七年级上册数学知识点浙江
新浙教版七年级上册数学第二章有理数的运算知识点和典型例题

新浙教版七年级上册数学第二章有理数的运算学问点及典型例题将考点及相应习题联络起来考点一、有理数的加减乘除乘方运算1、 (-3)3÷214×(-23)2 – 4-23×〔- 232〕 2、 -32+(-2)3 –(0.1)2×(-10)33、 -0.5-〔-314〕+2.75+〔-712〕 4、〔-23〕-〔-5〕+〔-64〕-〔-12〕5、假如()()0132122=-+-++c b a ,求333c a abc -+的值.考点二、运用运算律进展简便运算1、-(-5.6)+10.2-8.6+(-4.2)2、(-12+16-34+512)×(-12) 3、(117512918--)×36-6××6 4、492425×(-5)考点三、及数轴相关的计算或推断1、有理数a,b,c 在数轴上的位置如下图,以下错误的选项是〔 〕 A 、b+c<0B 、-a+b+c<0C 、|a+b|<|a+c|D 、|a+b|>|a+c|2、a ,b 在数轴上的位置如下图,那么a ,b ,a +b ,a -b 中,负数的个数是〔 〕 A .1个 B .2个 C .3个 D .4个3、假设a .b .c 在数轴上位置如下图,那么必有〔 〕cb a -2-121A .abc >0B .ab -ac >0C .〔a +b 〕c >0D .〔a -c 〕b >04、有理数a ,b 在数轴上的位置如下图,那么在a +b ,a -b ,ab ,3a ,23a b s 这五个数中,正数的个数是〔 〕A .2B .3C .4D .55、有理数a 、b 在数轴上的对应的位置如下图,那么〔 〕 A .a + b <0 B .a + b >0 C .a -b = 0 D .a -b >06、a 、b 在数轴上的位置如图,化简a = ,b a += ,1+a = 。
新浙教版七年级上册数学第五章一元一次方程知识点及典型例题

新浙教版七年级上册数学第五章《一元一次方程》知识点及典型例题知识框图朱国林定义:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程一元一次方程等式的性质1:等式的两边加上(或都减去)同一个数或式,所得的结果仍是等式等式的基本性质等式的性质2:等式的两边都乘或都除以同一个数或式(除数不能为0),所得的结果仍是等式解方程:求方程解的过程一元一次方程的解法分母为小数的方程:先将小数变为整数,然后再去分母一元一解方程的步骤去分母→去括号→移项→合并同类项→两边同除以未知数的系数次方程>重和叠差问倍题分:问借题助:可于以韦从恩题图目列中方看程出,明主确要的有等人量数关重系叠或面积重叠课外拓展应用题类型审题:分析题意,找出数量关系,尤其是等量关系!列方程解实际问题的一般过解方程:求出未知数的值程检验:检查求得的值是否正确和符合实际情形,这是在草稿纸上完成或心里完成的,并写出答案以及答,这是在试卷上完成的关于一元一次方程概念的拓展教材中的概念:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程是一元一次方程,那么 x+2=x+3 是一元一次方程吗从概念上来看,是一元一次方程,但稍作变形,就是 2=3,是不是觉得很可笑因此, 一元一次方程的概念应该是:方程两边都是整式,只含有一个未知数,未知数的指数是一次,并且能变形为 ax=b (a ≠0,a 、b 均为常数)的方程是一元一次方程,也就是说,一元一次方程一定只有一个解。
-关于用方程解应用题的秘诀:相关条件设未知数,剩余条件列方程考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 考点二、关于在解方程过程中的某些变形问题,只能以选择题的形式出现 考点三、解一元一次方程考点四、列一元一次方程解与实际生活无关的题目(可以是选择题、填空题、解答题) 考点五、列一元一次方程解与实际生活有关的题目(可以是选择题、填空题、解答题)"将考点与相应习题联系起来考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 1、下列等式中是一元一次方程的是( )12(x 1) 2x 1x 1 A .3x=y -1B .C .3(x -1)= -2x -3D .3x 2-2=3E . x1 12 12 3x y 2 x2 0 x x 2 2x3 0 , 中一元一次方程的个数为(2、在方程 A .1 个 , , )x B .2 个 C .3 个 D .4 个 3x6 0是一元一次方程,那么a3、如果 a2 1,方程的解为。
新浙教版七年级上册数学第二章《有理数的运算》知识点及典型例题

期末复习二有理数的运算要求知识与方法了解有理数加、减、乘、除、乘方的运算法则倒数的概念,会求一个数的倒数乘方、幂、指数、底数的概念计算器的简单使用理解有理数的混合运算的运算顺序,能进行有理数的混合运算用科学记数法表示较大的数说出一个由四舍五入法得到的有理数的精确位数及根据精确度取近似值运用合理运用运算律简化有理数混合运算的过程利用有理数的混合运算解决简单的实际问题一、必备知识:1.若两个有理数的乘积为____________,就称这两个有理数____________.2.有理数的各种运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律.3.有理数混合运算的法则是:先算____________,再算____________,最后算____________.如有括号,先进行____________运算.4.把一个数表示成____________与____________的幂相乘的形式叫做科学记数法.