,因碳纤维的轻质、高强度等特点,飞行器的噪音小,飞行所需的燃料消耗降低。据有关报道,飞行器每降低1kg的质量,运载飞行器的火箭可以减轻500kg。航天航空领域碳纤维的使用量从2008年的8200t, 到2010年的1万t,预计今年将达到1.3万t。在飞机的制造中,纤维复合材料应用比例都

阳离子可染改性涤纶纤维

阳离子可染改性涤纶纤 维 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

阳离子可染改性涤纶纤维 阳离子可染改性涤纶纤维阳离子可染改性涤纶是在涤纶大分子上引入对阳离子染料具有亲和力的磺酸基或磷酸基团,分高压型(CDP)和常压型(ECDP)两种。 CDP纤维所加入抑第三单体为间苯二甲酸磺酸钠,其染色温度为120℃左右;ECDP纤维除第三单体外,还加入第四单体,常见的有脂肪或芳香二羧酸及其衍生物、脂肪或芳香二元醇及其衍生物以及羧酸类化合物等,其染色温度为100℃;ECDP纤维还分醚型和酯型两种,酯型的耐热性比醚型的好。 阳离子可染改性涤纶纤维的主要特点是可用阳离子染料常压沸染,这既克服了常规涤纶必须用高温高压或载体染色的不足,又可使毛/涤、涤/腈等混纺织物一浴法染色较为容易,而且染色的色泽比较鲜艳。阳离子可染改性涤纶可用于生产各类仿毛产品,短纤或长丝广泛用于生产多类混纺的精、粗纺呢绒,毛线、毛毯以及仿毛花呢等织物。 阳离子可染改性涤纶的缺点是强力较低,耐酸碱性较差,尤其对强碱很敏感,在强碱作用下水解速度比常规涤纶高 2~3倍。但可利用这一特性对其进行碱减量处理,提高纤维的柔软性和吸湿性,进而提高其穿着舒适性。 另外,阳离子可染改性涤纶纤维的耐热性也较差,故在织物的定形后处理中,温度要适当降低,一般CDP为170℃,ECDP为160℃较好。 实务: 目前坊间染染改性涤纶纤维很多,主要以保特瓶回收后加工处理,为环保尽力; Recycle标志。 现场染色加工与传统腈纶差异不大,差在批次的稳定度,纱的饱和值及起始上色温度、最大上色的温度点。 因此现场染色时每批纱务必要先做纱的饱和值(对比性)及起始上色温度、最大上色的温度点(Step-dyeing)控管,决定缓染剂使用量及持温控管点,否则问题层出不穷。

壳聚糖纤维材料改性新进展

壳聚糖材料改性研究进展 摘要:壳聚糖以其独特的生物相容性、生物降解性、无毒性和生物活性等优异性能在各个领域具有广泛的应用前景。由于壳聚糖自身性能的局限性,科研工作者对其进行了改性研究,通过控制反应条件在壳聚糖上引入其他基团来改变其理化性质,本论文探讨的改性方法主要有酰化、酯化、烷基化、羧基化、季铵化、接枝共聚、交联改性、模板交联改性以及两亲性改性等,以便以后在壳聚糖改性等方面做出贡献。 关键字:壳聚糖,结构,改性 1 引言 壳聚糖(Chitosan)是甲壳素部分脱乙酰基后的产物,具有显著的生物生理活性和很多优秀的功能性质,在包括食品、化妆品、生物制药、农业、环境保护以及废水处理等很多领域中都得到了应用。但由于壳聚糖巨大的分子量和分子间、分子内部大量的氢键致使壳聚糖分子结构[1]紧密,只溶解于稀乙酸等酸性溶液中,形成透明状的黏液,使得壳聚糖的应用领域在很大程度上受到限制。因此,对壳聚糖采用一定的手段进行改性得到性质优良的壳聚糖改性材料并加宽其研究应用领域显得至关重要。 2 壳聚糖的结构 壳聚糖,化学名称:聚葡萄糖胺[(1,4)—2—氨基—2—脱氧—β—D—葡萄糖],是由甲壳素经40%~60%浓碱加热至120~140℃处理1小时,脱去N—乙酰基的衍生物。一般而言,脱乙酰度超过55%的甲壳素即成为壳聚糖。随脱乙酰化度的不同,壳聚糖分子链中存在含量不同的2—N—乙酰基葡萄糖和2—氨基葡萄糖两种结构单元。壳聚糖的化学结构式如下图1所示。 图1 壳聚糖的结构式 3 壳聚糖的改性及研究

