(完整版)高中数学高考总复习数学归纳法习题及详解

合集下载

高考数学专题复习专题三数学归纳法课件

高考数学专题复习专题三数学归纳法课件
第四讲
数学归纳法
考点一 用数学归纳法证明等式 一、基础知识要记牢
1.用数学归纳法证明等式的规则 (1)用数学归纳法证明等式要充分利用定义,其中两个步骤缺 一不可,缺第一步,则失去了递推基础,缺第二步,则失去了递 推依据. (2)证明等式时要注意等式两边的构成规律,两边各有多少项, 并注意初始值 n0 是多少,同时第二步由 n=k 到 n=k+1 时要充 分利用假设,不利用 n=k 时的假设去证明,就不是数学归纳法. 2.掌握恒等变形常用的方法 (1)因式分解;(2)添拆项;(3)配方法.
则当 n=k+1 时,1-12+13-14+…+2k1-1-21k+ 2k1+1-2k1+2
=k+1 1+k+1 2+…+21k+2k1+1-2k1+2 =k+1 2+k+1 3+…+2k1+1+2k1+2. 即当 n=k+1 时,等式也成立. 综合(1)(2)可知,对一切 n∈N*,等式成立.
数学归纳法可以证明与自然数有关的恒等式问题,其关键 在于第二步,不妨设命题为 Pn:“fn=gn”,其第二步 相当于做一道有关条件等式的证明题:“已知 fk=gk,求 证:fk+1=gk+1”.这一证明过程通常分三步:1找出 fk +1与 fk的递推关系;2把归纳假设 fk=gk代入;3作 恒等变形化为 gk+1.
则当
n=k+1


1 1×3

1 3×5



1 2k-12k+1

1 2k+12k+3

k 2k+1

1 2k+12k+3

k2k+3+1 2k+12k+3

22kk+2+132kk++13=2kk++13=2kk++11+1,
所以当 n=k+1 时,等式也成立,

高考总动员届高考数学总复习课时提升练67数学归纳法及其应用理新人教版【含答案】

高考总动员届高考数学总复习课时提升练67数学归纳法及其应用理新人教版【含答案】

课时提升练(六十七) 数学归纳法及其应用一、选择题1.(2014·德州模拟)用数学归纳法证明“1+2+22+…+2n +2=2n +3-1”,在验证n =1时,左边计算所得的式子为( )A .1B .1+2C .1+2+22D .1+2+22+23【解析】 当n =1时,左边=1+2+22+23. 【答案】 D2.用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n·1·2·…·(2n -1)(n ∈N+)”时,从“n =k 到n =k +1”时,左边应增添的式子是( ) A .2k +1 B .2k +3 C .2(2k +1)D .2(2k +3)【解析】 当n =k 时,等式左端=(k +1)(k +2)·…·(k +k )当n =k +1时,等式左端=(k +2)(k +3)·…·(k +k )·(k +k +1)(k +1+k +1) 故从“n =k ”到“n =k +1”时,左边应增添式子2(2k +1). 【答案】 C3.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( ) A .n +1 B .2n C.n 2+n +22D .n 2+n +1【解析】 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n n +2=n 2+n +22区域,选C.【答案】 C4.(2014·浏阳模拟)用数学归纳法证明命题“当n 是正奇数时,x n +y n能被x +y 整除”,在第二步时,正确的证法是( )A .假设n =k (k ∈N +),证明n =k +1命题成立B .假设n =k (k 是正奇数),证明n =k +1命题成立C .假设n =2k +1(k ∈N +),证明n =k +1命题成立D .假设n =k (k 是正奇数),证明n =k +2命题成立 【解析】 相邻两个正奇数相差2,故D 选项正确. 【答案】 D5.某个命题与自然数n 有关,若n =k (k ∈N *)时命题成立,那么可推得当n =k +1时该命题也成立,现已知n =5时,该命题不成立,那么可以推得( )A .n =6时该命题不成立B .n =6时该命题成立C .n =4时该命题不成立D .n =4时该命题成立【解析】 结合命题间的关系可知,当n =k +1时命题不成立,则n =k 时命题也不成立.故选C.【答案】 C6.(2014·安庆模拟)已知1+2×3+3×32+4×33+…+n ×3n -1=3n(na -b )+c 对一切n ∈N *都成立,则a 、b 、c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14 D .不存在这样的a 、b 、c【解析】 由于该等式对一切n ∈N *都成立, 不妨取n =1,2,3,则有⎩⎪⎨⎪⎧1=a -b +c ,1+2×3=a -b +c ,1+2×3+3×32=a -b +c ,解得a =12,b =c =14.【答案】 A 二、填空题7.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N ,且n >1),第一步要证的不等式是________.【解析】 ∵n >1且n ∈N , ∴当n =2时,1+12+13<2.【答案】 1+12+13<28.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为________.【解析】 由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =1n -n +.【答案】 a n =1n -n +9.凸n 多边形有f (n )条对角线.则凸(n +1)边形的对角线的条数f (n +1)与f (n )的递推关系式为________.【解析】 f (n +1)=f (n )+(n -2)+1=f (n )+n -1. 【答案】 f (n +1)=f (n )+n -1 三、解答题10.用数学归纳法证明:对一切大于1的自然数,不等式⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12n -1>2n +12均成立. 【证明】 ①当n =2时,左边=1+13=43,右边=52.∵左边>右边,∴不等式成立.②假设当n =k (k ≥2,且k ∈N *)时不等式成立. 即⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1>2k +12. 则当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+1k +-1>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=k ++12.∴当n =k +1时,不等式也成立.由①②知,对于一切大于1的自然数n ,不等式都成立. 11.(2014·大连模拟)若不等式1n +1+1n +2+…+13n +1>a 24对一切正整数n 都成立,猜想正整数a 的最大值,并证明结论.【解】 当n =1时,11+1+11+2+13+1>a24,即2624>a24,所以a <26,而a 是正整数. 所以取a =25.下面用数学归纳法证明: 1n +1+1n +2+…+13n +1>2524.①当n =1时,已证:②假设当n =k 时,不等式成立,即1k +1+1k +2+…+13k +1>2524. 则当n =k +1时,有1k ++1+1k ++2+…+1k ++1=1k +1+1k +2+…+13k +1+13k +2+13k +3+13k +4-1k +1>2524+⎣⎢⎡⎦⎥⎤13k +2+13k +4-2k +. 因为13k +2+13k +4=k +9k 2+18k +8>2k +所以13k +2+13k +4-2k +>0.所以当n =k +1时,不等式也成立. 由①②知,对一切正整数n , 都有1n +1+1n +2+…+13n +1>2524, 所以a 的最大值等于25.12.是否存在正整数m 使得f (n )=(2n +7)·3n+9对任意自然数n 都能被m 整除?若存在,求出最大的m 的值,并证明你的结论;若不存在,说明理由.【解】 由f (n )=(2n +7)·3n+9得,f (1)=36,f (2)=3×36,f (3)=10×36,f (4)=34×36,由此猜想:m =36.下面用数学归纳法证明: ①当n =1时,显然成立;②假设n =k 时,f (k )能被36整除,即f (k )=(2k +7)·3k+9能被36整除; 当n =k +1时,[2(k +1)+7]·3k +1+9=(2k +7)·3k +1+27-27+2·3k +1+9=3[(2k +7)·3k+9]+18(3k -1-1),由于3k -1-1是2的倍数,故18(3k -1-1)能被36整除,所以当n =k +1时,f (k +1)也能被36整除.由①②可知对一切正整数n 都有f (n )=(2n +7)·3n+9能被36整除,m 的最大值为36.。

高中数学数学归纳法

高中数学数学归纳法
第十七页,共26页。
(2)假设当n k时,命题成立,即k个圆把平面分成 f (k) k2 k 2个部分,那么由题意知第k 1圆 与前k个圆中每个圆交于两点, 又无三圆交于同一 点, 于是它与其它k交于2k个点, 把它分成2k条弧而 每条弧把原区域分成2块,因此这平面的总区域增 加2k块,即f (k 1) k2 k 2 2k (k 1)2 (k 1) 2, 即当n k 1时命题成立. 由(1)(2)可知对任意n N命题成立.
当 nk1 时 ,已k 知 1个正 a1,a2, 数 ,ak,ak 1满足条 a1a2 ak 11. 若 k 这 1 个a 正 1 ,a 2, 数 ,a k,a k 1 都,相 则等 它 1 ,其 们和 k 1 ,命题得证
若k这 1个正 a1,a2,数 ,ak,ak1不全 ,则 相其 等中1的 必 也有 1的 小 (否 数 于 则 a1a2 与 ak11矛)不 盾 . 妨 a11设 ,a21.
k2 3k 4 (k 1)2 (k 1)2
2
2
故当n k 1时,命题成立
由(1)(2)可知,对任意正整n数,命题成立
第十六页,共26页。
补充练习:
有n个圆 ,其中每两个圆两 都点 相 ,并交 且于 每三个 不相交于同 ,求一 证 :这 点n个圆把平面分成 f(n)n2n2个部.分
证明 :(1)当n1时,即一个圆把平面 个分 部成 分 f(1)2,又n1时,n2 n22,命题成立
第六页,共26页。
特别提示:
数学归纳法证题的关键是“一凑假设,二凑结论”,在证题 的过程中,归纳推理一定要起到条件的作用,即证明n=k+1 成立时必须用到归纳递推这一条件.
第七页,共26页。
课堂练习:
1.用数学归 :1 纳 aa法 2 证 an明 1(a1)在验

