第二章+扩散的机制、扩散方程及其解 PPT

合集下载

材料科学基础_固体中的扩散

材料科学基础_固体中的扩散

驱动扩散的真实动力是自由能
化学位的定义,某溶质i的化学位为
平衡条件是各处的化学位相等。如果存在一化学位 梯度,表明物质迁移 dx 距离,系统的能量将变化了。 好象有一作用力推动它移动一样,设这个力为 F,所作 的功为 Fdx 作为化学位的变化 。
称为扩散的驱动力,负号表示推动物质流向 化学位较低处
代替 Fick 第一定律的真实法则为:
扩散系数与化学位的关系
如果某组元的浓度提高反而可降低化学位(降低其吉 布斯自由能),则组元会进行上坡扩散。组元的集中降低 吉布斯自由能的原因和原子之间的键结合能来决定。所 以在分析扩散过程时,应该从化学位来分析,不能单从 浓度梯度来分析。
当然在很多情况下,当
菲克定律的表达式是正确的,用它分析可以把 问题简化。 应用那种模式要具体分析。
数又称禀性扩散系数
N1、N2为组元的摩尔浓度(原子百分比)
代位扩散的方程(Darken方程)
扩散方程:
第三节
扩散中的热力学
• 菲克定律的局限性 • 驱动扩散的真实动力是自由能 • 扩散系数与化学位的关系
菲克定律的局限性
分析菲克定律,结论是扩散中物质的流动是从浓度 高处流向浓度低处,如果浓度梯度消失(dC/dx=0),各处 的浓度相等,就不应该再出现物质的传输,在一般的情 况下可以解释许多现象。在固体材料中,还有些现象与 此相矛盾,物质的迁移(扩散)会出现从低浓度向高浓度 处聚集,例如过饱和固溶体的脱溶,从中析出第二相, 此外固体电解质中的带电离子在电场或磁场的作用下, 发生的扩散迁移也不一定是从高浓度处流向低浓度处, 这种反向的扩散称为“上坡扩散”。 为了解释上坡扩散的现象,正确分析扩散规律, 必需用热力学来讨论扩散过程的实质,因为扩散的自发 进行方向也必然是系统吉布斯自由能下降。

fick定律ppt课件

fick定律ppt课件
互扩散:原子通过进入对方元素晶体点阵而导致的扩散。
(有浓度变化)
➢(2)根据扩散方向
下坡扩散:原子由高浓度处向低浓度处进行的扩散。 上坡扩散:原子由低浓度处向高浓度处进行的扩散。
.
➢(3)根据是否出现新相
原子扩散:扩散过程中不出现新相。 反应扩散:有新相形成的扩散过程。
➢ (4)按原子的扩散方向分: 体扩散:在晶粒内部进行的扩散 短路扩散:表面扩散、晶界扩散、位错扩散等 短路扩散的扩散速度比体扩散要快得多
析、均匀化退火、冷变形后的回复和再结晶、固态相变、化学热处 理、烧结、氧化、蠕变等等。
扩散:由构成物质的微粒(离子、原子、分子)的热运动而产生的 物质迁移现象称为扩散。扩散的宏观表现是物质的定向输送。
.
扩散的分类
➢ (1)根据有无浓度变化
自扩散:原子经由自己元素的晶体点阵而迁移的扩散。
(纯金属或固溶体的晶粒长大)(无浓度变化)
.
2、无限长棒中的扩散模型
实际意义?
将溶质含量不同的两种材料焊接在一起,因为浓度不同,在焊接处 扩散进行后,溶质浓度随时间会发生相应的变化。
.
3、扩散方程的误差函数解
.
.
.
4、半无限长棒扩散方程的误差函数解
解为:
定义函数:
误差函数性质
一维半无限长棒中扩 散方程误差函数解:
.
高斯误差函数
高斯误差函数
若用体积浓度(c)的变化率表示积存速率, 则??
.
如果D是常数,上式可写为
.
三维情况,设在不同的方向扩散系数为相等的常数, 则扩散第二方程为:
适用条件: 非稳态扩散: C/t≠0 或 J/x≠0
.
三、扩散方程的应用