3.1 酰化改性 壳聚糖可与多种有机酸的衍生物如酸酐、酰卤等反应,可引入不同相对分子质量的脂肪族或芳香族的酰基进行改性。酰化反应既可在羟基上反应(O位酰化)生成酯,也可在氨基上反应(N位酰化)生成酰胺[2],如下图2所示。壳聚糖的O位酰化反应是比较困难的,因为氨基的反应活性比羟基大,酰化反应首先在氨基上发生,因此要想得到O位酰化的壳聚糖衍生物,通常先将壳聚糖上的氨基用醛保护起来,再进行酰化反应,反应结束后脱掉保护基[3]。酰化改性后的产物的溶解度有所改善,它具有良好的生物相容性,是一种潜在的医用生物高分子材料。如脂肪族酰化产物可作为生物相容性材料,N—甲酰化产物可增强人造纤维的物理性能。 图2 壳聚糖N位酰化改性 孙涛等[4]通过低聚壳聚糖经N—酰化得到取代度相同的N—马来酰低聚壳聚糖和N—邻苯二甲酰低聚壳聚糖,其取代度均为0.25。结果表明,取代度相同,N—邻苯二甲酰低聚壳聚糖对OH、DPPH的清除能力优于N—马来酰低聚壳聚糖。这说明取代度相同时,取代基的结构会影响N—酰化低聚壳聚糖对自由基的清除活性。 3.2 酯化改性 壳聚糖上的羟基,尤其是环上的C 6 位羟基会与一些有机酸和无机酸发生酯化反应, 常见的反应有磷酸酯化和硫酸酯化。磷酸酯化通常是壳聚糖与P 2O 5 在甲磺酸中反应。此 种改性可用来制备交联树脂,进行离子吸附。高取代度的磷酸酯化壳聚糖可溶于水,低取代度的壳聚糖衍生物不能溶于水,磷酸酯化反应如图3所示。硫酸酯化试剂主要有浓 硫酸、SO 2、SO 3 、氯磺酸等,反应一般为非均相反应,通常发生在C 6 位的-OH 上。

功能纤维改性的方法-XXX

功能纤维改性的方法 ——XXX 摘要:功能纤维指具有特殊功能的纤维的总称。简述了功能纤维的新发展,重点介绍功能性纤维的种类和改性方法,结合纤维材料改性的发展趋势,分析讨论了纤维改性中的问题及关注点。 在纤维的发展历史中, 棉、麻、毛、蚕丝是主要的四大天然纤维。直到19 世纪80 年代, 法国人发明硝酸纤维, 才开始了人造纤维的发展历史。20 世纪20 年代, 美国人发明锦纶合成纤维。不久涤纶、腈纶、维纶、丙纶、氨纶等许多产品相继问世。纤维材料的发展历程和技术进步如图1所示。 图1 纤维材料的发展历程与技术的进步 随着纤维技术的发展和积累,新技术与新的基础理论相结合,开始形成新纤维品种。近年,纤维科学界把高分子纤维、材料的高性能化、高功能化作为重要的研究方向,开发了一批具有高性能、高功能的新一代化学纤维。高功能纤维就是从高分子原料的合成、反应、结构及聚集态,到纤维成型的物理加工、高次结构的控制等方面研究出发,采用新的工艺技术和后加工技术,从而使纤维具有了

某种特殊功能。高功能纤维一般可分为仿真纤维、防护功能纤维、分离功能纤维、保健卫生功能纤维和传导性纤维五个大类[1]。 功能纤维是指除一般纤维所具有的物理机械性能以外,还具有某种特殊功能的新型纤维。所谓的特殊功能,指的是反渗透、分离混合气体、透析、超滤、吸附、吸油、离子交换、高效过滤、导光和导电等。功能纤维以其各自的特殊功能,在工业上分别得到相应的应用。比如说:纤维具有卫生保健功能(抗菌、杀螨、理疗及除异味等);防护功能(防辐射、抗静电、抗紫外线等);热湿舒适功能(吸热、放热、吸湿、放湿等);医疗和环保功能(生物相容性和生物降解性)[2]。功能纤维的发展是现代纤维科学进步的象征。功能化纤维、差别化纤维和高性能纤维的发展为传统纺织工业的技术创新, 向高科技产业的转化创造了有利条件, 为人类生活水平的提高作出了贡献。 功能性纤维按照功能主要属性可分为以下四大类: 1.物理性功能其中电学功能有抗静电性、导电性、电磁波屏蔽性、光电性以及信息记忆性等;热学功能有耐高温性、绝热性、阻燃性、热敏性、蓄热性以及耐低温性等;光学功能有光导性、光折射性、光干涉性、耐光耐候性、偏光性以及光吸收性等;物理形态功能有异形截面形状、超微细和表面微细加工性等。 2.化学性功能如光降解性、光交联性、消异味功能和催化活性功能等。 3.物质分离性功能如分离性功能有中空分离性、微孔分离性和反渗透性等; 吸附交换功能有离子交换性、高吸水性、选择吸附性等。 4.生物适应性功能其中医疗保健功能如防护性、抗菌性、生物适应性等; 生物功能如人工透析性、生物吸收性和生物相容性。 功能性纤维按照功能分为六大类: 1.防护性纤维(主要包括抗静电、抗辐射、防紫外线、保温纤维) 防护功能纤维指利用现代科技手段制造的,在危害环境中能对人起防护作用的纤维材料。

碳纤维表面改性开题报告

南昌航空大学科技学院 毕业设计(论文)开题报告 题目碳纤维表面改性研究进展 专业名称高分子材料与工程 班级学号088102121 学生姓名刘强 指导教师万里鹰 填表日期2012 年 3 月16 日