高考数学总复习考点知识专题讲解6 数学归纳法

高考数学总复习考点知识专题讲解6  数学归纳法

高考数学总复习考点知识专题讲解专题6 数学归纳法数学归纳法是一种重要的数学方法,其应用主要体现在证明等式、证明数列不等式、证明整除性问题、归纳猜想证明等.本高考数学总复习考点知识专题讲解专题主要举例说明利用数学归纳法证明数列问题.知识点一数学归纳法在证明一个与正整数有关的命题时,可采用下面两个步骤:1.(奠基)验证:n=n0(n0∈N+)时,命题成立;2.(递推)假设n=k(k∈N+,k≥n0)时命题成立,证明n=k+1时命题也成立.只要完成这两个步骤,就可以知道:对任何从n0开始的正整数n,命题成立.这种证明方法叫作数学归纳法.3.利用数学归纳法证题的三个关键点(1)验证是基础找准起点,奠基要稳,有些问题中验证的初始值不一定是1.(2)递推是关键数学归纳法的实质是递推,分析从n=k到n=k+1的过程中,式子项数的变化,关键是弄清等式两边的构成规律,即从n=k到n=k+1,等式的两边会增加多少项、增加怎样的项.(3)利用假设是核心在第二步证明n=k+1成立时,一定要利用归纳假设,即把归纳假设“n=k时命题成立”作为条件.在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项,这是数学归纳法的核心,不用归纳假设的证明就不是数学归纳法. 【例1】用数学归纳法证明不等式2*2(1)()n n n N >+∈时,初始值0n 应等于.【例2】用数学归纳法证明不等式11113(2,)1224n n N n n n n +++>≥∈+++的过程中,由n k =递推到1n k =+时,不等式左边增加了() A .12(1)k +B .112122k k +++C .11211k k -++D .112122k k -++【例3】用数学归纳法证明等式(1)(2)(3)()213(21)n n n n n n n ++++=⋅⋅⋅⋅-,其中n N ∈,1n ≥,从n k =到1n k =+时,等式左边需要增乘的代数式为()A .22k +B .(21)(22)k k ++C .211k k ++D .(21)(22)1k k k +++ 【例4】已知n 为正偶数,用数学归纳法证明111111112()2341242n n n n-+-+⋯+>++⋯+-++时,若已假设(2n k k =≥,且k 为偶数)时等式成立,则还需利用假设再证() A .1n k =+时不等式成立B .2n k =+时不等式成立 C .22n k =+时不等式成立D .2(2)n k =+时不等式成立知识点二用数学归纳法证明等式 1.看结构(1)看等式两边的构成规律,等式的两边各有多少项,项的多少与n 的取值是否有关,从k n =到1+=k n ,等式两边会增加多少项; 2.配凑项(1)凑假设:将1+=k n 时的式子转化成与归纳假设的结构相同的式子; (2)凑结构:然后利用归纳假设,经过恒等变形,得到结论所需的结构形式. 【例5】用数学归纳法证明:*(1)(2)()213(21)()n n n n n n n N ++⋯+=⨯⨯⨯⋯⨯-∈.【例6】请用数学归纳法证明:223333(1)12...(1)4n n n n ++++-+=.知识点三归纳—猜想—证明1.“归纳—猜想—证明”的主要题型有: (1)已知数列的递推公式,求通项或前n 项和.(2)由一些恒等式、不等式改编的一些探究性问题,求使命题成立的参数值是否存在. (3)给出一些简单的命题(n =1,2,3,…),猜想并证明对任意正整数n 都成立的一般性命题.2.“归纳—猜想—证明”的一般环节(1)计算:根据条件,准确计算出前若干项,这是归纳、猜想的基础;(2)归纳与猜想:通过观察、分析、比较、综合、联想,猜想出一般性的结论; (3)证明:利用数学归纳法证明一般性结论. 【例7】已知正项数列{}n a 的前n 项和为n S ,(1)2n n n a a S +=.(1)计算1a ,2a ,3a ,猜想数列{}n a 的通项公式; (2)用数学归纳法证明数列{}n a 的通项公式.知识点四数学归纳法的综合应用用数学归纳法证明不等式的关键是由n k =时成立得1n k =+时成立.要注意两凑:一凑归纳假设;二凑证明目标,在凑证明目标时,主要方法有①放缩法;②基本不等式法;③作差比较法;④综合法与分析法;⑤利用函数的单调性.【例8】(2009•山东理)等比数列{}n a 的前n 项和为n S ,已知对任意的*n N ∈,点(,)n n S 均在函数(0x y b r b =+>且1)b ≠,b ,r 均为常数的图象上. (Ⅰ)求r 的值.(Ⅱ)当2b =时,记22(log 1)(*)n n b a n N =+∈,证明:对任意的*n N ∈,不等式成立1212111n nb b b b b b +++⋅⋅⋯⋅>【例9】记n S 为等差数列{}n a 的前n 项和,且420S =,510a =. (1)求n S ;(2(1)()2n n n S n N +++>∈.【例10】用两种方法证明:33*278()n n n N +--∈能被49整除.【例11】是否存在实数a ,b ,c ,使得等式2(1)135246(2)(4)()4n n n n n an bn c +⋅⋅+⋅⋅+⋯⋯+++=++对于一切正整数n 都成立?若存在,求出a ,b ,c 的值;若不存在,说明理由.【训练1】用数学归纳法证明等式:1221357(1)(21)(1)(21)(1)(23)(1)(2)n n n n n n n n +++-+-++⋯+--+-++-+=-+.要验证当1n =时等式成立,其左边的式子应为()A .1-B .13-+C .135-+-D .1357-+-+【训练2】用数学归纳法证明21211n n nn ->++对任意(,)n k n k N >∈的自然数都成立,则k 的最小值为()A .1B .2C .3D .4【训练3】用数学归纳法证明“22n n >对于0n n …的正整数n 都成立”时,第一步证明中的初始值0n 应取() A .2B .3C .4D .5【训练4】用数学归纳法证明不等式“1111(,2)232nn n N n +++⋅⋅⋅+<∈≥”时,由(2)n k k =…时不等式成立,推证1n k =+时,左边增加的项数是() A .12k -B .21k -C .2k D .21k +【训练5】用数学归纳法证明222(1)1232n n n +++++=时,由n k =到1n k =+,左边需要添加的项数为()A .1B .kC .2kD .21k +【训练6】用数学归纳法证明不等式“111131214n n n n ++⋯+>+++”的过程中,由n k =递推到1n k =+时,不等式左边() A .增加了一项“12(1)k +” B .增加了两项“121k +”和“12(1)k +”C .增加了一项“12(1)k +”,但又减少了一项“11k +” D .增加了两项“121k +”和“12(1)k +”,但又减少了一项“11k +”【训练7】已知经过同一点的*(n n N ∈,3)n ≥个平面,任意三个平面不经过同一条直线,若这n 个平面将空间分成()f n 个部分.现用数学归纳法证明这一命题,证明过程中由n k =到1n k =+时,应证明增加的空间个数为()A .2kB .22k +C .222k k ++D .22k k ++【训练8】用数学归纳法证明:2221(11)(22)()(1)(2)(3n n n n n n ++++++=++为正整数).【训练9】已知正数列{}n a 满足233312na n =+++.(1)求1a ,2a ,3a 的值;(2)试猜想数列{}n a 的通项公式,并用数学归纳法证明你的结论.【训练10】用数学归纳法证明:2221112(1)11...23(1)1n n n +-++++<++.【训练11】2(1)2n +.【训练12】用数学归纳法证明:21243()n n n N ++++∈能被13整除.【训练13】用数学归纳法证明:对任意正整数n ,4151n n +-能被9整除.【训练14】在教材中,我们已研究出如下结论:平面内n 条直线最多可将平面分成211122n n ++个部分.现探究:空间内n 个平面最多可将空间分成多少个部分,*n N ∈. 设空间内n 个平面最多可将空间分成32()1f n an bn cn =+++个部分. (1)求a ,b ,c 的值; (2)用数学归纳法证明此结论.。

高三数学第一轮总复习 114数学归纳法配套训练(含解析)

高三数学第一轮总复习 114数学归纳法配套训练(含解析)

