三角恒等变换公式重点

合集下载

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解三角恒等变换是数学中一个非常重要的概念,它涉及到三角函数之间的相互关系。

在三角恒等变换中,通过对三角函数的特性、性质和运算进行分析和推导,可以得到一系列具有等价关系的三角函数等式。

这些等式在解决各种三角函数问题时起到了重要的作用。

1.互余关系:在一个直角三角形中,正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数之间存在互余关系。

例如,正弦函数和余弦函数之间的互余关系可以表示为:sin(x) = cos(π/2 - x),cos(x) = sin(π/2- x)。

通过这种互余关系,可以将一个三角函数的计算问题转化为另一个三角函数的计算问题,从而更加方便地求解。

2.双替换关系:在三角恒等变换中,有些等式可以通过同时替换角度的正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数进行变换。

例如,sin(x) = cos(π/2 - x),cos(x) = sin(π/2 - x)就是一个双替换关系。

通过双替换关系,可以将三角函数等式从一个角度扩展到整个角度范围内。

3.平方和差关系:三角恒等变换中的平方和差关系利用了三角函数的平方和差公式。

根据平方和差公式,可以将一个三角函数的平方表示为其他三个三角函数的和或差。

例如,sin²(x) + cos²(x) = 1就是一个平方和关系。

通过平方和差关系,可以将一个三角函数的计算问题转化为其他三角函数的计算问题,从而更加方便地求解。

4.倍角关系:在三角恒等变换中,倍角关系是指利用三角函数的倍角公式将一个三角函数的角度扩展为原来的两倍。

例如,sin(2x) = 2sin(x)cos(x),cos(2x) = cos²(x) - sin²(x)。

通过倍角关系,可以将一个角度的问题扩展为两倍角度的问题,从而更加方便地求解。

5.三角和差关系:三角恒等变换中的三角和差关系利用了三角函数的和差公式。

三角恒等变换知识点归纳

三角恒等变换知识点归纳

第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. 26、22tan tan 21tan ααα=-. 27、⇒(后两个不用判断符号,更加好用) 28、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。

)sin αϕA +B ,其中tan ϕB =A. 29、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4α的二倍; ②2304560304515o ooooo=-=-=;问:=12sin π ;=12cos π;③ββαα-+=)(;④)4(24αππαπ--=+;⑤)4()4()()(2απαπβαβαα--+=-++=;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。

三角恒等变换-知识点+例题+练习

三角恒等变换-知识点+例题+练习

三角恒等变换-知识点+例题+练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角恒等变换-知识点+例题+练习)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角恒等变换-知识点+例题+练习的全部内容。

两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C(α-β):cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C(α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S(α+β):sin(α+β)=sin_αcos_β+cos_αsin_β;(4)S(α-β):sin(α-β)=sin_αcos_β-cos_αsin_β;(5)T(α+β):tan(α+β)=错误!;(6)T(α-β):tan(α-β)=错误!。

2.二倍角的正弦、余弦、正切公式(1)S2α:sin 2α=2sin_αcos_α;(2)C2α:cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;(3)T2α:tan 2α=2tan α1-tan2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β);(2)cos2α=错误!,sin2α=错误!;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=错误!sin错误!。

4.函数f(α)=a cos α+b sin α(a,b为常数),可以化为f(α)=a2+b2sin (α+φ)或f(α)=a2+b2cos(α-φ),其中φ可由a,b的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=错误!-错误!;错误!=错误!-错误!.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分"、“分解与组合"、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ). A .2cos 2 错误!-1B .1-2sin 275°C 。

三角恒等变换讲解

三角恒等变换讲解

三角恒等变换讲解三角恒等变换是指在三角函数之间相互变换的一系列等式关系,常用于简化和证明三角函数的性质以及求解三角方程。

下面介绍一些常见的三角恒等变换:1. 基本恒等变换:-正弦与余弦的关系:sin²θ+ cos²θ= 1-正切与余切的关系:tanθ= sinθ/ cosθ,cotθ= cosθ/ sinθ-余割与正割的关系:cscθ= 1 / sinθ,secθ= 1 / cosθ2. 倍角恒等变换:-正弦的倍角公式:sin(2θ) = 2sinθcosθ-余弦的倍角公式:cos(2θ) = cos²θ- sin²θ= 2cos²θ- 1 = 1 - 2sin²θ-正切的倍角公式:tan(2θ) = (2tanθ) / (1 - tan²θ)3. 和差恒等变换:-正弦的和差公式:sin(A ±B) = sinAcosB ±cosAsinB-余弦的和差公式:cos(A ±B) = cosAcosB ∓sinAsinB-正切的和差公式:tan(A ±B) = (tanA ±tanB) / (1 ∓tanAtanB)4. 反函数恒等变换:-正弦的反函数:sin⁻¹(x) = θ,其中sinθ= x,-π/2 ≤θ≤π/2-余弦的反函数:cos⁻¹(x) = θ,其中cosθ= x,0 ≤θ≤π-正切的反函数:tan⁻¹(x) = θ,其中tanθ= x,-π/2 < θ< π/2注意,上述恒等变换只是一部分常见的例子,实际上还有许多其他的三角恒等变换。