碳纤维的表面改性研究进展 一.选题的依据及意义: 1.碳纤维简介 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料(金属及其合金)所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、光穿透性高,非磁体但有电磁屏蔽性等。但未经表面处理的碳纤维表面惰性大,缺乏具有化学活性的官能团,与基体的黏结性差,界面中存在较多的缺陷,限制了碳纤维高性能的发挥。因此,国内外对碳纤维的表面改性研究非常活跃。碳纤维的表面改性主要通过提高碳纤维表面活性,强化碳纤维与基体树脂之间界面性能,达到提高复合材料层间剪切强度的目的。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 2 碳纤维表面结构与性能 碳纤维一般是用分解温度低于熔融点温度的纤维状聚合物通过千度以上固相热解而制成的,在热裂解过程中排出其它元素,形成石墨晶格结构。通过在氧气等离子气体中用腐蚀方法研究碳纤维的结构发现,石墨微晶在整个纤维中的分布是不均匀的,碳纤维由外皮层和芯层两部分组成,外皮层和芯层之间是连续的过渡层。延直径测量,皮层约占14%,芯层约占39%。皮层的微晶尺寸较大,排列较整齐有序。由皮层到芯层,微晶尺寸减小,排列逐渐变得紊乱,结构的不均匀性越来越显著,称之为过渡区。碳纤维表面的粗糙度、微晶大小、官能团的种类和数量对碳纤维与基体的结合性能有很大的影响。增加表面粗糙度有利于碳纤维与基体树脂的机械嵌合,增强锚锭效应;石墨微晶越大,处于碳纤维表面棱角和边缘位置的不饱和碳原子数目越少,表面活性越低,相反,微晶越小,活性碳原子的数目就越多,越有利于纤维与树脂的粘合;碳纤维表面的官能团如- OH、-NH2等能与基体

竹炭改性涤纶纤维生产线建设项目可行性研究报告

XXX有限责任公司 竹炭改性涤纶纤维生产线建设项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.360docs.net/doc/e03931822.html, 高级工程师:高建

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目负责人 (1) 1.1.6项目投资规模 (1) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (2) 1.1.9项目建设期限 (2) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4 编制原则 (4) 1.5研究范围 (4) 1.6主要经济技术指标 (4) 1.7综合评价 (5) 第二章项目建设背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2项目提出缘由 (8) 2.3项目建设必要性分析 (8) 2.3.1顺应我国服装行业快速发展的需要 (8) 2.2.1推动我国纺织行业技术进步升级的需要 (9) 2.2.2满足当前竹炭改性涤纶纤维市场需求的需要 (9) 2.3.4提升企业竞争力水平,有助于企业长远战略发展的需要 (10) 2.3.5增加当地就业带动产业链发展的需要 (10) 2.3.6带动当地经济快速发展的需要 (11) 2.4项目建设可行性分析 (11) 2.4.1政策可行性 (11) 2.4.2市场可行性 (12) 2.4.3技术可行性 (13) 2.4.4管理可行性 (13) 2.5可行性分析结论 (14) 第三章项目市场分析 (15) 3.1我国服装行业发展状况分析 (15) 3.2我国服装行业发展前景分析 (16) 3.4我国纺织品行业发展状况分析 (16)

最全面的改性纤维介绍

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/e03931822.html,) 最全面的改性纤维介绍 改性纤维又称功能性纤维,它是指借化学或物理的方法使常规化学纤维品种的某些性能(如吸湿性、染色性、抗静电性、阻燃性等)加以改进而派生的一系列新功能纤维的总称。 这类似于通常的橡胶改性,塑料改性等。通常,人们所穿的衣物是由纤维纺织而成,其原料可能是天然材料也可能来自人工合成,但是原料状态不一定完美,例如可能不太好染色,因此需要通过一系列方法对其进行改造,从而使纤维更加适合使用,此即为纤维改性在生活中最普遍的应用。 传统改性方法有化学法及物理法,近年来亦发展出生物法。改性纤维的历史 纤维材料的应用可追溯到公元前两三千年,当时的人们就知道通过动物的皮毛来进行纺丝,是人类文明发展的一个不可或缺的部分。 后来随着科技的发展,纤维材料在制造、加工、应用方面都得到了革命性的发展,同时新纤维材料也不断被成功开发,各种新型纤维不断出现,给人类的生活带来了翻天覆地的变化。 可是天然纤维的使用开始于古代,而人工合成的化学纤维只是在最近几十年才被开发出来。虽然化学纤维的历史很短,但其发展速度却非常之快,用途也越来越广泛。相比之下,天然纤维的发展则相对比较缓慢。实际上,现在应用于天然纤维上的许多新工艺和新技术首先是在化学纤维领域被开发出来,而后才逐渐被应用到天然纤维上。 天然纤维的使用开始于史前时期。史前的人类就开始利用亚麻植物上的麻纤维捻成纱线,然后织成面料。目前,主要有四种天然纤维:棉、蚕丝、亚麻和羊毛。