二、防范点:1.倒数不要和相反数混淆,倒数符号不变,相反数要变号.2.乘方运算不要和乘法运算混淆,如23和32不相等.3.有理数混合运算中注意运算顺序,特别是乘、除同级运算时,注意从左到右的运算顺序.4.求用科学记数法表示的数及带单位的有理数的精确位数时要注意单位及10的幂的位数.倒数的概念例1 (1)2017的倒数为( )A .-2017B .2017C .-12017D .12017(2)已知a 与b 互为倒数,m 与n 互为相反数,则12ab -9m -9n 的值是________. 【反思】互为倒数的两个数乘积为1,注意互为倒数的两数符号是相同的,不要与相反数混淆起来.有理数运算法则及运算顺序例2 下列计算错在哪里?应如何改正?(1)74-22÷70=70÷70=1;(2)(-112)2-23=114-6=-434; (3)23-6÷3×13=6-6÷1=0.【反思】乘方运算是初中阶段新学的一种运算,要弄清楚它的法则,不要和乘法混淆起来;运算顺序也是学生的一个易错点,特别是乘、除同级运算过程中要遵循从左到右的运算顺序.有理数的混合运算例3 计算:(1)(-2)2+3×(-2)-1÷(14)2; (2)-32-[-(12)2-116]×(-2)÷(-1)2017.【反思】有理数的混合运算要注意运算的顺序不要搞错,-32的求值也是学生的一个易错点.有理数的简便计算例4 用简便方法计算:(1)(-6134)-(-512)+(134)-(+8.5); (2)19999899×(-11); (3)(-5)×713+7×(-713)-(+12)×713.【反思】合理地利用加法和乘法的运算律可以加快速度,分配律和分配律的逆向使用也是简便计算的一种重要的方法.近似数及科学记数法例5 (1)数361000000用科学记数法表示,以下表示正确的是( )A .0.361×109B .3.61×108C .3.61×107D .36.1×107(2)下列近似数精确到哪一位?①4.7万 ②17.68(3)用四舍五入法按要求取下列各数的近似数:①0.61548(精确到千分位);②73540(精确到千位).【反思】求带单位的近似数的精确度时,要注意单位也是有效的.有理数混合运算的应用例6 出租车司机王师傅从上午8:00~9:00在某市区东西向公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,王师傅营运八批乘客里程如下:(单位:千米)+5,-6,+3,-7,+5,+4,-3,-4.(1)将最后一批乘客送到目的地时,王师傅在第一批乘客出发地的什么位置?(2)已知王师傅的车在市区耗油成本约为0.6元/千米,若出租车的收费标准为:起步价8元(不超过3千米),若超过3千米,超过部分按每千米2元收费,则王师傅在上午8:00~9:00扣除耗油成本后赚了多少元?【反思】用有理数的运算解决实际问题,主要是要抓住题中各数量之间的关系,弄清是求各数之和还是各数的绝对值之和.1.计算:3×(-1)3+(-5)×(-3)____________.2.已知(x -2)2+||2y +6=0,则x +y =____________.3.如图,数轴上A 、B 两点分别对应实数a 、b ,则a 与b 之间的关系是____________.(写出一个正确关系式即可)第3题图4.由四舍五入得到的近似数0.50,精确到____________位,它表示大于或等于____________且小于____________的数.5.数轴上A 、B 两点位于原点O 的两侧,点A 表示的实数是a ,点B 表示的实数是b ,若||a -b =2016,且AO =2BO ,则a +b 的值是____________.6.计算:(1)(34-112+13)×(-60);(2)(-3)2÷92+(-1)2017-|-2|.7.已知x ,y 为有理数,现规定一种新运算※,满足x ※y =xy +1.(1)求2※3的值;(2)求(3※5)※(-2)的值;(3)探索a ※(b +c)与a ※b +a ※c 的关系,并用等式把它们表达出来.参考答案期末复习二 有理数的运算【必备知识与防范点】1.1 互为倒数 3.乘方 乘除 加减 括号里的 4.a(1≤a<10) 10【例题精析】例1 (1)D (2)12例2 (1)运算顺序错.改正为:74-22÷70=74-4÷70=74-235=733335; (2)运算法则错.改正为:(-112)2-23=94-8=-234; (3)运算法则和运算顺序都错.改正为:23-6÷3×13=8-6×13×13=8-23=713.例3 (1)-18 (2)-838例4 (1)-63 (2)-2199989(3)-176 例5 (1)B (2)①千位 ②百分位 (3)①0.615 ②7.4×104例6 (1)正西方向3千米处 (2)67.8元【校内练习】1.12 2.-1 3.答案不唯一,如a >b4.百分 0.495 0.505 5.±6726.(1)(34-112+13)×(-60)=-60×34+60×112-60×13=-45+5-20=-60. (2)(-3)2÷92+(-1)2017-|-2|=9×29-1-2=-1. 7.(1)7 (2)-31 (3)∵a ※(b +c)=a(b +c)+1=ab +ac +1,a ※b +a ※c =ab +1+ac +1.∴a ※(b +c)+1=a ※b +a ※c.。
杭州外国语学校七年级数学上册第二单元《整式加减》-解答题专项知识点(答案解析)