【走向高考】(2013春季发行)高三数学第一轮总复习 11-4数学归纳法配套训练(含解析)新人教B 版基础巩固强化1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3D .1+12+13+14<3[答案] B[解析] ∵n ∈N *,n >1,∴n 取的第一个数为2,左端分母最大的项为122-1=13,故选B.2.某个命题与自然数n 有关,若n =k (k ∈N *)时命题成立,则可推得当n =k +1时该命题也成立,现已知n =5时,该命题不成立,那么可以推得( )A .n =6时该命题不成立B .n =6时该命题成立C .n =4时该命题不成立D .n =4时该命题成立[答案] C[解析] ∵“若n =k (k ∈N *)时命题成立,则当n =k +1时,该命题也成立”,故若n =4时命题成立,则n =5时命题也应成立,现已知n =5时,命题不成立,故n =4时,命题也不成立.[点评] 可用逆否法判断.3.(2012·深圳市明德外语实验学校测试)用数学归纳法证明:12+22+…+n 2+…+22+12=n 2n 2+13,第二步证明由“k 到k +1”时,左边应加( )A .k 2B .(k +1)2C .k 2+(k +1)2+k 2D .(k +1)2+k 2[答案] D[解析] 当n =k 时,左边=12+22+…+k 2+…+22+12,当n =k +1时,左边=12+22+…+k 2+(k +1)2+k 2+…+22+12,∴选D.4.已知S k =1k +1+1k +2+1k +3+ (12)(k =1,2,3,…),则S k +1等于( ) A .S k +12k +1B .S k +12k +2-1k +1C .S k +12k +1-12k +2D .S k +12k +1+12k +2[答案] C [解析] S k +1=1k +1+1+1k +1+2+…+12k +1=1k +2+1k +3+…+12k +2=1k +1+1k +2+…+12k +12k +1+12k +2-1k +1=S k +12k +1-12k +2. 5.数列{a n }中,已知a 1=1,当n ≥2时,a n -a n -1=2n -1,依次计算a 2、a 3、a 4后,猜想a n 的表达式是( )A .a n =3n -2B .a n =n 2C .a n =3n -1D .a n =4n -3[答案] B[解析] a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2. 6.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项B .f (n )中共有n +1项C .f (n )中共有n 2-n 项 D .f (n )中共有n 2-n +1项[答案] D[解析] f (n )的分母从n 开始取自然数到n 2止,共有n 2-(n -1)=n 2-n +1项. 7.如果不等式2n>n 2+1对于n ≥n 0的正整数n 都成立,则n 0的最小值为________. [答案] 5[解析] 当n =1时,2>2不成立, 当n =2时,4>5不成立. 当n =3时,8>10不成立 当n =4时,16>17不成立 当n =5时,32>26成立当n =6时,64>37成立,由此猜测n 0应取5. 8.用数学归纳法证明:(n +1)+(n +2)+…+(n +n )=n 3n +12(n ∈N *)的第二步中,当n =k +1时等式左边与n =k 时等式左边的差等于________.[答案] 3k +2[解析] [(k +1)+1]+[(k +1)+2]+…+[(k +1)+(k +1)]-[(k +1)+(k +2)+…+(k +k )]=[(k +1)+k ]+[(k +1)+(k +1)]-(k +1) =3k +2.9.(2012·长春模拟)如图,第n 个图形是由正n +2边形“扩展”而来的(n =1,2,3,…),则第n -2(n ≥3,n ∈N *)个图形共有________个顶点.[答案] n (n +1)[解析] 当n =1时,顶点共有3×4=12(个), 当n =2时,顶点共有4×5=20(个), 当n =3时,顶点共有5×6=30(个), 当n =4时,顶点共有6×7=42(个),故第n -2图形共有顶点(n -2+2)(n -2+3)=n (n +1)个.10.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1).试比较11+a 1+11+a 2+11+a 3+…+11+a n与1的大小,并说明理由. [解析] ∵f ′(x )=x 2-1,a n +1≥f ′(a n +1), ∴a n +1≥(a n +1)2-1.∵函数g (x )=(x +1)2-1=x 2+2x 在区间[-1,+∞)上单调递增,于是由a 1≥1,及a 2≥(a 1+1)2-1得,a 2≥22-1,进而得a 3≥(a 2+1)2-1≥24-1>23-1,由此猜想:a n ≥2n-1.下面用数学归纳法证明这个猜想: ①当n =1时,a 1≥21-1=1,结论成立;②假设当n =k (k ≥1且k ∈N *)时结论成立,即a k ≥2k-1,则当n =k +1时,由g (x )=(x +1)2-1在区间[-1,+∞)上单调递增知,a k +1≥(a k +1)2-1≥22k-1≥2k +1-1,即n =k +1时,结论也成立.由①、②知,对任意n ∈N *,都有a n ≥2n-1.即1+a n ≥2n.∴11+a n ≤12n . ∴11+a 1+11+a 2+…+11+a 3+…+11+a n ≤12+122+123+…+12n =1-(12)n<1. 能力拓展提升11.若f (x )=f 1(x )=x1+x,f n (x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=( )A .n B.9n +1C.nn +1D .1[答案] A[解析] 易知f (1)=12,f (2)=23,f (3)=34,…,f (n )=nn +1;由f n (x )=f n -1(f (x ))得,f 2(x )=x 1+2x ,f 3(x )=x 1+3x ,…,f n (x )=x 1+nx ,从而f 1(1)=12,f 2(1)=13,f 3(1)=14,…,f n (1)=1n +1,, 所以f (n )+f n (1)=1,故f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=n . 12.如图,一条螺旋线是用以下方法画成的:△ABC 是边长为1的正三角形,曲线CA 1、A 1A 2,A 2A 3是分别以A 、B 、C 为圆心,AC 、BA 1、CA 2为半径画的圆弧,曲线CA 1A 2A 3称为螺旋线旋转一圈.然后又以A 为圆心,AA 3为半径画圆弧……这样画到第n 圈,则所得螺旋线的长度l n 为( )A .(3n 2+n )π B .(3n 2-n +1)π C.3n 2+n π2D.3n 2-n +1π2[答案] A[解析] 由条件知CA 1,A 1A 2,A 2A 3,…,A n -1A n 对应的中心角都是2π3,且半径依次为1,2,3,4,…,故弧长依次为2π3,2π3×2,2π3×3…,据题意,第一圈长度为2π3(1+2+3),第二圈长度为2π3(4+5+6),第n 圈长度为2π3[(3n -2)+(3n -1)+3n ],故L n =2π3(1+2+3+…+3n )=2π3·3n1+3n 2=(3n 2+n )π. 13.已知数列{a n }的前n 项和为S n ,a 1=1,且S n 、S n +1、2S 1成等差数列,则S 2、S 3、S 4分别为________,由此猜想S n =________.[答案] 32,74,158 S n =2n-12n -1[解析] ∵S n 、S n +1、2S 1成等差数列, ∴2S n +1=S n +2S 1,∵S 1=a 1=1,∴2S n +1=S n +2. 令n =1,则2S 2=S 1+2=1+2=3, ∴S 2=32.同理,分别令n =2、n =3, 可求得S 3=74,S 4=158,由S 1=1=21-120,S 2=32=22-121,S 3=74=23-122,S 4=158=24-123,猜想S n =2n-12n -1.14.(2012·温州一模)已知n ∈N *,设平面上的n 个椭圆最多能把平面分成a n 部分,则a 1=2,a 2=6,a 3=14,a 4=26,…,则a n =________.[答案] 2n 2-2n +2[解析] 观察规律可知a n -a n -1=(n -1)×4,利用累加法可得a n =2n 2-2n +2. 15.用数学归纳法证明下面的等式12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n n +12.[证明] (1)当n =1时,左边=12=1,右边=(-1)0·1×1+12=1, ∴原等式成立.(2)假设n =k (k ∈N +,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)k -1·k 2=(-1)k -1k k +12.那么,当n =k +1时,则有 12-22+32-42+…+(-1)k -1·k 2+(-1)k ·(k +1)2=(-1)k -1k k +12+(-1)k·(k +1)2=(-1)k·k +12[-k +2(k +1)]=(-1)kk +1k +22,∴n =k +1时,等式也成立, 由(1)、(2)得对任意n ∈N +有 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n n +12.16.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n1-4a 2n(n ∈N *)且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. [解析] (1)由P 1的坐标为(1,-1)知a 1=1,b 1=-1. ∴b 2=b 11-4a 21=13,a 2=a 1·b 2=13. ∴点P 2的坐标为(13,13).∴直线l 的方程为2x +y =1.(2)证明:①当n =1时,2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ∈N *,k ≥1)时,2a k +b k =1成立, 则当n =k +1时,2a k +1+b k +1=2a k ·b k +1+b k +1 =b k1-4a 2k ·(2a k +1)=b k 1-2a k =1-2a k1-2a k=1, ∴当n =k +1时,命题也成立.由①②知,对n∈N*,都有2a n+b n=1,即点P n在直线l上.1.对于不等式n2+n≤n+1(n∈N*),某人的证明过程如下:1°当n=1时,12+1≤1+1,不等式成立.2°假设n=k(k∈N*)时不等式成立,即k2+k<k+1,则n=k+1时,k+12+k+1=k2+3k+2<k2+3k+2+k+2=k+22=(k+1)+1.∴当n=k+1时,不等式成立.上述证法( )A.过程全都正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确[答案] D[解析]上述证明过程中,在由n=k变化到n=k+1时,不等式的证明使用的是放缩法而没有使用归纳假设.故选D.2.观察下式:1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……据此你可归纳猜想出的一般结论为( )A.1+3+5+…+(2n-1)=n2(n∈N*)B.1+3+5+…+(2n+1)=n2(n∈N*)C .1+3+5+…+(2n -1)=(n +1)2(n ∈N *) D .1+3+5+…+(2n +1)=(n +1)2(n ∈N *) [答案] D[解析] 观察可见第n 行左边有n +1个奇数,右边是(n +1)2,故选D.3.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰由6颗珠宝(图中圆圈表示珠宝)构成如图1所示的正六边形,第三件首饰由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断前10件首饰所用珠宝总颗数为( )A .190B .715C .725D .385 [答案] B[解析] 由条件可知前5件首饰的珠宝数依次为:1,1+5,1+5+9,1+5+9+13,1+5+9+13+17,即每件首饰的珠宝数为一个以1为首项,4为公差的等差数列的前n 项和,通项a n =4n -3.由此可归纳出第n 件首饰的珠宝数为n [1+4n -3]2=2n 2-n .则前n 件首饰所用的珠宝总数为2(12+22+…+n 2)-(1+2+…+n )=4n 3+3n 2-n6.当n =10时,总数为715.4.已知正项数列{a n }中,对于一切的n ∈N *均有a 2n ≤a n -a n +1成立. (1)证明:数列{a n }中的任意一项都小于1; (2)探究a n 与1n的大小,并证明你的结论.[解析] (1)由a 2n ≤a n -a n +1得a n +1≤a n -a 2n .∵在数列{a n }中a n >0,∴a n +1>0, ∴a n -a 2n >0,∴0<a n <1,故数列{a n }中的任何一项都小于1. (2)解法1:由(1)知0<a n <1=11,那么a 2≤a 1-a 21=-⎝ ⎛⎭⎪⎫a 1-122+14≤14<12,由此猜想:a n <1n .下面用数学归纳法证明:当n ≥2,n ∈N 时猜想正确. ①当n =2时,显然成立;②假设当n =k (k ≥2,k ∈N )时,有a k <1k ≤12成立.那么a k +1≤a k -a 2k =-⎝ ⎛⎭⎪⎫a k -122+14<-⎝ ⎛⎭⎪⎫1k -122+14=1k -1k 2=k -1k 2<k -1k 2-1=1k +1,∴当n =k +1时,猜想也正确. 综上所述,对于一切n ∈N *,都有a n <1n.解法2:由a 2n ≤a n -a n +1, 得0<a k +1≤a k -a 2k =a k (1-a k ), ∵0<a k <1,∴1a k +1≥1a k1-a k =1a k +11-a k,∴1a k +1-1a k ≥11-a k>1. 令k =1,2,3,…,n -1得: 1a 2-1a 1>1,1a 3-1a 2>1,…,1a n -1a n -1>1,∴1a n >1a 1+n -1>n ,∴a n <1n.5.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点⎝ ⎛⎭⎪⎫n ,S n n 都在函数f (x )=x +a n2x 的图象上.(1)求a 1、a 2、a 3的值,猜想a n 的表达式,并用数学归纳法证明;(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值.[分析] (1)将点⎝ ⎛⎭⎪⎫n ,S n n 代入函数f (x )=x +a n2x 中,通过整理得到S n 与a n 的关系,则a 1,a 2,a 3可求;(2)通过观察发现b 100是第25组中第4个括号内各数之和,各组第4个括号中各数之和构成首项为68、公差为80的等差数列,利用等差数列求和公式可求b 100.[解析] (1)∵点⎝ ⎛⎭⎪⎫n ,S n n 在函数f (x )=x +a n2x 的图象上,∴S n n =n +a n 2n ,∴S n =n 2+12a n . 令n =1得,a 1=1+12a 1,∴a 1=2;令n =2得,a 1+a 2=4+12a 2,∴a 2=4;令n =3得,a 1+a 2+a 3=9+12a 3,∴a 3=6.由此猜想:a n =2n . 用数学归纳法证明如下:①当n =1时,由上面的求解知,猜想成立. ②假设n =k (k ≥1)时猜想成立,即a k =2k 成立, 则当n =k +1时,注意到S n =n 2+12a n (n ∈N *),故S k +1=(k +1)2+12a k +1,S k =k 2+12a k .两式相减得,a k +1=2k +1+12a k +1-12a k ,所以a k +1=4k +2-a k .由归纳假设得,a k =2k ,故a k +1=4k +2-a k =4k +2-2k =2(k +1). 这说明n =k +1时,猜想也成立. 由①②知,对一切n ∈N *,a n =2n 成立.(2)因为a n =2n (n ∈N *),所以数列{a n }依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b 100是第25组中第4个括号内各数之和.由分组规律知,各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,所以b 100=68+24×80=1988, 又b 5=22,所以b 5+b 100=2010.[点评] 由已知求出数列的前几项,做出猜想,然后利用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的关键是根据已知条件和假设寻找a k与a k+1或S k与S k+1间的关系,使命题得证.11。