利用再生纤维(人造纤维)或合成纤维来提高生活质量,开始于粘胶纤维的产生。粘胶纤维作为第一个化学纤维,于1910年投人生产。 从那时起,就开始有很多种化学纤维被广泛应用于服装、室内装饰和工业用纺织品化学纤维具有很多天然纤维不具有的特性。每年人们都会在服装、室内装饰、医药卫生、工业用纺织品等领域发现化学纤维的一些新用途。以前,有很多服装设计师不喜欢使用化学纤维面料,但现在已有一些设计师成了化学纤维的狂热支持者,如:卡尔·拉格费。改性的思路 纤维材料改性的基本思路大都以最终目标性能为指导,充分利用或开发与之相适应的加工、改性方法,再进行设计和制备。 例如,对于天然纤维及生物质纤维材料,出于其本身的良好服用性能及特性,改性目标大都针对其某些弱点或拓展其功能化应用。原则上是要在保持其原有优异性能的前提下,赋予新的性能。 而对于合成纤维改性的主要目标是赋予其天然纤维的性能,或满足特殊性能的需要,如高强、高模、高弹、耐热及各种特殊功能等。简单点说就是给纤维加技能点。 为此,必须对天然纤维及合成纤维的结构与性能的关系有系统而深刻的了解。然而,模仿天然纤维并不是简单再现其组织结构,更重要的是通过对纤维的改性,模拟天然纤维的功能。 然而,出于纤维结构与性能错综复杂的关系,当采用某种方法改善某一种性能时,不可避免地会引起其他性能的变化。 如用共聚合改进疏水性合成纤维的吸湿性或染色性时,往往伴随熔点降低或强度下降。因此,在改性中必须防止纤维有价值的性质受到过多的影响.应在相互矛盾的效应中求得综合平衡或“加合效应”,使纤维材料获得更高的使用价值和更广泛的用途。

连续纤维增强热塑性塑料管的探索

连续纤维增强热塑性塑料管的探索 更新时间:2014年03月12日 张玉川北京塑料工业协会 毕宏海储江顺上海邦中高分子材料有限公司 2014-2 近年来一种新型的增强复合材料-连续纤维增强热塑性塑料发展很快,国际上通常称为CFRT --Continuous Fiber Reinforced Thermoplastic 。CFRT中的增强材料是连续的同向的高强度纤维,常用的是玻纤和碳纤维。基体材料是热塑性塑料,常用的有,HDPE PP PA PET,特殊要求用的有PPS PVDF PEEK等。CFRT的独特优点是高强度,高韧性,抗腐蚀,重量轻。目前应用最多的是在航空航天,汽车,军工业,并逐步推广到石油天然气管道行业,特别是要求高的海底用油气管道。我国企业已起步开发用CFRT的增强热塑性塑料管RTP,本文综合介绍国际上开发和生产CFRT管的资料。我国有很强的玻璃纤维产业,已经有企业可以供应CFRT带材,所以本文主要介绍连续玻璃纤维增强热塑性塑料管(以下简称CFRT-RTP)。 众所周知,玻璃纤维增强热固性树脂管(玻璃钢管)早已在广泛应用,但是CFRT-RTP到近年才进入市场。国外石油天然气产业现在已经大量应用Flexpipe System等企业生产CFRT-RTP的产品。国内虽然先后也有一些企业探索开发但至今没有见到成熟的产品。可见开发CFRT-RTP是有技术难题的,不能照搬玻璃钢的经验,也不同于生产金属增强的RTP。 1 连续玻璃纤维增强热塑性塑料CFRT的难点 玻璃纤维原料丰富,成本低廉,又有相当高的强度,是很好的增强材料。玻

璃纤维增强热固性树脂--玻璃钢早就被应用于很多领域,玻璃钢管道不仅大量应用于城乡给排水,并大量应用于工业领域,是石油天然气领域内最早成功应用的非金属管道。其中一部分是短纤维增强(离心成型),一部分是连续长纤维增强(缠绕成型)。 但是玻璃钢管是有缺点的,主要是热固性树脂韧性差,对于损伤的容忍性差[1],通常也不能制造成可盘卷的连续长管(国外有可盘卷的连续玻璃钢管,但是不普及)。此外,玻璃钢不能回收再利用。所以各国都在积极探索开发纤维增强热塑性塑料产品,包括CFRT-RTP。 开发玻璃纤维增强热塑性塑料的难点在如何使热塑性塑料与玻璃纤维结合。玻璃纤维是脆性的硅酸盐材料,玻璃纤维丝表面又是粗糙多缺口的,容易产生微裂纹。玻璃纤维丝的耐磨性,耐折性,耐扭转性都较差。所以玻璃纤维必须预先经过浸渍(impregnate),把玻璃纤维丝包覆在高分子材料中,避免玻璃纤维之间发生内摩擦和玻璃纤维的曲折,避免表面吸附水后加速微裂纹的扩展,避免受到腐蚀。热固性树脂在聚合前是低黏度的液态,所以浸渍玻璃纤维不困难,但是,热塑性塑料在热熔态也是高黏度的,因此难以用于浸渍玻璃纤维。 国内有的企业探索过直接用没有预浸渍的玻璃纤维线(无捻粗纱)缠绕在热塑性塑料芯管上再覆盖外层热塑性塑料制造增强热塑性塑料管RTP(类似制造钢丝直接缠绕增强RTP工艺)。或者先把没有预浸渍的玻璃纤维线与聚乙烯共挤成增强带再缠绕制管(类似制造芳纶纤维带缠绕增强RTP工艺),结果制成的RTP 性能不高且不稳定。分析原因就是没有良好预浸渍的玻璃纤维丝在制造和应用过程中因为互相摩擦或发生曲折而断裂破坏。(玻璃纤维丝的生产时是做过表面处理的,通常涂覆浸润剂使原丝滑润,消除静电,减少水分侵蚀,并通过偶联剂使