一、解答题1.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是.(用含a,b的代数式表示)(2)若a=0.5米,b=2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).解析:(1)12ab平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a,b的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a•b (平方米).故答案为:12ab (平方米).(2)当a=0.5米,b=2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012+π×4×450=3660(元).【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识.2.如图,已知等腰直角三角形ACB的边AC BC a==,等腰直角三角形BED的边BE DE b==,且a b<,点C、B、E放置在一条直线上,联结AD.(1)求三角形ABD的面积;(2)如果点P是线段CE的中点,联结AP、DP得到三角形APD,求三角形APD的面积;(3)第(2)小题中的三角形APD与三角形ABD面积哪个较大?大多少?(结果都可用a、b代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可. 【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDEACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABD a b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABDb a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 3.已知22332A x y xy =+-,2222B xy y x =--. (1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可. 【详解】 解:(1)()()2222232332322A B x y xy xy y x-=+----2222664366x y xy xy y x =+--++ 2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y , ∴2x =或1,3=±y ,由于||x y y x -=-, ∴2x =,3y =或1x =,3y =. 当2x =,3y =时,23114A B -=. 当1x =,3y =时,2399A B -=. 所以,23A B -的值为114或99. 【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.4.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积. 解析:(1)22111222a ab b ++;(2)492【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案; (2)将3a =,5b =代入求值即可. 【详解】 (1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时,原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】此题考察列式计算,根据图形边长正确列式表示图形的面积即可.5.为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算):(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.解析:(1)该居民12月份应缴电费94.5元;(2)0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩【分析】(1)根据用电量类型分别进行计算即可;(2)分三种情况进行讨论,当x 不超过150度时,x 超过150度,但不超过时250度时和x 超过250度时,再分别代入计算即可. 【详解】解:(1)由题意,得150×0.50+(180-150)×0.65=94.5(元) 答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x 度,则当x≤150时,应付电费:0.50x 元; 当150<x≤250时,应付电费:0.65(x -150)+75=0.65x 22.5-(元); 当250<x <300,应付电费:0.80(x -250)+140=0.8x 60-(元).∴不同电量区间应缴交的电费为:0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩.【点睛】本题考查了列代数式,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.6.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
2024版七年级数学上册知识点归纳

第八章 二元一次方程组
- 二元一次方程组的概念:含有两个未知数,且未知数的次数都为1的方程组
- 二元一次方程组的解法:代入法、消元法
第九章 不等式与不等式组
- 不等式的概念:用不等号表示大小关系的式子
- 不等式的性质:不等式的加法、减法、乘法、除法性质
2024版七年级数学上册知识点归纳
章节/知识点
具体内容