最新高考数学练习题目详解36归纳法、定义法、公式法、累加法、累乘法

最新高考数学练习题目详解36归纳法、定义法、公式法、累加法、累乘法

【知识要点】一、数列的通项公式如果数列{}n a 的第n 项n a 和项数n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.即()n a f n =.不是每一个数列都有通项公式.不是每一个数列只有一个通项公式. 二、数列的通项的常见求法:通项五法1、归纳法:先通过计算数列的前几项,再观察数列中的项与系数,根据n a 与项数n 的关系,猜想数列的通项公式,最后再证明.2、公式法:若在已知数列中存在:)0(,)(11≠==-++q q a a d a a nn n n 或常数的关系,可采用求等差数列、等比数列的通项公式的求法,确定数列的通项;若在已知数列中存在:)()(n f S a f S n n n ==或的关系,可以利用项和公式11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩,求数列的通项.3、累加法:若在已知数列中相邻两项存在:1()(2)n n a a f n n --=≥的关系,可用“累加法”求通项.4、累乘法:若在已知数列中相邻两项存在:1()(2)nn a g n n a -=≥的关系,可用“累乘法”求通项. 5、构造法:(见下一讲) 【方法讲评】【例1】在数列{n a }中,16a =,且111n n n a a n n---=++*(,2)n N n ∈≥, (1)求234,,a a a 的值;(2)猜测数列{n a }的通项公式,并用数学归纳法证明.【点评】(1)本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明.(2)归纳法在主观题中一般用的比较少,一是因为它要给予严格的证明,二是有时数列的通项并不好猜想.如果其它方法实在不行,再考虑利用归纳法.【反馈检测1】在单调递增数列{}n a 中,11a =,22a =,且21221,,n n n a a a -+成等差数列,22122,,n n n a a a ++成等比数列,1,2,3,n =.(1)分别计算3a ,5a 和4a ,6a 的值; (2)求数列{}n a 的通项公式(将n a 用n 表示);(3)设数列1{}n a 的前n 项和为n S ,证明:42n n S n <+,n *∈N .【例2】已知数列{}n a ,n S 是其前n 项的和,且满足21=a ,对一切*∈N n 都有2321++=+n S S n n 成立,设n a b n n +=.(1)求2a ;(2)求证:数列{}n b 是等比数列; (3)求使814011121>+⋅⋅⋅++n b b b 成立的最小正整数n 的值.【点评】利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项. 【反馈检测2】已知等比数列{n a }中,164a =,公比1q ≠,234,,a a a 又分别是某等差数列的第7项,第3项,第1项.(1)求n a ;(2)设2log n n b a =,求数列{||}n b 的前n 项和n T .【例3】数列{n a }的前n 项和为n S ,1a =1,12n n a S += ( n ∈N *),求{n a }的通项公式.【点评】(1)已知)()(n f S a f S n n n ==或,一般利用和差法.如果已知1()n n S f a +=1()n f a -或也可 以采用和差法.(2)利用此法求数列的通项时,一定要注意检验1n =是否满足,能并则并,不并则分.【例4】已知函数x x x f 63)(2+-= ,n S 是数列}{n a 的前n 项和,点(,)n n S (n N *∈)在曲线)(x f y =上.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若1)21(-=n n b ,6nn n b a c ∙=,且n T 是数列}{n c 的前n 项和. 试问n T 是否存在最大值?若存在,请求出n T 的最大值;若不存在,请说明理由.【解析】(Ⅰ)因为点(,)n n S 在曲线)(x f y =上,又x x x f 63)(2+-=,所以n n S n 632+-=.当1n =时,311==S a .当1n >时,221(36)[3(1)6(1)]96n n n a S S n n n n n -=-=-+---+-=-所以n a n 69-=.(Ⅱ)因为111(96)()1112(),(32)()2662n n n n n n n n b c a b n ---====- ①所以 231111(1)()(3)()(32)(),2222n n T n =+-+-++- ②234111111()(1)()(3)()(32)(),22222n n T n +=+-++-++- ③ ②-③得 132)21)(23()21)(2()21)(2()21)(2(2121+---++-+-+=n n n n T112)21)(23(211])21(1[)21()2(21+-----=-+=n n n .整理得1)21)(12(-+=n n n T , ④方法一 利用差值比较法由④式得1)21)(32(11-+=++n n n T ,所以111111(23)()(21)()[(23)()(21)]()22223111[(21)]()()().2222nn n n n n nT T n n n n n n n ++-=+-+=+-+=+-+=-因为1≥n ,所以021<-n . 又0)21(>n ,所以01<-+n n T T 所以n n T T <+1,所以 >>>>>>+1321n n T T T T T . 所以T n 存在最大值11.2T =方法三 利用放缩法由①式得0)21)(21()21)](1(23[111<-=+-=+++n n n n n c ,又因为n T 是数列}{n c 的前n 项和, 所以n n n n T c T T <+<++11. 所以 >>>>>>+1321n n T T T T T 所以n T 存在最大值211=T . 【反馈检测3】已知数列{n a }的前n 项和14122333n n n S a +=-⨯+(1,2,3,4n =⋅⋅⋅),求{n a }的通项公式.【例4】已知数列{}n a ,{}n b ,11=a ,112--+=n n n a a ,111+-+=n n n n a a a b ,n S 为数列{}n b 的前n 项和,nT 为数列{}n S 的前n 项和.(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n S ;(3)求证:312->n T n . 【解析】(1)法一:112--+=n n n a a 112211)()()(a a a a a a a a n n n n n +-++-+-=∴--- ,122121122221-=--=++++=--n nn n【点评】(1)本题11n n a a n --=-,符合累加法的使用情景1()(2)n n a a f n n --=≥,所以用累加法求数列的通项.(2)使用累加法时,注意等式的个数,是1n -个,不是n 个.【反馈检测4】已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.【例5】已知数列{}n a 满足n n n a a n a a 求,1,311+==+【点评】(1)由已知得,11+=+n n a a n n 符合累乘法求数列通项的情景,所以使用累乘法求该数列的通项.(2)使用累乘法求数列的通项时,只要写出1n -个等式就可以了,不必写n 个等式.【反馈检测5】 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.高中数学常见题型解法归纳及反馈检测第36讲:数列通项的求法一(归纳法、定义法、公式法、累加法、累乘法)参考答案【反馈检测1答案】33a =,56a =,492a =,68a =.①当1=n 时,21111a a ⨯-==,221222a ⨯==,猜想成立; ②假设(1,*)n k k k N =≥∈时,猜想成立,即21(1)2k k k a -+=,22(1)2k k a +=,那么 []22(1)121221(1)(1)1(1)(1)22222k k k k k k k k k a a a a +-+-+++++==-=⨯-=,[][]2222212(1)2222(1)(2)(1)1(2)222(1)2k k k kk k k a k a a a k ++++++++=====+ ∴1+=k n 时,猜想也成立.由①②,根据数学归纳法原理,对任意的*n N ∈,猜想成立.∴当n 为奇数时,8)3)(1(212121++=⎪⎭⎫⎝⎛+++=n n n n a n ;当n 为偶数时,8)2(21222+=⎪⎭⎫⎝⎛+=n n a n . 即数列}{n a 的通项公式为⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,8)2(,8)3)(1(2.(方法2)由(2)得⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,)2(8,)3)(1(812. 以下用数学归纳法证明24+<n nS n ,*n N ∈. ①当1=n 时,2114341111+⨯=<==a S ; 当2=n 时,222422321111212+⨯=<=+=+=a a S .∴2,1=n 时,不等式成立. ②假设)2(≥=k k n 时,不等式成立,即24+<k kS k , 那么,当k 为奇数时,211)3(8241+++<+=++k k k a S S k k k 22)3)(2(83)1(431)3(2243)1(4++-++=⎥⎦⎤⎢⎣⎡++-++++++=k k k k k k k k k k k 2)1()1(4+++<k k ; 当k 为偶数时,)4)(2(824111++++<+=++k k k k a S S k k k )4)(3)(2(83)1(431)4)(2(2243)1(4+++-++=⎥⎦⎤⎢⎣⎡++-+++++++=k k k k k k k k k k k k k2)1()1(4+++<k k .∴1+=k n 时,不等式也成立.综上所述:42n nS n <+ 【反馈检测2答案】(1)1164()2n n a -=⨯;(2) n T =⎪⎩⎪⎨⎧>+--≤-).7(212)6)(7(),7(2)13(n n n n n n.【反馈检测3答案】42n nn a =-【反馈检测4答案】3 1.nn a n =+-学科*网【反馈检测4详细解析】由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+1221(231)(231)(231)(231)3n n --=⨯++⨯+++⨯++⨯++12212(3333)(1)3n n n --=+++++-+13(13)2(1)313n n --=+-+-3313n n =-+-+31n n =+- 所以3 1.n n a n =+-【反馈检测5答案】(1)12325!.n n n n a n --=⨯⨯⨯【反馈检测5详细解析】因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+, 故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅ 1221[2(11)5][2(21)5][2(21)5][2(11)5]3n n n n --=-+-+⋅⋅+⨯+⨯⨯1(1)(2)212[(1)32]53n n n n n --+-+++=-⋅⋅⨯⨯⨯(1)12325!n n n n --=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯高中数学公式及常用结论大全1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠;(3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->-⇔11()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k ab k k <-<+.()()()()card A B card B C card CA card ABC ---+9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a bx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n>⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.真值表13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(xb f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=. (2)函数()y f x =图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=. 24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b fb a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na=(0,,a m n N *>∈,且1n >).(2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r srsa a a r s Q =>∈. (3)()(0,0,)r r rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<. (2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥. 45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤.s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤. tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈. sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.61.a 与b 的数量积(或内积) a ·b =|a ||b |cos θ.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式 ,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+. (3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式 22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小. (2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数. (2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直直线系方程0Bx Ay λ-+=,λ是参变量. 83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ). 87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b +=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y ya b+=.(2)过椭圆22221(0)x y a b a b +=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b +=.(3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=.(3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.100. 抛物线px y 22=的焦半径公式 抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 101.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-; (3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =. 105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <. 当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212||AB x x y y ==-=-A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点;(2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量. 117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD x AB y AC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.。

2022年高考总复习数学(理科)课时作业:第5章 第7讲 数学归纳法 Word版含解析

第7讲 数学归纳法1.用数学归纳法证明:(n +1)(n +2)·…·(n +n )=2n ×1×3×…×(2n -1)(n ∈N *),从“n =k ”到“n =k +1”左端需乘的代数式是( )A .2k +1B .2(2k +1) C.2k +1k +1 D.2k +3k +12.用数学归纳法证明:12+22+…+n 2+…+22+12=n (2n 2+1)3,其次步证明由“k 到k +1”时,左边应加( )A .k 2B .(k +1)2C .k 2+(k +1)2+k 2D .(k +1)2+k 23.用数学归纳法证明1+a +a 2+…+a n =1-an +11-a(a ≠1,n ∈N *)时,在验证n =1时,左边计算所得的式子是( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 44.用数学归纳法证明等式:1+2+3+…+n 2=n 4+n 22(n ∈N *),则从n =k 到n =k +1时,左边应添加的项为( )(导学号 58940310)A .k 2+1B .(k +1)2C.(k +1)4+(k +1)22D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)25.用数学归纳法证明1+2+22+…+25n -1是31的整数倍时,当n =1时,上式等于( ) A .1+2 B .1+2+22C .1+2+22+23D .1+2+22+23+246.已知S k =1k +1+1k +2+1k +3+…+12k (k =1,2,3,…),则S k +1=( )A .S k +12k +1B .S k +12k +2-1k +1C .S k +12k +1-12k +2D .S k +12k +1+12k +27.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,利用归纳法假设证明n =k +1时,只需开放( )(导学号 58940311)A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)38.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由k 推导到k +1时,不等式左边增加的式子是________________.9.(2022年广东)设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *且S 3=15. (1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.10.是否存在常数a ,b ,c ,使等式1×22+2×32+…+n (n +1)2=n (n +1)12(an 2+bn +c )对一切正整数n都成立?证明你的结论.第7讲 数学归纳法1.B 2.D3.B 解析:n =1时,左边的最高次数为1,即最终一项为a ,左边是1+a .4.D 解析:n =k 时,等式左边=1+2+3+…+k 2,n =k +1时,等式左边=1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2.比较上述两个式子,n =k +1时,等式的左边是在假设n =k 时等式成立的基础上,等式的左边加上了(k 2+1)+(k 2+2)+…+(k +1)2.5.D 解析:原等式共有5n 项,当n =1时,25-1=24.故选D.6.C 解析:S k +1=1k +1+1+1k +1+2+…+12(k +1)=1k +2+1k +3+…+12k +2=1k +1+1k +2+…+12k +12k +1+12k +2-1k +1=S k +12k +1-12k +2. 7.A 解析:假设n =k 时,原式k 3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3+(k +2)3+(k +3)3,为了能用上面的归纳假设,只需将(k +3)3开放,让其消灭k 3.8.1(2k +1)(2k +2) 解析:求f (k +1)-f (k )即可.当n =k 时,左边=1k +1+1k +2+…+1k +k .当n =k +1时,左边=1k +2+1k +3+…+1(k +1)+(k +1).故左边增加的式子是12k +1+12k +2-1k +1,即1(2k +1)(2k +2).9.解:(1)S 2=4a 3-20,S 3=S 2+a 3=5a 3-20, 又S 3=15,∴a 3=7,S 2=4a 3-20=8, 又S 2=S 1+a 2=(2a 2-7)+a 2=3a 2-7. ∴a 2=5,a 1=S 1=2a 2-7=3, 综上知a 1=3,a 2=5,a 3=7. (2)由(1)猜想a n =2n +1, ①当n =1时,结论明显成立; ②假设当n =k (k ≥1)时,a k =2k +1,则S k =3+5+7+…+(2k +1)=3+(2k +1)2×k =k (k +2),又S k =2ka k +1-3k 2-4k .∴k (k +2)=2ka k +1-3k 2-4k ,解得2a k +1=4k +6. ∴a k +1=2(k +1)+1,即当n =k +1时,结论成立; 由①②知,∀n ∈N *,a n =2n +1.10.解:把n =1,2,3代入,得方程组⎩⎪⎨⎪⎧a +b +c =24,4a +2b +c =44,9a +3b +c =70,解得⎩⎪⎨⎪⎧a =3,b =11,c =10.猜想:等式1×22+2×32+…+n (n +1)2 =n (n +1)12(3n 2+11n +10)对一切n ∈N *都成立.下面用数学归纳法证明:(1)当n =1时,由上面可知等式成立. (2)假设n =k 时等式成立, 即1×22+2×32+…+k (k +1)2 =k (k +1)12(3k 2+11k +10), 则1×22+2×32+…+k (k +1)2+(k +1)(k +2)2 =k (k +1)12(3k 2+11k +10)+(k +1)(k +2)2=k (k +1)12(3k +5)(k +2)+(k +1)(k +2)2 =(k +1)(k +2)12[k (3k +5)+12(k +2)]=(k +1)(k +2)12[3(k +1)2+11(k +1)+10].∴当n =k +1时,等式也成立. 综合(1)(2),对n ∈N *等式都成立.。

高中数学第二章推理与证明2.3数学归纳法精讲精练(含答案解析)