电化学处理对碳纤维表面改性的研究

电化学处理对碳纤维表面改性的研究 摘要:简要介绍了碳纤维表面电化学处理的作用和工艺,分析了电化学处理效 果的影响因素,及其对纤维力学性能和层间剪切强度的影响。 关键词:电化学处理;电解;层剪;刻蚀 引言 碳纤维表面经过电化学处理,可以提升其与树脂基体的结合牢固性,但同时会牺牲一定 的力学性能。 1 电化学处理的作用 纤维经过高温炭化工序后,表面缺少活性基团,导致其与树脂的结合效果差,表现为层 间剪切强度(以下简称“层剪”)低。当纤维-树脂复合材料受力时,由于纤维与树脂结合力弱,外力并不能很好地从树脂传递到纤维上,使得整体承载能力降低。经电化学处理后,纤维表 面发生氧化反应,生成羰基、羧基等不饱和含氧官能团,增强了纤维与树脂之间的化学键合力,使两者结合得更牢固。另外,电化学处理对纤维表面有刻蚀作用,增加了粗糙度,从物 理方面增强了纤维与树脂的结合性。 2 电化学处理的原理 电化学处理过程实际上是一个将电能转化为化学能的过程,利用碳纤维的导电性,将其 作为阳极,发生氧化反应,在纤维与阴极之间充满电解液,然后通入直流电构成完整回路。 在电压作用下,水或OH-在纤维表面放电(酸性和中性电解液主要是水,碱性电解液主要是OH-),产生活性氧对纤维表面进行氧化,最终生成所需的含氧官能团。 3 影响电化学处理的因素 影响电化学处理效果的因素有很多,如电解质的种类、浓度、温度,处理时间和电流密 度等。其中处理时间可通过走丝速度来调节,各纤维生产商工艺定型后走丝速度一般就已固定,不再做调整,因此处理时间在此不再讨论。 3.1 电解质种类 不同种类电解质对纤维表面的电化学处理效果有较大差异,即使浓度相同,电导率不同,则电流密度不同;另外,酸/碱度不同,则氧化效果不同,一般酸性电解质的氧化效果强于碱性电解质。 3.2 电解液温度 电解液温度会影响电化学反应的难易程度和反应速度,且温度越高,反应越容易发生, 反应速度越快。经研究发现,温度的升高会使水的析氧、析氢反应更早、更快地发生,单位 时间产生出更多的活性氧,使得纤维表面的氧化反应更为剧烈。 3.3 电解液浓度 电解液浓度会影响电化学反应的速度,且浓度越大,反应速度越快,但不会影响其发生 的难易程度。经研究发现,浓度越高,电解液的析氧、析氢反应越剧烈,单位时间产生的活 性氧越多,表现为氧化反应的速度快。 3.4 电解液电流密度 3.4.1 电流密度对纤维表面含氧官能团的影响 经研究发现,未经电化学处理的纤维表面O的存在形式主要是C-O;而经过电化学处理 的纤维表面碳环被打开,C-C先被氧化成C-O,再被氧化成C=O和-O-C=O,生成羰基、羧基 等含氧官能团,即C-O的数量先增加后减少,C=O的数量持续在增加。我们可用C-O和C=O 的比例来判断纤维表面的氧化程度,也可用来评估电解质的氧化能力。 需要注意的是,随着电流密度增加,酸性电解液单位时间在纤维表面生成的C=O和-O- C=O等不饱和官能团多于碱性电解液,即酸性电解质的氧化效果强于碱性电解质。纤维厂商 往往根据自身产品特点选用合适的电解质,如石墨纤维因表面质地紧密,需采用NH4H2P04 等酸性电解质提供更强的氧化效果,而普通碳纤维则采用NH4HC03等弱碱性电解质即可。 3.4.2 电流密度对纤维表面刻蚀的影响 若采用碱性电解液,氧在较低的电流密度作用下即可析出,OH-在纤维表面产生大量的活