在解题或证明过程中,根据需要,可以根据题目的要求和三角函数的关系,使用适当的三角恒等变换来简化计算或推导出所需的结果。

高二下册数学第三单元三角恒等变换重难点解析

高二下册数学第三单元三角恒等变换重难点解析

在中国古代把数学叫算术,又称算学,最后才改为数学。

以下是查字典数学网为大家整理的高二下册数学第三单元三角恒等变换重难点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。

(1)和角公式重点:两角和与差的余弦公式求值和证明.难点:两角和的余弦公式的推导.(2)倍角公式和半角公式重点:1.二倍角的正弦、.余弦、正切公式及公式的两种变形;2.半角的正弦、.余弦、正切公式。

难点:1.倍角公式与同角三角函数的基本关系式、诱导公式、和角公式的综合应用;2.半角公式和倍角公式之间的内在联系,以及应用公式时正负号的选取.(3)三角函数的积化和差和和差化积重点:公式的推导和应用.难点:公式的灵活应用.最后,希望小编整理的高二下册数学第三单元三角恒等变换重难点对您有所帮助,祝同学们学习进步。

高二数学下册简单的三角恒等变换公式知识点

高二数学下册简单的三角恒等变换公式知识点

高二数学下册简单的三角恒等变换公式知识点数学在科学进展和现代生活生产中的应用专门广泛,小编预备了高二数学下册简单的三角恒等变换公式知识点,具体请看以下内容。

平方关系:tan cot=1sin csc=1cos sec=1sin/cos=tan=sec/csccos/sin=cot=csc/secsin2+cos2=11+tan2=sec21+cot2=csc2诱导公式sin(-)=-sincos(-)=cos tan(-)=-tancot(-)=-cotsin(/2-)=coscos(/2-)=sintan(/2-)=cotcot(/2-)=tansin(/2+)=coscos(/2+)=-sintan(/2+)=-cotcot(/2+)=-tansin()=sincos()=-costan()=-tancot()=-cotsin()=-sincos()=-costan()=tancot()=cotsin(3/2-)=-coscos(3/2-)=-sintan(3/2-)=cotcot(3/2-)=tansin(3/2+)=-coscos(3/2+)=sintan(3/2+)=-cotcot(3/2+)=-tansin(2)=-sincos(2)=costan(2)=-tancot(2)=-cotsin(2k)=sincos(2k)=costan(2k)=tancot(2k)=cot死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

(其中kZ)家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

高三角恒等变换知识点

高三角恒等变换知识点在高中数学的学习中,三角恒等变换是一个重要而基础的内容。

了解和掌握三角恒等变换的知识点,对于解题和深入理解三角函数之间的关系非常有帮助。

本文将介绍一些高三角恒等变换的知识点,帮助读者更好地掌握这一内容。

1. 三角比恒等变换三角比恒等变换是指一些三角函数之间的关系式。

这些关系式可以通过恒等变换得到,从而推导出其他与之相关的恒等式。

以下是一些常见的三角比恒等变换:1.1 正弦、余弦、正切三者的关系:sinθ = cos(π/2 - θ)cosθ = sin(π/2 - θ)tanθ = 1/tan(π/2 - θ)1.2 余切的恒等变换:cotθ = 1/tanθ1.3 余割的恒等变换:secθ = 1/cosθ1.4 正割的恒等变换:cscθ = 1/sinθ2. 和差角公式和差角公式是指将两个角的三角函数之和或之差表示为乘积或商的公式。

熟练掌握和差角公式可以在三角函数的求解过程中简化计算。

2.1 正弦和差角公式:sin(α + β) = sinαcosβ + cosαsinβsin(α - β) = sinαcosβ - cosαsinβ2.2 余弦和差角公式:cos(α + β) = cosαcosβ - sinαsinβcos(α - β) = cosαcosβ + sinαsinβ2.3 正切和差角公式:tan(α + β) = (tanα + tanβ)/(1 - tanαtanβ)tan(α - β) = (tanα - tanβ)/(1 + tanαtanβ)3. 二倍角公式二倍角公式是将一个角的两倍表示为另一个角的函数的形式。

这些公式在求解中经常被使用。

3.1 正弦二倍角公式:sin2θ = 2sinθcosθ3.2 余弦二倍角公式:cos2θ = cos²θ - sin²θ3.3 正切二倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)4. 三倍角公式三倍角公式是将一个角的三倍表示为另一个角的函数的形式。

高二数学下册简单的三角恒等变换公式知识点知识点总结

高二数学下册简单的三角恒等变换公式知识点知识点总结数学在科学发展和现代生活生产中的应用非常广泛,小编准备了高二数学下册简单的三角恒等变换公式知识点,具体请看以下内容。