第一章 有理数
- 有理数的概念:可以写成分数形式的数称为有理数
- 数轴:规定了原点、正方向、单位长度的直线
- 相反数:只有符号不同的两个数叫做互为相反数
- 绝对值:数轴上某个数与原点的距离
- 有理数的性质与运算:包括有理数的加法、减法、乘法、除法以及混合运算
第二章 整式的加减
- 整式的概念:单项式和多项式的统称
- 整式的加减法则:同Байду номын сангаас项合并
第三章 一元一次方程
- 一元一次方程的概念:含有一个未知数,且未知数的次数为1的方程
- 一元一次方程的解法:去分母、去括号、移项、合并同类项、系数化为1
第四章 几何图形初步
- 基本几何图形的认识:点、线、面、角
- 几何图形的性质:如线段、射线的性质
第五章 相交线与平行线
- 相交线的性质:对顶角相等、邻补角互补
- 平行线的性质:平行线间的距离相等、平行线被第三条直线所截形成的同位角相等
第六章 实数
- 实数的概念:有理数和无理数的统称
- 实数的性质:实数具有封闭性、有序性、稠密性等
第七章 平面直角坐标系
- 平面直角坐标系的建立:由两条互相垂直且有公共原点的数轴组成
新浙教版七年级上册数学第一章《有理数》知识点及典型例题

新浙教版七年级上册数学第一章《有理数》知识点及典型例题知识框图定义作用用以计量事物的件数或表示事物次序的数 自然数计数 测量 标号或排序分数可以看做两个整数相除。
所有的分数都可以化为有限小数或无限循环小数,但 并不是所有的小数都可以化为分数,如圆周率π如升高 3 米与下除 2 米;盈利 3 万与亏损 5 万;收入 4 万与支出 8 万等具有相反意义的量为了表示具有相反意义的量,把一种意义的量规定为正,与之意义相反 的量规定为负正整数零 整数分数有 理 数负整数 有理数的分类或正分数 负分数负整数 负分数负有理数数轴两个数只有符号不同,称其中一个数为另一个数的相反数 互为相反数的两个数所对应的点在数轴上的位置关系绝对值的概念绝对值的法则绝对值数轴比较法法则比较法有理数大小的比较将考点与相应习题联系起来考点一、关于“……说法正确的是……”的题型(只可能是选择题)1、下列语句:①带“-”号的数是负数;②如果a 为正数,则-a 一定是负数;③不存在既不是正数又不是负数的数;④ 00C 表示没有温度,正确的有()个2、下列说法不正确的是()A.数轴是一条直线;B.表示-1 的点,离原点1 个单位长度;C.数轴上表示-3 的点与表示- 1 的点相距2 个单位长度;D.距原点3 个单位长度的点表示—3 或3。
3、下列说法中不正确的是()A.-5 表示的点到原点的距离是5;B. 一个有理数的绝对值一定是正数;C. 一个有理数的绝对值一定不是负数;D. 互为相反数的两个数的绝对值一定相等.4、如图:下列说法正确的是()a、b 的大小无法确定b比b大5、若|a+b|=-(a+b),下列结论正确的是()+b≤0+b<0 +b=0 +b>0比a大、b 一样大6、下列说法:①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数;③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等,错误的个数是( )个个个个7、如果a 表示有理数,那么下列说法中正确的是()A.+a 与-(-a)互为相反数B. +a 与-a 一定不相等一定是负数 D. -(+a)与+(-a)一定相等b b8、已知字母a、表示有理数,如果a+ =0,则下列说法正确的是()b bA.a、中一定有一个是负数B.a、都为0b bC.a与不可能相等D.a与的绝对值相等9、下列说法正确的是()A. -|a|一定是负数B. 只有两个数相等时,它们的绝对值才相等C. 若|a|=|b|,则a 与b 互为相反数D. 若一个数小于它的绝对值,则这个数为负数10、给出下面说法:①互为相反数的两个数绝对值相等;②一个数的绝对值等于它本身,这个数不是负数;③若|m|>m,则m<0;④若|a|>|b|,则a>b,其中正确的有()A.①②③B.①②④C.①③④D.②③④考点二、具有相反意义的量、相反数、数轴、绝对值、有理数的分类等概念的直接考题1、某项科学研究,以45 分钟为1 个时间单位,并记每天上午10 时为0,10 时以前记为负,10 时以后记为正,例如9:15 记为-1,10:45 记为1 等等,以此类推,上午7:45 应记为12、在时钟上,把时针从钟面数字“12”按顺时针方向拨到“6”,计做拨了“+”周,那么,把时针从“12”21开始,拨了“”周后,该时针所指的钟面数字是43、若a 与b 互为相反数,则下列式子:①a+b=0;②a=-b;③|a|=|-b|;④a=b,其中一定成立的序号为4、数轴上到数-1 所表示的点的距离为5 的点所表示的数是5、绝对值最小的有理数是;绝对值最小的整数是6、写出所有不小于-4 并且小于的整数:;| -π|=_________7、绝对值小于 6 且大于 3 的整数有( ) 个 个 个 个 8、下面关于 0 的说法:① 是整数,也是有理数;② 是正数,不是负数;③ 不是整数,是有理数;④ 是整数, 也是自然数,正确的是( ) A.①② B.②③ C.①④ D.①③3 22 9、在 15, ,,-30,,- ,, ,……,……中,负分数的个数是()π 8 7 7个个个个10、一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数点的个数是(1)判断墨迹盖住的整数共有多少个并说明理由。
最全面七年级数学上册知识点总结(精华版)