改性涤纶的发展

改性涤纶的发展 【转载】发布者:日期:2011-04-03 1941年英国Whenfield和Dikson以对苯二甲酸和乙二醇为原料合成了聚对苯二甲酸乙二酯,并制成了纤维,在我国商品名为涤纶。涤纶于1946年在英国工业化生产,1953年开始在世界范围内大规模工业化生产,1971年开始在数量上超过尼龙,成为第一大合成纤维。由于涤纶具有强度高、弹性好、保型性好、尺寸稳定性高等优异性能,由其织成的衣物经久耐穿,电绝缘性好,易洗快干,具有“洗可穿”的美称,因而被广泛应用于服装、装饰、产业等领域。但是涤纶由于内部分子排列紧密,分子间缺少亲水结构,因此回潮率很小,吸湿性能差。在相对湿度为95%的条件下,其最高吸湿率为0.7%,由于其吸湿性差,抗静电性不好,涤纶织物透气性不好,染色性差,抗起毛起球性差。 针对涤纶使用性能的缺陷,其改性研究主要有:一是物理改性方法,主要在涤纶的生产过程中进行物理共混改性;二是化学改性方法,运用化学接枝或嵌段的方法改变涤纶的分子链结构,改善涤纶的服用性能。 1 涤纶的染色改性 涤纶纤维是疏水性的合成纤维,缺乏能与直接染料、酸性染料、碱性染料等结合的官能团。虽然具有能与分散染料形成氢键的酯基,但是涤纶分子链结构紧密,染料分子不易进入纤维内部,致使染色困难,色泽单调,直接影响到涤纶面料花色品种的开发。由于涤纶的结晶度高,纤维中只存在较小的空隙,当温度较低时,分子热运动改变其位置的幅度较小,在潮湿条件下,涤纶纤维又不会象棉纤维那样能通过剧烈溶胀而使空隙增大,染料分子难以渗透到纤维内部。涤纶染色时通常只能用分散染料进行染色,并且必须在高温高压下或借助载体进行染色。为了提高涤纶的染色性能,从分子结构上考虑,提高分子链的疏松程度,将有助于染料分子的进入。改善染色性能主要采用的方法有:(1)与分子体积庞大的化台物共聚;(2)与具有可塑化效应的化合物混合纺丝;(3)导入具有醚键那样的和分散性染料亲和性好的基团。采用共聚方法改性制得的涤纶树脂熔点低,结晶度低,纤维的热性能和机械性能受到一定程度的损害。 阳离子染料可染改性方法是将涤纶染色改性剂,如简苯二甲酸二甲脂-5-磺酸钠(俗称三单体,英文缩写SIPM)与涤纶共聚,共聚后的涤纶分子链中引入了磺酸基团,可用阳离子染料染色,所染织物色彩鲜艳,染料吸尽率高,大幅度减少了印染废水的排放,共聚聚酯切片又能增加抗静电、抗起毛球及吸湿性能,是近年来改善涤纶染色性能的主要方法之一。日本尤尼吉卡公司用4份含磺酸基团的间苯二甲酸盐单元的阳离子可染聚酯与1份乙二醇/聚乙二醇/磺酸基间苯二甲酸钠/对苯二甲酸的嵌段共聚物共混纺丝,可制成具有高染色深度

碳纤维表面改性研究进展(1).pdf

2015年3月化学研究111第26卷第2期 CHEM ICAL RESEARCH http ://hxya cbpt. cnki. net. 碳纤维表面改性研究进展 刘保英1,2,王孝军3,杨杰1,3倡,丁涛2倡(1.四川大学高分子科学与工程学院,四川成都610065;2.河南大学化学化工学院,河南开封4750 04;3.四川大学分析测试中心,四川成都610064) 摘要:碳纤维因其优异的综合性能常被用作树脂基体的增强材料.然而由于碳纤维与树脂基体之间的界面结合性能较差,其增强的复合材料的力学性能往往与理论值相差甚远,因此必须对碳纤维进行表面改性,以提高其与聚合物基体的界面粘结性能.本文作者综述了国内外关于碳纤维表面改性技术的研究进展,概述了涂层法、氧化法、高能辐射法等改性方法对碳纤维增强复合材料界面强度的改性效果. 关键词:碳纤维;表面改性;研究进展 中图分类号:O64文献标志码:A文章编号:1008-1011(2015)02-0111-10Research progress of surface modification of carbon fiber LIU Baoying1,2 , WANG Xiaojun3 , YANG Jie1,3倡 , DING Tao2倡 ( 1 . Colle ge o f Poly mer Science & Engineering , Sichuan Universit y , Cheng du 610065 , Sichuan , China ; 2 . Colle ge o f Che m istr y and Che m ical Engineering , H enan University , K ai f eng 475004 , H enan , China ; 3 . A naly tical & Testing Center , Sichuan University , Cheng du 610064 , Sichuan , China) Abstract : Carbon fiber (CF) has been widely used as a reinforcement of polymer composite due to its excellent comprehensive performance .However ,the strength of CF reinforced resin ma‐ trix composite is always much lower than the theoretically predicted value due to smooth sur ‐face and chemical inertness of carbon fiber w hich lead to a poor interface between CF and res ‐ ins .Thus ,the research on surface modification of carbon fiber is very important in the compos ‐ ites applications .This article presents an overview of some surface modification methods of CF ,such as coating method ,oxidation process and high‐energy radiation treatment ,and intro‐ duces the modified effect of each method on the interfacial strength of carbon fiber reinforced polymer composite . Keywords :carbon fiber ;surface modification ;research progress 碳纤维(CF)以其高比强度、高比模量、小的线膨胀系数、低密度、耐高温、抗腐蚀、优异的热及电传导性等特点,被称为新材料之王,常用作高性能树脂基复合材料的增强材料,广泛应用于飞机制造、国防军工、汽车、医疗器械、体育器材等方面[1-2].工业化 收稿日期:2014-09-15. 基金项目:河南省教育厅科学技术研究重点项目(14A430042).作者简介:刘保英(1986-),女,讲师,研究方向为聚合物基复合材料改性研究倡通讯联系人 E mail ppsf scu edu cn .,‐ :@..,dingtao @ henu edu. cn..生产的碳纤维按前驱体原料的不同可以分为:聚丙烯腈基(PAN‐based)、黏胶基、沥青基碳纤维和气相生长碳纤维[2-6].与另外3种碳纤维相比,PAN基 碳纤维生产工艺简单,产品力学性能优异,产量约占全球碳纤维总产量的90%以上[5].自1962年问世以来,PAN基碳纤维取得了长足的发展,成为碳纤维工业生产的主流[7]. 由于碳纤维原丝表面由大量惰性石墨微晶堆砌而成,所以原丝表面呈非极性[8-9],表面能小,与树脂基体的浸润性差,界面结合性能差.此外,高性能 DOI :1014002/.j hxya.2015.02.001.|化学研究,2015,26(2):111-120