固体中的扩散

固体中的扩散

1扩散定律及其应用物质中的原子随时进行着热振动,温度越高,振动频率越快。

当某些原子具有足够高的能量时,便会离开原来的位置,跳向邻近的位置,这种由于物质中原子(或者其他微观粒子)的微观热运动所引起的宏观迁移现象称为扩散。

在气态和液态物质中,原子迁移可以通过对流和扩散两种方式进行,与扩散相比,对流要快得多。

然而,在固态物质中,扩散是原子迁移的唯一方式。

固态物质中的扩散与温度有很强的依赖关系,温度越高,原子扩散越快。

实验证实,物质在高温下的许多物理及化学过程均与扩散有关,因此研究物质中的扩散无论在理论上还是在应用上都具有重要意义。

物质中的原子在不同的情况下可以按不同的方式扩散,扩散速度可能存在明显的差异,可以分为以下几种类型。

①化学扩散和自扩散:扩散系统中存在浓度梯度的扩散称为化学扩散,没有浓度梯度的扩散称为自扩散,后者是指纯金属的自扩散。

②上坡扩散和下坡扩散:扩散系统中原子由浓度高处向浓度低处的扩散称为下坡扩散,由浓度低处向浓度高处的扩散称为上坡扩散。

③短路扩散:原子在晶格内部的扩散称为体扩散或称晶格扩散,沿晶体中缺陷进行的扩散称为短路扩散,后者主要包括表面扩散、晶界扩散、位错扩散等。

短路扩散比体扩散快得多。

④相变扩散:原子在扩散过程中由于固溶体过饱和而生成新相的扩散称为相变扩散或称反应扩散。

本章主要讨论扩散的宏观规律、微观机制和影响扩散的因素。

1.1扩散第一定律在纯金属中,原子的跳动是随机的,形成不了宏观的扩散流;在合金中,虽然单个原子的跳动也是随机的,但是在有浓度梯度的情况下,就会产生宏观的扩散流。

例如,具有严重晶内偏析的固溶体合金在高温扩散退火过程中,原子不断从高浓度向低浓度方向扩散,最终合金的浓度逐渐趋于均匀。

菲克(A.Fick)于1855年参考导热方程,通过实验确立了扩散物质量与其浓度梯度之间的宏观规律,即单位时间内通过垂直于扩散方向的单位截面积的物质量(扩散通量)与该物质在该面积处的浓度梯度成正比,数学表达式为(3.1)上式称为菲克第一定律或称扩散第一定律。

《对流扩散方程》课件

《对流扩散方程》课件

环境科学
描述污染物在大气、水体等环境 介质中的扩散、输移和归宿。
在环境科学中,对流扩散方程用 于模拟污染物在大气、水体等环 境介质中的扩散、输移和归宿过
程。
在环境保护、污染治理等领域, 对流扩散方程具有重要的应用价
值。
化学反应动力学
描述化学反应在流体或固定床 反应器中的传递和反应过程。
在化学反应动力学中,对流 扩散方程用于模拟化学反应 在流体或固定床反应器中的
初始条件
指定在求解开始时刻的解的性质,如 常数、函数等。
03 对流扩散方程的应用
流体动力学
01
描述流体在运动状态下的物质传递和扩散现象。
02
在流体动力学中,对流扩散方程用于模拟流体中的物质传递过
程,如温度、浓度、速度等。
在航空航天、船舶、汽车等领域的流体动力学分析中,对流扩
03
散方程被广泛应用。
应用于多尺度问题
研究对流扩散方程在多尺度问题中的应用,如 微纳尺度流动、大气污染扩散等。
探索新的应用领域
将该方程应用于其他领域,如生物医学、环境科学等。
与其他领域的交叉研究
与流体动力学结合
研究对流扩散方程与流体动力学之间的相互 作用和影响,探索更深入的物理机制。
与偏微分方程理论的交叉
将对流扩散方程的研究与偏微分方程理论相 结合,推动数学理论的发展。
02
03
有限体积法
将连续的求解域离散化为有限个小的 体积,在每个体积上近似函数,将微 分方程转化为代方程进行求解。
有限差分法
向前差分法
将微分方程中的导数项用前一步的函数值近似代替,得到向前差 分方程。
向后差分法
将微分方程中的导数项用后一步的函数值近似代替,得到向后差 分方程。