平方关系:tan cot=1sin csc=1cos sec=1sin/cos=tan=sec/csccos/sin=cot=csc/secsin2+cos2=11+tan2=sec21+cot2=csc2诱导公式sin(-)=-sincos(-)=cos tan(-)=-tancot(-)=-cotsin(/2-)=coscos(/2-)=sintan(/2-)=cotcot(/2-)=tansin(/2+)=coscos(/2+)=-sintan(/2+)=-cotcot(/2+)=-tansin()=sincos()=-costan()=-tancot()=-cotsin()=-sincos()=-costan()=tancot()=cotsin(3/2-)=-coscos(3/2-)=-sintan(3/2-)=cotcot(3/2-)=tansin(3/2+)=-coscos(3/2+)=sintan(3/2+)=-cotcot(3/2+)=-tansin(2)=-sincos(2)=costan(2)=-tancot(2)=-cotsin(2k)=sincos(2k)=costan(2k)=tancot(2k)=cot(其中kZ)高二数学下册简单的三角恒等变换公式知识点就分享到这里了,更多高二数学知识点请继续关注高中频道!。

三角恒等变换---最全的总结·-学生版


B. sin45°cos15°﹣cos45°sin15°
C. cos75°cos30°+sin75°sin30° ‫ ﻩ‬D.
5 、 ( 拆 角 + 两 角 和 差 公 式 )( 佛 山 一 中 2 0 14 届 高 三 10 月 段 考 数 学 ( 理 ) 试 题 ) 化 简 三 角 式
2cos55 3 sin 5
--
三角恒等变换---完整版
三角函数------三角恒等变换公式:
两角和与差的三角函数关系
sin( )=sin ·cos cos ·sin
cos( )=cos ·cos sin ·sin
tan(
)
tan 1 tan
tan tan
倍角公式
sin2 =2sin ·cos
cos2 =cos2 -sin2
1/1
--
(1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。互余两角 的正余弦相等。”快速进行逻辑判断。注意构造两角和差因子
1、(二倍角公式)(2007 重庆文)下列各式中,值为 3 的是( ) 2
A. 2sin15 cos15 B. cos2 15 sin2 15 C. 2sin2 15 1‫ﻩﻩ‬D. sin2 15 cos2 15 2、(二倍角公式+平方差公式)(2008 六校联考) (sin 75 sin15 )(cos15 cos 75 ) 的值是
7、(构造两角和差因子+两式平方后相加)若sin α-sin β=错误!,cos α-cos β=错误!,则 cos(α-β)的值
为(
)A.错误!
B.错误!
C.错误! D.1
8.(诱导公式)【2015 广东东莞高一期末】sin163°sin223°+sin253°sin313°等于 B

三角恒等变换

三角恒等变换三角恒等变换是指一系列等效的三角函数表达式之间的变换关系。

这些变换关系对于解决三角函数的各种问题非常有用。

本文将介绍三角恒等变换的基本概念、常见的恒等变换公式以及应用案例。

一、三角恒等变换的基本概念三角恒等变换是指将一个三角函数的表达式通过等效变换转化为另一个等价的表达式的过程。

三角函数包括正弦函数、余弦函数、正切函数、余切函数等。

恒等变换意味着两个表达式在任何实数取值范围内都成立,即两个表达式所代表的函数图像完全一致。

二、常见的三角恒等变换公式1. 余弦函数的恒等变换:- 余弦函数的平方与正弦函数平方的关系:cos^2θ + sin^2θ = 1。

- 余弦函数的两倍角公式:cos(2θ) = cos^2θ - sin^2θ。

- 余弦函数的和差公式:cos(α ± β) = cosαcosβ - sinαsinβ。

2. 正弦函数的恒等变换:- 正弦函数的平方与余弦函数平方的关系:sin^2θ + cos^2θ = 1。

- 正弦函数的两倍角公式:sin(2θ) = 2sinθcosθ。

- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ。

3. 正切函数的恒等变换:- 正切函数的平方与余切函数平方的关系:tan^2θ + 1 = sec^2θ。

- 正切函数的两倍角公式:tan(2θ) = 2tanθ / (1 - tan^2θ)。

- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)。

4. 余切函数的恒等变换:- 余切函数的平方与正切函数平方的关系:cot^2θ + 1 = cosec^2θ。

- 余切函数的两倍角公式:c ot(2θ) = (cot^2θ - 1) / 2cotθ。

- 余切函数的和差公式:cot(α ± β) = (cotαcotβ ± 1) / (cotβ ± cotα)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
三角恒等变换公式
两角和与差的三角函数:
cos()coscossinsincos()coscossinsinsin()sincoscossinsin()sincoscossintantantan()1tantantantantan()1tantan









二倍角公式

2222
2

sin22sincoscos2cossin2cos112sin2tantan21tan



半角公式
2

2
2
2

1cossin221coscos221costan21cossin1costan21cossin






万能公式:

2
2
2

2

2tan
2
sin1tan21tan2cos1tan22tan2tan1tan2




相关文档
最新文档