阳离子可染改性涤纶纤维

阳离子可染改性涤纶纤维 阳离子可染改性涤纶纤维阳离子可染改性涤纶是在涤纶大分子上引入对阳离子染料具有亲和力的磺酸基或磷酸基团,分高压型(CDP)和常压型(ECDP)两种。 CDP纤维所加入抑第三单体为间苯二甲酸磺酸钠,其染色温度为120℃左右;ECDP纤维除第三单体外,还加入第四单体,常见的有脂肪或芳香二羧酸及其衍生物、脂肪或芳香二元醇及其衍生物以及羧酸类化合物等,其染色温度为100℃;ECDP纤维还分醚型和酯型两种,酯型的耐热性比醚型的好。 阳离子可染改性涤纶纤维的主要特点是可用阳离子染料常压沸染,这既克服了常规涤纶必须用高温高压或载体染色的不足,又可使毛/涤、涤/腈等混纺织物一浴法染色较为容易,而且染色的色泽比较鲜艳。阳离子可染改性涤纶可用于生产各类仿毛产品,短纤或长丝广泛用于生产多类混纺的精、粗纺呢绒,毛线、毛毯以及仿毛花呢等织物。 阳离子可染改性涤纶的缺点是强力较低,耐酸碱性较差,尤其对强碱很敏感,在强碱作用下水解速度比常规涤纶高2~3倍。但可利用这一特性对其进行碱减量处理,提高纤维的柔软性和吸湿性,进而提高其穿着舒适性。 另外,阳离子可染改性涤纶纤维的耐热性也较差,故在织物的定形后处理中,温度要适当降低,一般CDP为170℃,ECDP为160℃较好。 实务: 目前坊间染染改性涤纶纤维很多,主要以保特瓶回收后加工处理,为环保尽力;Recycle 标志。 现场染色加工与传统腈纶差异不大,差在批次的稳定度,纱的饱和值及起始上色温度、最大上色的温度点。 因此现场染色时每批纱务必要先做纱的饱和值(对比性)及起始上色温度、最大上色的温度点(Step-dyeing)控管,决定缓染剂使用量及持温控管点,否则问题层出不穷。

竹炭改性涤纶纤维生产线建设项目可行性研究报告

专业编制可行性研究报告了解更多详情..咨询公司网址https://www.360docs.net/doc/e03931822.html, XXX有限责任公司 竹炭改性涤纶纤维生产线建设项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.360docs.net/doc/e03931822.html, 高级工程师:高建

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目负责人 (1) 1.1.6项目投资规模 (1) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (2) 1.1.9项目建设期限 (2) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (4) 1.6主要经济技术指标 (4) 1.7综合评价 (5) 第二章项目建设背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2项目提出缘由 (8) 2.3项目建设必要性分析 (8) 2.3.1顺应我国服装行业快速发展的需要 (8) 2.2.1推动我国纺织行业技术进步升级的需要 (9) 2.2.2满足当前竹炭改性涤纶纤维市场需求的需要 (9) 2.3.4提升企业竞争力水平,有助于企业长远战略发展的需要 (10) 2.3.5增加当地就业带动产业链发展的需要 (10) 2.3.6带动当地经济快速发展的需要 (11) 2.4项目建设可行性分析 (11) 2.4.1政策可行性 (11) 2.4.2市场可行性 (12) 2.4.3技术可行性 (13) 2.4.4管理可行性 (13) 2.5可行性分析结论 (14) 第三章项目市场分析 (15) 3.1我国服装行业发展状况分析 (15) 3.2我国服装行业发展前景分析 (16)