2.3数学归纳法考点学习目标核心素养数学归纳法的原理了解数学归纳法的原理数学抽象数学归纳法的应用能用数学归纳法证明一些简单的数学命题逻辑推理问题导学预习教材P92~P95,并思考下列问题:1.数学归纳法的概念是什么?2.数学归纳法的证题有几步?数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:①(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;②(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.■名师点拨(1)数学归纳法的两个步骤分别是数学归纳法的两个必要条件,二者缺一不可.步骤①是命题论证的基础,步骤②是判断命题的正确性能否递推下去的保证,这两个步骤缺一不可.如果缺少步骤②,无法对当n取n0以后的数时的结论是否正确作出判断;如果缺少步骤①这个基础,假设就失去了成立的前提,步骤②就没有意义了.(2)步骤②中,证明“当n=k+1时命题成立”的过程中,必须利用归纳假设,即必须用上“假设当n=k时命题成立”这一条件.判断正误(对的打“√”,错的打“×”)(1)与正整数n 有关的数学命题的证明只能用数学归纳法.( ) (2)数学归纳法的第一步n 0的初始值一定为1.( ) (3)数学归纳法的两个步骤缺一不可.( ) 答案:(1)× (2)× (3)√用数学归纳法证明“凸n 边形的内角和等于(n -2)π”时,归纳奠基中n 0的取值应为( )A .1B .2C .3D .4解析:选C.根据凸n 边形至少有3条边,知n ≥3,故n 0的取值应为3.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *且n >1)第一步要证明的不等式是____________,从n =k 到n =k +1时,左端增加了____________项.解析:当n =2时,1+12+13<2.当n =k 时到第2k -1项, 而当n =k +1时到第2k +1-1项,所以2k +1-1-(2k -1)=2k +1-2k =2·2k -2k =2k . 答案:1+12+13<2 2k用数学归纳法证明等式用数学归纳法证明:对任何正整数n ,13+115+135+163+…+14n 2-1=n2n +1成立.【证明】 ①当n =1时,左边=13,右边=12×1+1=13,故左边=右边,等式成立; ②假设当n =k (k ∈N *)时等式成立, 即13+115+135+163+…+14k 2-1=k2k +1. 那么当n =k +1时,利用归纳假设有: 13+115+135+163+…+14k 2-1+14(k +1)2-1=k2k+1+14(k+1)2-1=k2k+1+1(2k+2)2-1=k2k+1+1(2k+1)(2k+3)=k(2k+3)+1(2k+1)(2k+3)=2k2+3k+1(2k+1)(2k+3)=(2k+1)(k+1)(2k+1)(2k+3)=k+12(k+1)+1.故当n=k+1时,等式也成立.由①和②知,等式对任何正整数n都成立.用数学归纳法证明等式的方法用数学归纳法证明:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,其中n∈N*.证明:(1)当n=1时,左边=1×4=4,右边=1×22=4,左边=右边,等式成立.(2)假设当n=k(k∈N*)时等式成立,即1×4+2×7+3×10+…+k(3k+1)=k(k+1)2,那么当n=k+1时,1×4+2×7+3×10+…+k(3k+1)+(k+1)[3(k+1)+1]=k(k+1)2+(k+1)[3(k+1)+1]=(k+1)(k2+4k+4)=(k+1)[(k+1)+1]2,即当n=k+1时等式也成立.根据(1)和(2)可知等式对任何n∈N*都成立.用数学归纳法证明不等式求证:2+12·4+14·…·2n +12n >n +1,n ∈N *.【证明】 (1)当n =1时,左边=32,右边=2,左边>右边,所以不等式成立. (2)假设当n =k (k ∈N *)时,不等式成立, 即2+12·4+14·…·2k +12k>k +1. 则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1.要证当n =k +1时,不等式成立,只需证2k +32k +1≥k +2,即证2k +32≥(k +1)(k +2).由基本不等式,得2k +32=(k +1)+(k +2)2≥(k +1)(k +2),所以2k +32k +1≥k +2,所以当n =k +1时,不等式成立.由(1)(2)可知,对一切n ∈N *,原不等式均成立.用数学归纳法证明不等式问题的四个关键点用数学归纳法证明:122+132+142+…+1n 2<1-1n (n ≥2,n ∈N *). 证明:(1)当n =2时, 左式=122=14,右式=1-12=12.因为14<12,所以不等式成立.(2)假设n =k (k ≥2,k ∈N *)时, 不等式成立,即122+132+142+…+1k 2<1-1k , 则当n =k +1时,122+132+142+…+1k 2+1(k +1)2<1-1k +1(k +1)2=1-(k +1)2-k k (k +1)2=1-k 2+k +1k (k +1)2<1-k (k +1)k (k +1)2=1-1k +1, 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.归纳——猜想——证明已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n1-4a 2n(n ∈N *)且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对n ∈N *,点P n 都在(1)中的直线l 上. 【解】 (1)由点P 1的坐标为(1,-1)知a 1=1,b 1=-1, 所以b 2=b 11-4a 21=13,a 2=a 1·b 2=13, 所以点P 2的坐标为⎝⎛⎭⎫13,13, 故直线l 的方程为2x +y =1.(2)①当n =1时,2a 1+b 1=2×1+(-1)=1,命题成立.②假设当n =k (k ∈N *)时,2a k +b k =1成立,则当n =k +1时,2a k +1+b k +1=2a k ·b k +1+b k +1=b k 1-4a 2k(2a k+1)=b k1-2a k =1-2a k 1-2a k =1, 故当n =k +1时,命题也成立.由①和②知,对任何n ∈N *,都有2a n +b n =1成立,即点P n 在直线l 上.“归纳—猜想—证明”的一般步骤已知数列{a n }满足S n +a n =2n +1.(1)写出a 1,a 2,a 3,推测a n 的表达式; (2)用数学归纳法证明所得结论.解:(1)由S n +a n =2n +1,得a 1=32,a 2=74,a 3=158,推测a n =2n +1-12n =2-12n (n ∈N *).(2)证明:a n =2-12n (n ∈N *).①当n =1时,a 1=2-121=32,结论成立.②假设当n =k (k ≥1,k ∈N *)时结论成立,即a k =2-12k ,那么当n =k +1时,a 1+a 2+…+a k +a k +1+a k +1=2(k +1)+1,因为a 1+a 2+…+a k =2k +1-a k ,所以2a k +1=a k +2,所以2a k +1=4-12k ,所以a k +1=2-12k +1,所以当n =k +1时结论成立.由①②知对于任意正整数n ,结论都成立.规范解答数学归纳法的应用(本题满分12分)给出四个等式: 1=1,1-4=-(1+2), 1-4+9=1+2+3,1-4+9-16=-(1+2+3+4), …(1)写出第5,6个等式,并猜测第n (n ∈N *)个等式; (2)用数学归纳法证明你猜测的等式.【解】 (1)第5个等式:1-4+9-16+25=1+2+3+4+5,(1分) 第6个等式:1-4+9-16+25-36=-(1+2+3+4+5+6),(2分) 第n 个等式为:12-22+32-42+…+(-1)n -1n 2 =(-1)n -1(1+2+3+…+n ). (4分)正确猜测此结论,是本题的基础.)(2)证明:①当n =1时,左边=12=1, 右边=(-1)0×1=1,左边=右边,等式成立.(6分)②假设n =k (k ≥1,k ∈N *)时,等式成立,即12-22+32-42+…+(-1)k -1k 2 =(-1)k -1(1+2+3+…+k ) =(-1)k -1·k (k +1)2.(7分)则当n =k +1时,12-22+32-42+…+(-1)k -1k 2+(-1)k (k +1)2 =(-1)k -1·k (k +1)2+(-1)k (k +1)2=(-1)k (k +1)⎣⎡⎦⎤(k +1)-k2 =(-1)k (k +1)[(k +1)+1]2=(-1)k (1+2+3+…+k +1). (10分)由n =k 到n =k +,1是本题的难点.)所以当n =k +1时,等式也成立,(11分) 根据①②可知,对∀n ∈N *等式均成立.(12分)(1)应用数学归纳法时,可按口诀“递推基础不可少,归纳假设要用到,突出形式明依据,总结定论莫忘掉”来检查要点.(2)在数学归纳法应用中,要明确当n =k +1时,等式两边的式子与n =k 时等式两边的式子的联系,增加的项为(-1)k (k +1)2.这样才可以正确求解.1.用数学归纳法证明:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116·…·⎝⎛⎭⎫1-1n 2=n +12n (n ≥2,n ∈N *). 证明:①当n =2时, 左边=1-14=34,右边=2+12×2=34,所以左边=右边.所以当n =2时,等式成立.②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19·…·⎝⎛⎭⎫1-1k 2=k +12k , 当n =k +1时,那么⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19·…·⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2 =k +12k ⎣⎡⎦⎤1-1(k +1)2 =k +12k ·k (k +2)(k +1)2=k +22(k +1) =(k +1)+12(k +1),即当n =k +1时,等式也成立.根据①②可知,等式对任意n ≥2,n ∈N *都成立. 2.已知数列{a n }满足a 1=16,前n 项和S n =n (n +1)2a n .(1)求a 2,a 3,a 4的值;(2)猜想a n 的表达式,并用数学归纳法证明. 解:(1)因为a 1=16,前n 项和S n =n (n +1)2a n ,所以令n =2,得a 1+a 2=3a 2,所以a 2=12a 1=112.令n =3,得a 1+a 2+a 3=6a 3,所以a 3=120.令n =4,得a 1+a 2+a 3+a 4=10a 4,所以a 4=130.(2)猜想a n =1(n +1)(n +2),下面用数学归纳法给出证明.①当n =1时,左边:a 1=16=1(1+1)(1+2)=右边,结论成立;②假设当n =k (k ∈N *,k ≥1)时,结论成立, 即a k =1(k +1)(k +2),则当n =k +1时,S k =k (k +1)2·a k =k2(k +2),S k +1=(k +1)(k +2)2·a k +1,即S k +a k +1=(k +1)(k +2)2·a k +1,所以k2(k +2)+a k +1=(k +1)(k +2)2·a k +1,所以k (k +3)2·a k +1=k2(k +2),所以a k +1=1(k +2)(k +3),所以当n =k +1时结论成立.由①②可知,对一切n ∈N *都有a n =1(n +1)(n +2)成立.[A 基础达标]1.下面四个判断中,正确的是( )A .式子1+k +k 2+…+k n (n ∈N *),当n =1时,原式=1B .式子1+k +k 2+…+k n -1(n ∈N *),当n =1时,原式=1+k C .式子1+12+13+…+12n +1(n ∈N *),当n =1时,原式=11+12+13D .设f (n )=1n +1+1n +2+…+13n +1(n ∈N *),则f (k +1)=f (k )+13k +2+13k +3+13k +4解析:选C.A.当n =1时,原式=1+k ,错误;B.当n =1时,原式=1,错误;C.当n =1时,原式=11+12+13,正确;D.f (k +1)=f (k )+13k +2+13k +3+13k +4-1k +1,错误.故选C.2.用数学归纳法证明n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *)时,若记f (n )=n +(n +1)+(n +2)+…+(3n -2),则f (k +1)-f (k )等于( )A .3k -1B .3k +1C .8kD .9k解析:选C.因为f (k )=k +(k +1)+(k +2)+…+(3k -2),f (k +1)=(k +1)+(k +2)+…+(3k -2)+(3k -1)+3k +(3k +1),则f (k +1)-f (k )=3k -1+3k +3k +1-k =8k .3.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”的第二步是( ) A .假设n =2k +1时正确,再推n =2k +3时正确(k ∈N *) B .假设n =2k -1时正确,再推n =2k +1时正确(k ∈N *) C .假设n =k 时正确,再推n =k +1时正确(k ∈N *) D .假设n ≤k (k ≥1)时正确,再推n =k +2时正确(k ∈N *)解析:选B.n ∈N *且为奇数,由假设n =2k -1(k ∈N *)时成立推证出n =2k +1(k ∈N *)时也成立,就完成了归纳递推.4.用数学归纳法证明不等式12+13+…+12n ≤n 时,从n =k 到n =k +1不等式左边增添的项数是( )A .kB .2k -1C .2kD .2k +1解析:选C.当n =k 时,不等式左边为12+13+14+…+12k ,共有2k -1项;当n =k +1时,不等式左边为12+13+14+…+12k +1,共有2k +1-1项,所以增添的项数为2k +1-2k =2k .5.对于不等式 n 2+n <n +1(n ∈N *),某同学应用数学归纳法的证明过程如下: (1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立,即k 2+k <k +1.那么当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,所以当n =k +1时,不等式也成立.根据(1)和(2),可知对于任何n ∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的证明过程不正确解析:选D.此同学从n =k 到n =k +1的证明过程中没有应用归纳假设.6.用数学归纳法证明“2n >n 2+1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取________.解析:验证法,当n =1时,2=2;当n =2时,22=4<22+1=5;当n =3时,23=8<32+1=10;当n =4时,24=16<42+1=17;当n =5时,25=32>52+1=26;当n =6时,26=64>62+1=37.答案:57.用数学归纳法证明122+132+…+1(n +1)2>12-1n +2.假设n =k 时,不等式成立,则当n =k +1时,应推证的目标不等式是________.解析:观察不等式左边的分母可知,由n =k 到n =k +1左边多出了1(k +2)2这一项.答案:122+132+…+1(k +1)2+1(k +2)2>12-1k +38.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析:因为f (k )=12+22+…+(2k )2,f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2,所以f (k +1)-f (k )=(2k +1)2+(2k +2)2,即f (k +1)=f (k )+(2k +1)2+(2k +2)2.答案:f (k +1)=f (k )+(2k +1)2+(2k +2)29.已知数列{a n }中,a 1=5,S n -1=a n (n ≥2且n ∈N *).(1)求a 2,a 3,a 4并由此猜想a n 的表达式;(2)用数学归纳法证明{a n }的通项公式.解:(1)a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10,a 4=S 3=a 1+a 2+a 3=20.猜想a n =5×2n -2(n ≥2,n ∈N *).(2)证明:①当n =2时,a 2=5×22-2=5成立.②假设当n =k (k ≥2且k ∈N *)时猜想成立,即a k =5×2k -2,则n =k +1时,a k +1=S k =a 1+a 2+…+a k =5+5+10+…+5×2k -2=5+5(1-2k -1)1-2=5×2k -1. 故当n =k +1时,猜想也成立.由①②可知,对n ≥2且n ∈N *,都有a n =5×2n -2.于是数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,5×2n -2,n ≥2且n ∈N *. [B 能力提升]10.凸n 边形有f (n )条对角线,则凸n +1边形对角线的条数f (n +1)为( )A .f (n )+n +1B .f (n )+nC .f (n )+n -1D .f (n )+n -2解析:选C.增加一个顶点,就增加n +1-3条对角线,另外原来的一边也变成了对角线,故f (n +1)=f (n )+1+n +1-3=f (n )+n -1.故应选C.11.用数学归纳法证明“5n -2n 能被3整除(n ∈N *)”的第二步中,n =k +1时,为了使用归纳假设,应将5k +1-2k+1变形为( )A .5(5k -2k )+3×2kB .(5k -2k )+4×5k -2kC .3(5k -2k )D .2(5k -2k )-3×5k解析:选A.假设当n =k (k ∈N *)时命题成立,即5k -2k 能被3整除.当n =k +1时,5k +1-2k +1=5×5k -2×2k =5(5k -2k )+5×2k -2×2k =5(5k -2k )+3×2k ,故选A. 12.求证:当n ≥1(n ∈N *)时,(1+2+…+n )·⎝⎛⎭⎫1+12+…+1n ≥n 2. 证明:(1)当n =1时,左边=右边,命题成立;当n =2时,左边=(1+2)⎝⎛⎭⎫1+12=92>22=右边,命题成立. (2)假设当n =k (k ≥2,k ∈N *)时,命题成立,即(1+2+…+k )⎝⎛⎭⎫1+12+…+1k ≥k 2, 则当n =k +1时,有左边=[(1+2+…+k )+(k +1)]·[(1+12+…+1k )+1k +1]=(1+2+…+k )·⎝⎛⎭⎫1+12+…+1k +(1+2+…+k )·1k +1+(k +1)·⎝⎛⎭⎫1+12+…+1k +1≥k 2+k (k +1)2·1k +1+1+(k +1)·⎝⎛⎭⎫1+12+…+1k =k 2+k 2+1+(k +1)·⎝⎛⎭⎫1+12+…+1k . 因为当k ≥2时,1+12+…+1k ≥1+12=32, 所以左边≥k 2+k 2+1+(k +1)×32=k 2+2k +1+32>(k +1)2=右边. 所以当n =k +1时,命题也成立.由(1)(2)知,当n ≥1时,原命题成立.13.(选做题)已知函数f (x )=ax -32x 2的最大值不大于16,且当x ∈⎣⎡⎦⎤14,12时,f (x )≥18. (1)求a 的值;(2)设0<a 1<12,a n +1=f (a n ),n ∈N *,证明:a n <1n +1. 解:(1)由题意,知f (x )=ax -32x 2=-32⎝⎛⎭⎫x -a 32+a 26. 因为f (x )max ≤16,所以f (x )max =f ⎝⎛⎭⎫a 3=a 26≤16,所以a 2≤1. 又当x ∈⎣⎡⎦⎤14,12时,f (x )≥18, 所以⎩⎨⎧f ⎝⎛⎭⎫12≥18f ⎝⎛⎭⎫14≥18,即⎩⎨⎧a 2-38≥18a 4-332≥18,解得a ≥1. 又因为a 2≤1,所以a =1.(2)证明:由(1)知,f (x )=x -32x 2. 下面用数学归纳法证明:①当n =1时,0<a 1<12,显然结论成立. 因为当x ∈⎝⎛⎭⎫0,12时,0<f (x )≤16, 所以0<a 2=f (a 1)≤16<13. 故当n =2时,原不等式也成立.②假设当n =k (k ≥2,k ∈N *)时,不等式0<a k <1k +1成立. 因为f (x )=x -32x 2的对称轴为直线x =13, 所以当x ∈⎝⎛⎦⎤0,13时,f (x )为增函数. 由0<a k <1k +1≤13,得0<f (a k )<f ⎝⎛⎭⎫1k +1. 于是0<a k +1=f (a k )<1k +1-32·1(k +1)2+1k +2-1k +2=1k +2-k +42(k +1)2(k +2)<1k +2. 所以当n =k +1时,原不等式也成立.综合①②,知对任意n ∈N *,不等式a n <1n +1都成立.。