扩散理论

扩散理论
J D dC dx
其中D:扩散系数,cm2/s;J:扩散通量,g/cm2·s ;dC/dx 为沿x方向的浓度梯度。负号表示扩散由高浓度向低浓度方向进 行,扩散的结果导致浓度梯度的减小,使成份趋于均匀。
扩散第一定律不仅 适合于固体,也适合 于液体和气体中原子 的扩散。
扩散第一定律可用 来处理扩散中浓度不 因时间变化的问题, 如有些气体在金属中 的扩散。
t=0时:x 0,C C2 ; x 0,C C1
t≥0时: x ,C C2 ; x ,C C1
C C1 C2 2
C1
C2 2
erf
2
x Dt
erf(z)为误差函数,它的值通过查误差函数表可得。其中:
z x 2 Dt
高斯误差函数:
erf (z)
2
z e y2 dy
0
误差函数有如下的性质:erf(0) = 0,erf(∞) = 1,erf(-x) = erf(x)。
此时,扩散方程的初始条件和边界条件应为:
t = 0时:x > 0,C = C0 t≥0时: x = 0,C = Cs ;x =∞,C = C0
c(x,t) cs
(cs
c0
)erf
2
x Dt
式中C(x,t)为渗碳时间为t时距表面x处的浓度。
实际应用时:
cs c(x,t) erf x
cs c0
互扩散:原子通过进入对方元素晶体点阵而导致的扩 散。(有浓度变化)
2.根据扩散方向: 下坡扩散(顺扩散):原子由高浓度处向低浓度处进行的扩 散。 上坡扩散(逆扩散):原子由低浓度处向高浓度处进行的扩 散。
固态扩散的条件: 温度足够高;时间足够长;扩散原子能固溶;具有驱动力:

《固体中的扩散》PPT课件

《固体中的扩散》PPT课件

编辑ppt
12
填隙机制(间接间隙机制)
D
C
在填隙机制中,有两个原子同时 易位运动,其中一个是间隙原子,
B A
另一个是处于点阵上的原子。
间隙原子将阵点上的原子挤到
间隙位置上去,自己进入阵点位置。
由于点阵所施加的约束不同,在填隙机制中,
又分为如图所示的沿ABC移动的共线跳动
和沿ABD移动的非共线跳动。
金中 (4)出现。
原子直接换位示意
编辑ppt
14
(2) 环形换位机制(crowdion configuration)
同一平面上的数个原子同时进行环形旋转式交换 位置。这种机制具有较低的势垒,不过需要原子 之间有大量的合作运动,也不容易实现。
编辑ppt
15
实现扩散,必须同时具备两个条件:
(1)扩散原子近旁存在空位(或间隙); (2) 扩散原子具有可以超过能垒的自由能。
互(异)扩散(mutual diffusion):原子通过进入对 方元素晶体点阵而导致的扩散。
编辑ppt
6
(2)根据扩散方向
下坡扩散(downhill diffusion)和上坡扩散(uphill diffusion)
下坡扩散(downhill diffusion):原子由高浓度处向低浓 度处进行的扩散。
另一方面是对扩散的微观的机理的认识把扩散与晶体内原子的和缺陷的运动联系起来建立起某些扩散机理的模型一方面是对扩散表象学的认识即对扩散的宏观现象的研究如对物质的流动和浓度的变化进行实验的测定和理论的分析利用所得到的物质输运过程的经验的表象的规律以定量地讨论固相中的各种反应过程如固体的烧结分解锈蚀晶体的生长相变离子晶体的导电金属与合金的热处理等
解:此时通过管子中铁膜的氮气通量为