碳纤维表面改性及其在尼龙复合材料中的应用研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第47卷,第7期2019年7月 V ol.47,No.7Jul. 2019 141 doi:10.3969/j.issn.1001-3539.2019.07.026 碳纤维表面改性及其在尼龙复合材料中的应用研究进展 张顶顶1,张福华1,杨吉祥1,李晓峰1,李彦希2,曾骥1 (1.上海海事大学海洋科学与工程学院,上海 201306; 2.浙江四兄绳业有限公司,浙江台州 317016) 摘要:对近几年碳纤维(CF)表面改性及其在CF 增强尼龙(CFRPA)复合材料中的应用研究情况进行了综述,将CF 表面改性方法划分为干法改性、湿法改性和纳米材料多尺度改性三大类。其中干法改性包括气相氧化法、等离子体氧化法和辐照处理;湿法改性包括液相氧化法、阳极电解氧化法和上浆处理法;纳米材料多尺度改性包括石墨烯、碳纳米管等纳米材料改性。比较了各种表面改性方法的优缺点,并对CFRPA 复合材料中CF 表面改性技术的发展进行了展望。 关键词: 碳纤维;尼龙;复合材料;界面结合;表面改性中图分类号:TQ327.3 文献标识码:A 文章编号:1001-3539(2019)07-0141-06 Research Progress on Surface Modification of Carbon Fiber and Its Application in Polyamide Composites Zhang Dingding 1, Zhang Fuhua 1, Yang Jixiang 1, Li Xiaofeng 1, Li Yanxi 2, Zeng Ji 1 (1. College of Ocean Science and Engineering , Shanghai Maritime University , Shanghai 201306, China ; 2. Zhejiang Four Brothers Rope Co. Ltd., Taizhou 317016, China) Abstract :Research situations of surface modification of carbon fiber (CF) and its application in CF reinforced polyamide (CFRPA) composites in recent years were reviewed. Accordingly ,the surface modi ?cation of CF can be classi ?ed into dry modi ?ca-tion methods ,wet modi ?cation methods and nanomaterials multi-scale modi ?cation methods. The dry modi ?cation methods include gas phase oxidation ,plasma oxidation and irradiation treatment ,the wet modi ?cation methods include liquid phase oxidation ,anodic electrolytic oxidation and sizing treatment , the nanomaterials multi-scale modi ?cation methods include graphene modi ?cation and carbon nanotube modi ?cation. The advantages and disadvantages of various surface modi ?cation methods were compared ,and the development of CF surface modi ?cation technology in CFRPA composites was prospected. Keywords :carbon ?ber ;polyamide ;composite ;interfacial bonding ;surface modi ?cation 碳纤维(CF)增强热塑性树脂复合材料具有轻质高强,耐腐蚀和出色的热稳定性等优点,已广泛应用于航空航天、汽车、建筑等行业[1–6]。尼龙(PA)作为一类典型的热塑性树脂与CF 形成的复合材料具有优异的综合性能。CF 增强PA (CFRPA)复合材料与热固性复合材料相比具有可回收性、易于加工、成型时间短、抗冲击性好等优点[7–9]。CFRPA 复合材料的力学性能首先取决于CF 和PA 树脂基体自身性质。同时,纤维与基体之间的界面粘结性很大程度上决定了复合材料的最终力学性能。 然而,未经任何处理CF 表面是非极性的[10–11],表面活性官能团极少、化学惰性较强,但PA 树脂基体因含有大量的 酰胺键通常表现为极性,造成了CF 与PA 树脂基体之间浸润性较差,界面粘结力较弱,限制了CFRPA 复合材料在更多领域的应用。因此,要想扩大CFRPA 复合材料应用范围,获得力学性能更为优异的CFRPA 复合材料就必须对CF 表面进行改性。通过对CF 表面改性可以有效增大CF 表面的粗糙度,同时在其表面引进大量的活性官能团,改善纤维与基体之间的浸润性,进而提高纤维表面与基体之间的机械嵌锁力和化学键合力,使得所受应力在纤维与基体界面之间得到有效传递。 基于PA 复合材料的CF 表面改性方法可以分为以下三大类:干法改性、湿法改性和纳米材料多尺度改性。干法 基金项目:上海市自然科学基金项目(15ZR1420500) 通讯作者:张福华,博士,副教授,主要从事复合材料应用基础研究 E-mail :fhzhang@https://www.360docs.net/doc/e03931822.html, 收稿日期:2019-03-12 引用格式:张顶顶,张福华,杨吉祥,等.碳纤维表面改性及其在尼龙复合材料中的应用研究进展[J].工程塑料应用,2019,47(7):141–146. Zhang Dingding ,Zhang Fuhua ,Yang Jixiang ,et al. Research progress on surface modification of carbon fiber and its application in polyamide composites[J]. Engineering Plastics Application ,2019,47(7):141–146.

相关文档
最新文档