高考数学总复习 第6章 第7节 数学归纳法课时演练 新人

活页作业 数学归纳法一、选择题1.用数学归纳法证明“3n ≥n 3(n ≥3,n ∈N )”时,第一步证明中的初始值为( ) A .n =1 B .n =2 C .n =3D .n =4解析:由题意知n 0=3. 答案:C2.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程中,第二步假设当n =k (k ∈N *)时等式成立,则当n =k +1时应得到( )A .1+2+22+…+2k -2+2k -1=2k +1-1B .1+2+22+ (2)+2k +1=2k -1-1+2k +1C .1+2+22+…+2k -1+2k +1=2k +1-1D .1+2+22+…+2k -1+2k=2k-1+2k解析:由n =k 到n =k +1等式的左边增加了一项,故选D. 答案:D3.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74.则可归纳出1+122+132+142+…+1n2+1n +12小于( )A.2n +1n +1B .2nn +1C .2n +1n +2D .2n +1n +3解析:观察32,53,74与项数的关系可得结论为2n +1n +1.答案:A4.用数学归纳法证明“1n +1+1n +2+1n +3+…+1n +n ≥1124(n ∈N *)”时,由n =k 到n =k +1时,不等式左边应加的项为( )A.12k +1B.12k +1+12k +2C.12k +1+12k +2-1k +1D.12k +1+12k +2-1k +1-1k +25.对于不等式n 2+n <n +1(n ∈N *),某同学应用数学归纳法证明的过程如下: (1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *,且k ≥1)时,不等式成立,即k 2+k <k +1,则当n =k +1时,k +12+k +1=k 2+3k +2<k 2+3k +2+k +2=k +22=(k +1)+1,∴当n =k +1时,不等式成立.根据(1)和(2)可知对任何n ∈N *,n 2+n <n +1都成立.则上述证法( ) A .过程全部正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析:在证明n =k +1时,没有用到归纳假设,所以选D. 答案:D6.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1n -1n +1B .12n 2n +1C.12n -12n +1D .12n +12n +2解析:由a 1=13,S n =n (2n -1)a n ,得S 2=2(2×2-1)a 2, 即a 1+a 2=6a 2,∴a 2=115=13×5,S 3=3(2×3-1)a 3,即13+115+a 3=15a 3. ∴a 3=135=15×7,a 4=17×9.故选C.答案:C 二、填空题7.已知1+2×3+3×32+4×33+…+n ·3n -1=3n (na -b )+c 对一切n ∈N *都成立,则a =__________,b =__________,c =_________.三、解答题9.(2013·烟台模拟)已知数列{a n }满足a 1=2,a n +1=2a n +λa 2n +μ-1a n(n ∈N *). (1)若λ=μ=1,证明数列{lg(a n +1)}为等比数列,并求数列{a n }的通项公式; (2)若λ=0,是否存在实数μ,使得a n ≥2对一切n ∈N *恒成立?若存在,求出μ的取值范围,若不存在,说明理由.解:(1)∵λ=μ=1,则a n +1=a 2n +2a n , ∴a n +1+1=(a n +1)2, lg(a n +1+1)=2lg(a n +1),∴{lg(a n +1)}是公比为2的等比数列,且首项为lg 3, ∴lg(a n +1)=2n -1lg 3,∴a n +1=32n -1,∴a n =32n -1-1(n ∈N *).(2)方法一:由a 2=2a 1+μ-1a 1=4+μ-12≥2,得μ≥-3, 猜想μ≥-3时,对一切n ∈N *,a n ≥2恒成立. ①当n =1时,a 1=2,猜想成立.②假设当n =k (k ≥1且k ∈N *)时,a k ≥2, 则由a n +1=2a 2n +μ-1a n得a k +1-2=2a 2k -2a k +μ-1a k =2⎝⎛⎭⎪⎫a k -122+μ-32a k≥2×⎝ ⎛⎭⎪⎫322+μ-32a k =μ+3a k≥0,∴n =k +1时,a k +1≥2,猜想成立.由①②知,当μ≥-3时,对一切n ∈N *,恒有a n ≥2. 10.(金榜预测)设函数f (x )=x 2ex -1-13x 3-x 2(x ∈R ). (1)求函数y =f (x )的单调区间;当n =k +1时,因为g′k+1(x)=e x-1-k+1x kk+1!=e x-1-e kk!>0,所以g k+1(x)在(1,+∞)上也是增函数.所以g k+1(x)>g k+1(1)=e0-1k+1!=1-1k+1!>0,即当n=k+1时,不等式成立.由①②知当x∈(1,+∞)时,∀n∈N*,e x-1>x n n!.。