计算传热学第4讲扩散方程的数值解PPT课件

计算传热学第4讲扩散方程的数值解PPT课件

38
Sp,ad( x)2
(30) (31) (32)
边界条件的处理
附加源项法的实质
– 边界节点消去法 – 不仅能用于内节点网格,也能用于外节点网格
实施方法:
– 计算附加源项:Sc,ad,Sp,ad – 把附加源项计入该控制容积中的源项中 – 令与边界节点对应的系数(aW)等于0
39
特别提示
边界条件的处理是传热问题数值计算最重要的环节之一 元体能量平衡法的基础地位 尽可能采用外节点法划分网格 边界节点消去法
从图中可以清楚地看出这一点 即使 (x)2= (x)3
( x)1也不等于 ( x)2 所以要对第一个内部节点给予特别注意。
31
x=0 (x)1
(x)2
qB 1
2
3
边界条件的处理
注意:
(x)2
( x)3
例如,对于直角坐标系,对C点于VW2节(的点节左点2控控,1制)制面重面w合e与!,节即
a P T 2 a W T 1 a E T 3 b 2 与左边( 界重2合0 ! )
(8)
边界条件的处理
整理后得到,
T1T2(xe)11 eqB1 2(x)1S
特点
二阶精度 不具有一般性 推导繁琐
(15)
26
边界条件的处理
x=0
e
qB 1
e
(x)1
2
3
(x)2
二阶精度的Taylor级数展开法
d dT x x0d dT 2 xd d2T 2x2(x)1O [(x)1 2]
4.1.3 控制方程的离散化
– 将方程(1)两边通乘A(x),并对x从w到e积分:
ddxA(x)ddT xSA (x)0

无机材料科学基础-第七章-扩散.ppt

无机材料科学基础-第七章-扩散.ppt

C(x, t) C 0erfc(
X 2 Dt
)
在实际应用中常将上式简化:
C(x, t)/C0 erfc(
1
X 2 Dt
)
C1( x , t ) X erfc [ ] Dt K Dt C0
Xt
1
2
就是说,当扩散物质的浓度一定时,扩散深度与扩散时 间的平方根成正比。 例题 1 :把硼添加到硅片中的方法是:在 1100 0 C 下当 B2O3 分压达到某一定值后,其在硅片表面的溶解度达到饱和状态, 相应浓度为 CS=3×1026 原子 / 厘米 3 。保持 B2O3 分压恒定,就 能保持CS恒定,则B2O3向硅一个方向扩散,从而把硼添加到 硅片中。若已知在11000C时硼的扩散系数D=4×10-17m2/s,扩 散时间是6min。求硼浓度随距离的变化曲线。
AJX AJX dX c ( A dX ) t c A(J X JX dX) ( A dX ) t
c JX dX JX dX t
JX c ( JX dX ) JX dX X t
JX c X t
将JX=﹣Ddc/dx代入, 得:
dc 0 dx
dc 0 dt
Fick第一定律的推导: 假设扩散物质 M 在Ⅰ区的浓度为 C1, 在Ⅱ区的浓度为C0,且C1>C0,则在浓度 梯度的推动下 M 沿 X 方向进行扩散。假 设在 dt 时间内,通过截面积为 ds 的薄 层的M物质的量为dG,则:
dc dG Ddsdt dx dG dc D dsdt dx
∵P2>P1(玻璃两侧的压力) ∴S2>S1 (气体在玻璃中的溶解量)
dc JX D dx
积分:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档