数学归纳法高考数学总复习高中数学课时训Word版

数学归纳法1.用数学归纳法证明:“1+a+a 2+…+a n+1=a a n --+112(a ≠1)”在验证n=1时,左端计算所得的项为 .答案1+a+a 22.如果命题P (n )对n=k 成立,则它对n=k+1也成立,现已知P (n )对n=4不成立,则下列结论正确的是 (填序号).①P (n )对n ∈N *成立 ②P(n)对n >4且n ∈N *成立 ③P (n )对n <4且n ∈N *成立 ④P (n )对n ≤4且n ∈N *不成立 答案 ④3.用数学归纳法证明1+2+3+…+n 2=224n n +,则当n=k+1时左端应在n=k 的基础上加上 . 答案 (k 2+1)+(k 2+2)+(k 2+3)+…+(k+1)24.已知f(n)=n 1+ 11+n +21+n + (21),则下列说法有误的是 . ①f(n)中共有n 项,当n=2时,f(2)=21+31②f(n)中共有n+1项,当n=2时,f(2)= 21+31+41 ③f(n)中共有n 2-n 项,当n=2时,f(2)=21+31 ④f(n)中共有n 2-n+1项,当n=2时,f(2)= 21+31+41 答案 ①②③5.用数学归纳法证明命题“当n 是正奇数时,x n +y n能被x+y 整除”,在第二步时, .答案 假设n=k(k 是正奇数),证明n=k+2命题成立例2 用数学归纳法证明:n ∈N *时,311⨯+531⨯+…+)12)(12(1+-n n =12+n n.证明 (1)当n=1时,左边=311⨯=31,基础自测右边=1121+⨯=31,左边=右边,所以等式成立.(2)假设当n=k(k ∈N *)时等式成立,即有 311⨯+531⨯+…+)12)(12(1+-k k =12+k k,则当n=k+1时,311⨯+531⨯+…+)12)(12(1+-k k +)32)(12(1++k k=12+k k+)32)(12(1++k k =)32)(12(13)2(++++k k k k =)32)(12(1322++++k k k k =321++k k =1)1(21+++k k , 所以当n=k+1时,等式也成立.由(1)(2)可知,对一切n ∈N *等式都成立. 例2 试证:当n 为正整数时,f(n)=32n+2-8n-9能被64整除.证明 方法一 (1)当n=1时,f(1)=34-8-9=64,命题显然成立.(2)假设当n=k (k ≥1,k ∈N *)时, f(k)=32k+2-8k-9能被64整除.由于32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9·8k+9·9-8(k+1)-9=9(32k+2-8k-9)+64(k+1)即f(k+1)=9f(k)+64(k+1) ∴n=k+1时命题也成立.根据(1)(2)可知,对任意的n ∈N *,命题都成立. 方法二 (1)当n=1时,f(1)=34-8-9=64,命题显然成立. (2)假设当n=k (k ≥1,k ∈N *)时,f(k)=32k+2-8k-9能被64整除.由归纳假设,设32k+2-8k-9=64m(m 为大于1的自然数),将32k+2=64m+8k+9代入到f(k+1)中得f(k+1)=9(64m+8k+9)-8(k+1)-9=64(9m+k+1), ∴n=k+1时命题成立.根据(1)(2)可知,对任意的n ∈N *,命题都成立.例3 用数学归纳法证明:对一切大于1的自然数,不等式(1+31)(1+51)…(1+121-n )>212+n 均成立.证明 (1)当n=2时,左边=1+31=34;右边=25. ∵左边>右边,∴不等式成立.(2)假设n=k (k ≥2,且k ∈N *)时不等式成立, 即(1+31)(1+51)…(1+121-k )>212+k . 则当n=k+1时, (1+31)(1+51)…(1+121-k )>]1)1(211[-++k >212+k ·1222++k k =12222++k k =1224842+++k k k>1223842+++k k k =1221232+++k k k =21)1(2++k .∴当n=k+1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n,不等式都成立.例4 (16分)已知等差数列{a n }的公差d 大于0,且a 2,a 5是方程x 2-12x+27=0的两根,数列{b n }的前n 项和为T n ,且T n =1-n b 21. (1)求数列{a n }、{b n }的通项公式; (2)设数列{a n }的前n 项和为S n ,试比较nb 1与S n+1的大小,并说明理由. 解 (1)由已知得⎩⎨⎧==+27125252a a a a ,又∵{a n }的公差大于0,∴a 5>a 2,∴a 2=3,a 5=9. ∴d=325a a - =339-=2,a 1=1.∴a n =2n-1. 2分∵T n =1-21b n ,∴b 1=32, 当n ≥2时,T n-1=1-21b n-1, ∴b n =T n -T n-1=1-21b n -(1-21b n-1), 化简,得b n =31b n-1, ∴{b n }是首项为32,公比为31的等比数列, 即b n =32·131-⎪⎭⎫⎝⎛n =n32, 4分 ∴a n =2n-1,b n =n32.5分(2)∵S n =2)]12(1[-+n n =n 2,∴S n+1=(n+1)2,n b 1=23n.6分以下比较nb 1与S n+1的大小: 当n=1时,11b =23,S 2=4,∴11b <S 2, 当n=2时,21b =29,S 3=9,∴21b <S 3,当n=3时,31b =227,S 4=16,∴31b <S 4, 当n=4时,41b =281,S 5=25,∴41b >S 5.猜想:n ≥4时,nb 1>S n+1. 8分下面用数学归纳法证明: ①当n=4时,已证.②假设当n=k (k ∈N *,k ≥4)时,k b 1>S k+1,即23k >(k+1)2.那么n=k+1时, 11+k b =231+k =3·23k >3(k+1)2=3k 2+6k+3=(k 2+4k+4)+2k 2+2k-1>[(k+1)+1]2=S (k+1)+1, ∴n=k+1时,nb 1>S n+1也成立. 11分 由①②可知n ∈N *,n ≥4时,nb 1>S n+1都成立.14分综上所述,当n=1,2,3时,nb 1<S n+1, 当n ≥4时,nb 1>S n+1. 16分1.用数学归纳法证明: 对任意的n ∈N *,1-21+31-41+…+121-n -n 21=11+n +21+n +…+n 21.证明 (1)当n=1时,左边=1-21=21=111+=右边, ∴等式成立.(2)假设当n=k(k ≥1,k ∈N *)时,等式成立,即 1-21+31-41+…+121-k -k 21=11+k +21+k +…+k21. 则当n=k+1时, 1-21+31-41+…+121-k -k 21+121+k -221+k =11+k +21+k +…+k 21+121+k -221+k =111++k +211++k +…+k 21+121+k +(11+k -221+k )=111++k +211++k +…+k 21+121+k +)12(1+k ,即当n=k+1时,等式也成立,所以由(1)(2)知对任意的n ∈N *等式成立. 2.求证:二项式x 2n-y 2n(n ∈N *)能被x+y 整除. 证明 (1)当n=1时,x 2-y 2=(x+y)(x-y),能被x+y 整除,命题成立.(2)假设当n=k (k ≥1,k ∈N *)时,x 2k-y 2k能被x+y 整除, 那么当n=k+1时, x2k+2-y 2k+2=x 2·x 2k -y 2·y 2k=x 2x 2k-x 2y 2k +x 2y 2k-y 2y 2k =x 2(x 2k-y 2k)+y 2k(x 2-y 2), 显然x2k+2-y2k+2能被x+y 整除,即当n=k+1时命题成立.由(1)(2)知,对任意的正整数n 命题均成立. 3.已知m,n 为正整数.用数学归纳法证明:当x >-1时,(1+x)m≥1+mx. 证明 (1)当m=1时,原不等式成立; 当m=2时,左边=1+2x+x 2,右边=1+2x, 因为x 2≥0,所以左边≥右边,原不等式成立; (2)假设当m=k(k ≥1,k ∈N *)时,不等式成立, 即(1+x )k≥1+kx,则当m=k+1时, ∵x >-1,∴1+x >0.于是在不等式(1+x)k≥1+kx 两边同时乘以1+x 得 (1+x)k·(1+x )≥(1+kx)(1+x)=1+(k+1)x+kx 2≥1+(k+1)x.所以(1+x)k+1≥1+(k+1)x, 即当m=k+1时,不等式也成立.综合(1)(2)知,对一切正整数m,不等式都成立. 4.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *). (1)试求出S 1,S 2,S 3,S 4,并猜想S n 的表达式; (2)证明你的猜想,并求出a n 的表达式. (1)解 ∵a n =S n -S n-1(n ≥2) ∴S n =n 2(S n -S n-1),∴S n =122-n n S n-1(n ≥2)∵a 1=1,∴S 1=a 1=1. ∴S 2=34,S 3=23=46,S 4=58, 猜想S n =12+n n (n ∈N *). (2)证明 ①当n=1时,S 1=1成立.②假设n=k (k ≥1,k ∈N *)时,等式成立,即S k =12+k k, 当n=k+1时,S k+1=(k+1)2·a k+1=a k+1+S k =a k+1+12+k k, ∴a k+1=()()122++k k ,∴S k+1=(k+1)2·a k+1=()212++k k =()()1112+++k k ,∴n=k+1时等式也成立,得证.∴根据①、②可知,对于任意n ∈N *,等式均成立. 又∵a k+1=)1)(2(2++k k ,∴a n =)1(2+n n .一、填空题1.用数学归纳法证明:“11+n +21+n +…+131+n ≥1(n ∈N *)”时,在验证初始值不等式成立时,左边的式子应是“ ”. 答案21+31+412.如果命题P (n )对于n=k(k ∈N *)时成立,则它对n=k+2也成立,又若P (n )对于n=2时成立,P (n )对所有 n 成立. ①正整数 ②正偶数 ③正奇数 ④所有大于1的正整数答案 ②3.利用数学归纳法证明不等式1+21+31+…+121-n <n(n ≥2,n ∈N *)的过程中,由n=k 变到n=k+1时,左边增加了 项. 答案 2k4.用数学归纳法证明“2n>n 2+1对于n >n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取 . 答案 55.凸n 边形有f(n)条对角线,则凸n+1边形的对角线条数f (n+1)= . 答案 f(n)+n-16.证明22+n <1+21+31+41+…+n 21<n+1(n >1),当n=2时,中间式子等于 .答案 1+21+31+417.用数学归纳法证明不等式11+n +21+n +…+n n +1<2413的过程,由n=k 推导n=k+1时,不等式的左边增加的式子是 . 答案121+k +221+k -11+k 8.用数学归纳法证明1+21+31+…+121-n <2 (n ∈N ,且n >1),第一步要证的不等式是 . 答案 1+21+31<2 二、解答题9.用数学归纳法证明: 1+221+231+…+21n ≥123+n n (n ∈N *). 证明 (1)当n=1时,左边=1,右边=1,∴左边≥右边,即命题成立.(2)假设当n=k(k ∈N *,k ≥1)时,命题成立, 即1+221+231+…+21k ≥123+k k. 那么当n=k+1时,要证 1+221+231+…+21k +21)(1+k ≥1)1(2)1(3+++k k ,只要证123+k k +21)(1+k ≥32)1(3++k k . ∵32)1(3++k k -123+k k -21)(1+k =]11)(4[1)(1)(-1 222-+++k k k=3)84()1()2(22++++k k k k -k <0,∴123+k k +21)(1+k ≥32)1(3++k k 成立, 即1+221+231+…+21k +21)(1+k ≥1)1(2)1(3+++k k 成立.∴当n=k+1时命题成立.由(1)、(2)知,不等式对一切n ∈N *均成立.10.用数学归纳法证明(3n+1)·7n-1 (n ∈N *)能被9整除. 证明 (1)当n=1时,4×7-1=27能被9整除,命题成立. (2)假设n=k (k ≥1,k ∈N *)时命题成立, 即(3k+1)·7k-1能被9整除. 当n=k+1时,[(3k+3)+1]·7k+1-1=(3k+1+3)·7·7k-1 =7·(3k+1)·7k-1+21·7k=[(3k+1)·7k-1]+18k·7k+6·7k+21·7k=[(3k+1)·7k-1]+18k ·7k+27·7k, 由归纳假设(3k+1)·7k-1能被9整除, 又因为18k ·7k+27·7k 能被9整除, 所以[3(k+1)+1]·7k+1-1能被9整除, 即n=k+1时命题成立.由(1)(2)知,对所有的正整数n ,命题成立. 11.数列{a n }满足S n =2n-a n (n ∈N *).(1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ; (2)用数学归纳法证明(1)中的猜想. (1)解 当n=1时,a 1=S 1=2-a 1,∴a 1=1. 当n=2时,a 1+a 2=S 2=2×2-a 2,∴a 2=23. 当n=3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=47. 当n=4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4,∴a 4=815.由此猜想a n =1212--n n (n ∈N *).(2)证明 ①当n=1时,a 1=1,结论成立. ②假设n=k(k ≥1且k ∈N *)时,结论成立,即a k =1212--k k ,那么n=k+1时,a k+1=S k+1-S k =2(k+1)-a k+1-2k+a k =2+a k -a k+1. ∴2a k+1=2+a k , ∴a k+1=22ka +=221221-k k -+=kk -2121+, 这表明n=k+1时,结论成立, 由①②知猜想a n =1212--n n (n ∈N *)成立.12.是否存在常数a 、b 、c 使等式12+22+32+…+n 2+(n-1)2+…+22+12=an (bn 2+c )对于一切n ∈N *都成立,若存在,求出a 、b 、c 并证明;若不存在,试说明理由. 解 假设存在a 、b 、c 使12+22+32+…+n 2+(n-1)2+…+22+12=an (bn 2+c ) 对于一切n ∈N *都成立. 当n=1时,a (b+c )=1; 当n=2时,2a (4b+c )=6; 当n=3时,3a (9b+c )=19.解方程组⎪⎩⎪⎨⎧=+=+=+,19)9(33)4(,1)(c b a c b a c b a 解得⎪⎪⎪⎩⎪⎪⎨⎧===.1,2,31c b a证明如下:①当n=1时,由以上知存在常数a,b,c 使等式成立. ②假设n=k (k ∈N *)时等式成立, 即12+22+32+…+k 2+(k-1)2+…+22+12=31k (2k 2+1); 当n=k+1时,12+22+32+…+k 2+(k+1)2+k 2+(k-1)2+…+22+12=31k (2k 2+1)+(k+1)2+k 2=31k (2k 2+3k+1)+(k+1)2=31k (2k+1)(k+1)+(k+1)2=31(k+1)(2k 2+4k+3)=31(k+1)[2(k+1)2+1]. 即n=k+1时,等式成立. 因此存在a=31,b=2,c=1,使等式对一切n ∈N *都成立.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学高考总复习数学归纳法习题及详解一、选择题 1.已知a n =1n +1+n,数列{a n }的前n 项和为S n ,已计算得S 1=2-1,S 2=3-1,S 3=1,由此可猜想S n =( )A.n -1B.n +1-1C.n +1-2D.n +2-2 [答案] B2.已知S k =1k +1+1k +2+1k +3+…+12k (k =1,2,3,…),则S k +1等于( )A .S k +12(k +1)B .S k +12k +1-1k +1C .S k +12k +1-12k +2D .S k +12k +1+12k +2[答案] C [解析] S k +1=1(k +1)+1+1(k +1)+2+…+12(k +1)=1k +2+1k +3+…+12k +2=1k +1+1k +2+…+12k +12k +1+12k +2-1k +1=S k +12k +1-12k +2.3.对于不等式n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 1°当n =1时,12+1≤1+1,不等式成立.2°假设n =k (k ∈N *)时不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+k +2=(k +2)2=(k +1)+1. ∴当n =k +1时,不等式成立. 上述证法( ) A .过程全都正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 [答案] D[解析]没用归纳假设.4.将正整数排成下表:12 3 45 6 7 8 910 11 12 13 14 15 16……则在表中数字2010出现在()A.第44行第75列B.第45行第75列C.第44行第74列D.第45行第74列[答案] D[解析]第n行有2n-1个数字,前n行的数字个数为1+3+5+…+(2n-1)=n2.∵442=1936,452=2025,且1936<2010,2025>2010,∴2010在第45行.又2025-2010=15,且第45行有2×45-1=89个数字,∴2010在第89-15=74列,选D.5.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k +1)≥(k+1)2成立”.那么,下列命题总成立的是()A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立C.若f(7)<49成立,则当k≥8时,均有f(k)>k2成立D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立[答案] D[解析]对于A,f(3)≥9,加上题设可推出当k≥3时,均有f(k)≥k2成立,故A错误.对于B,要求逆推到比5小的正整数,与题设不符,故B错误.对于C,没有奠基部分,即没有f(8)≥82,故C错误.对于D,f(4)=25≥42,由题设的递推关系,可知结论成立,故选D.6.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖去,如图(1);再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个挖去,得图(2);如此继续下去……则第n个图共挖去小正方形()A .(8n -1)个B .(8n +1)个 C.17(8n -1)个 D.17(8n +1)个 [答案] C[解析] 第1个图挖去1个,第2个图挖去1+8个,第3个图挖去1+8+82个……第n 个图挖去1+8+82+…+8n -1=8n -17个. 7.观察下式:1+3=22 1+3+5=32 1+3+5+7=42 1+3+5+7+9=52……据此你可归纳猜想出的一般结论为( ) A .1+3+5+…+(2n -1)=n 2(n ∈N *) B .1+3+5+…+(2n +1)=n 2(n ∈N *) C .1+3+5+…+(2n -1)=(n +1)2(n ∈N *) D .1+3+5+…+(2n +1)=(n +1)2(n ∈N *) [答案] D[解析] 观察可见第n 行左边有n +1个奇数,右边是(n +1)2,故选D.8.(2010·天津滨海新区五校)若f (x )=f 1(x )=x1+x ,f n (x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=( )A .n B.9n +1 C.n n +1 D .1 [答案] A[解析] 易知f (1)=12,f (2)=23,f (3)=34,…,f (n )=n n +1;由f n (x )=f n -1(f (x ))得,f 2(x )=x1+2x ,f 3(x )=x 1+3x ,…,f n (x )=x 1+nx ,从而f 1(1)=12,f 2(1)=13,f 3(1)=14,…,f n (1)=1n +1,,所以f (n )+f n (1)=1,故f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=n .9.(2010·曲阜一中)设f (x )是定义在R 上恒不为零的函数,且对任意的实数x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A .[12,2)B .[12,2]C .[12,1]D .[12,1)[答案] D[解析] 由已知可得a 1=f (1)=12,a 2=f (2)=f 2(1)=⎝⎛⎭⎫122,a 3=f (3)=f (2)·f (1)=f 3(1)=⎝⎛⎭⎫123,…,a n =f (n )=f n (1)=⎝⎛⎭⎫12n ,∴S n=12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n =12[1-(12)2]1-12=1-(12)n, ∵n ∈N *,∴12≤S n <1.10.如图,一条螺旋线是用以下方法画成的:△ABC 是边长为1的正三角形,曲线CA 1、A 1A 2,A 2A 3是分别以A 、B 、C 为圆心,AC 、BA 1、CA 2为半径画的圆弧,曲线CA 1A 2A 3称为螺旋线旋转一圈.然后又以A 为圆心,AA 3为半径画圆弧……这样画到第n 圈,则所得螺旋线的长度l n 为( )A .(3n 2+n )πB .(3n 2-n +1)π C.(3n 2+n )π2D.(3n 2-n +1)π2[答案] A[解析] 由条件知CA 1,A 1A 2,A 2A 3,…,A n -1A n 对应的中心角都是2π3,且半径依次为1,2,3,4,…,故弧长依次为2π3,2π3×2,2π3×3…,据题意,第一圈长度为2π3(1+2+3),第二圈长度为2π3(4+5+6),第n 圈长度为2π3[(3n -2)+(3n -1)+3n ],故L n =2π3(1+2+3+…+3n )=2π3·3n (1+3n )2=(3n 2+n )π.二、填空题11.(2010·浙江金华十校模考)已知2+23=223,3+38=338,4+415=4415,…,若6+at=6at,(a,t均为正实数),类比以上等式,可推测a,t的值,则a+t=________.[答案]41[解析]注意分数的分子、分母与整数的变化规律,2→分子2,分母3=22-1,3→分子3,分母8=32-1,4→分子4,分母15=42-1,故猜想a=6,t=62-1=35,再验证6+635=6635成立,∴a+t=41.[点评]一般地,n+nn2-1=n3n2-1=nnn2-1,(n∈N*)成立.例如,若15+at=15at成立,则t+a=239.12.考察下列一组不等式:23+53>22·5+2·5224+54>23·5+2·53252+552>22·512+212·52将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为________________________.[答案]a m+n+b m+n>a m b n+a n b m(a,b>0,a≠b,m,n>0)13.(2010·浙江杭州质检)观察下列等式:(x2+x+1)0=1;(x2+x+1)1=x2+x+1;(x2+x+1)2=x4+2x3+3x2+2x+1;(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1;可以推测(x2+x+1)4的展开式中,系数最大的项是________.[答案]19x4[解析]观察其系数变化规律:(x2+x+1)1为1,1,1(x2+x+1)2为1,2,3,2,1(x2+x+1)3为1,3,6,7,6,3,1故由此可推测(x2+x+1)4系数中最大的为6+7+6=19,故系数最大项是19x4.14.(2010·南京调研)五位同学围成一圈依次循环报数,规定:第一位同学首次报出的数为2,第二位同学首次报出的数为3,之后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,则第2010个被报出的数为________.[答案] 4[解析] 根据规则,五位同学第一轮报出的数依次为2,3,6,8,8,第二轮报出的数依次为4,2,8,6,8,第三轮报出的数依次为8,4,2,8,6,故除第一、第二位同学第一轮报出的数为2,3外,从第三位同学开始报出的数依次按6,8,8,4,2,8循环,则第2010个被报出的数为4.[点评] 数字2010比较大,不可能一个一个列出数到第2010个数,故隐含了探寻其规律性(周期)的要求,因此可通过列出部分数,观察是否存在某种规律来求解.明确了这一特点解决这类问题就有了明确的解题方向和思路.三、解答题15.已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…A n 是线段A n -2A n -1的中点,…,(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明. [解析] (1)当n ≥3时,x n =x n -1+x n -22. (2)a 1=x 2-x 1=a ,a 2=x 3-x 2=x 2+x 12-x 2=-12(x 2-x 1)=-12a ,a 3=x 4-x 3=x 3+x 22-x 3=-12(x 3-x 2)=14a ,由此推测a n =(-12)n -1a (n ∈N *).证法1:因为a 1=a >0,且a n =x n +1-x n =x n +x n -12-x n =x n -1-x n 2=-12(x n -x n -1)=-12a n -1(n ≥2),所以a n =(-12)n -1a .证法2:用数学归纳法证明:(1)当n =1时,a 1=x 2-x 1=a =(-12)0a ,公式成立.(2)假设当n =k 时,公式成立,即a k =(-12)k -1a 成立.那么当n =k +1时,a k +1=x k +2-x k +1=x k +1+x k 2-x k +1=-12(x k +1-x k )=-12a k =-12(-12)k -1a =(-12)(k +1)-1a ,公式仍成立,根据(1)和(2)可知,对任意n ∈N *,公式a n =(-12)n -1a 成立.16.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点⎝⎛⎭⎫n ,S n n 都在函数f (x )=x +a n2x 的图象上.(1)求a 1,a 2,a 3的值,猜想a n 的表达式,并用数学归纳法证明;(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值.[分析] (1)将点⎝⎛⎭⎫n ,S n n 的坐标代入函数f (x )=x +a n2x 中,通过整理得到S n 与a n 的关系,则a 1,a 2,a 3可求;(2)通过观察发现b 100是第25组中第4个括号内各数之和,各组第4个括号中各数之和构成首项为68、公差为80的等差数列,利用等差数列求和公式可求b 100.[解析] (1)∵点⎝⎛⎭⎫n ,S n n 在函数f (x )=x +a n2x 的图象上, ∴S n n =n +a n 2n ,∴S n =n 2+12a n . 令n =1得,a 1=1+12a 1,∴a 1=2;令n =2得,a 1+a 2=4+12a 2,∴a 2=4;令n =3得,a 1+a 2+a 3=9+12a 3,∴a 3=6.由此猜想:a n =2n . 用数学归纳法证明如下:①当n =1时,由上面的求解知,猜想成立. ②假设n =k (k ≥1)时猜想成立,即a k =2k 成立, 则当n =k +1时,注意到S n =n 2+12a n (n ∈N *),故S k +1=(k +1)2+12a k +1,S k =k 2+12a k .两式相减得,a k +1=2k +1+12a k +1-12a k ,所以a k +1=4k +2-a k .由归纳假设得,a k =2k ,故a k +1=4k +2-a k =4k +2-2k =2(k +1). 这说明n =k +1时,猜想也成立. 由①②知,对一切n ∈N *,a n =2n 成立.(2)因为a n =2n (n ∈N *),所以数列{a n }依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b 100是第25组中第4个括号内各数之和.由分组规律知,各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,所以b 100=68+24×80=1988, 又b 5=22,所以b 5+b 100=2010.[点评] 由已知求出数列的前几项,做出猜想,然后利用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的关键是根据已知条件和假设寻找a k 与a k +1或S k 与S k +1间的关系,使命题得证.17.(2010·南京调研)已知:(x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3.[解析] (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22n -3=2C n 2=n (n -1)(n ≥2)①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立.②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3成立那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1)=k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3=(k +1)[(k +1)+1][(k +1)-1]3=右边.故当n=k+1时,等式成立.综上①②,当n≥2时,T n=n(n+1)(n-1)3.。

相关文档
最新文档