提分数学七年级上知识清单第一章有理数一.正数和负数1 .正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,是负数;当a表示负数时,是正数;当a表示0 时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“ +”,有时省略不写。
所以省略“ +”的正数的符号是正号。
2 .具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8c表示为:・8 °C支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3 .0表示的意义⑴0表示“没有。
如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二,有理数1 .有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①H是无限不循环小数,不能写成分数形式,不是有理数。
②有小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,・4,・6,-8 也是偶数,也是奇数。
2.(1)凡能写成9 (P, q为整数且H0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负P 分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;不一定是负数,+a也不一定是正数;正是有理数;「匚右刑物f正整数正有理数I正分数⑵有理数的分类:①按正、负分类:有理数{零负有理数[ [■正整数整数彳零②按有理数的意义来分:有理数出整数分数年分数分数一分数■总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⑶注意:有理数中,1、0、・1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域, 这四个区域的数也有自己的特性;(4)自然数U 0和正整数;a>0 U a是正数;a< 0 a是负数;a20 = a是正数或0 u a是非负数;aW 0 = a是负数或0 u a是非正数.三.数轴1 .数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
宁波市宁波中学(一中)七年级数学上册第二单元《整式的加减》知识点总结(含答案解析)
一、选择题1.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次2.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x中,是整式的有( ) A .2个B .3个C .4个D .5个3.下列用代数式表示正确的是( ) A .a 是一个数的8倍,则这个数是8a B .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元4.下列代数式的书写,正确的是( ) A .5nB .n5C .1500÷tD .114x 2y 5.代数式x 2﹣1y的正确解释是( )A .x 与y 的倒数的差的平方B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数6.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( ) 字母 a b c d e f g h i jk l m 序号12345678910111213字母 n o p q r s t u v w x y z 序号14151617181920212223242526A .loveB .rkwuC .sdriD .rewj7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )8.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .469.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( ) A .21-B .12-C .36D .1210.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55 11.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣412.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .013.若23,33M N x M x +=-=-,则N =( ) A .236x x +-B .23x x -+C .236x x -- D .23x x -14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( ) A .1个B .2个C .3个D .4个15.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738二、填空题16.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m的值应是_______.17.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n个“上”字需用______枚棋子.18.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、-”,例如这组数中的第三个数“3”是由“221b,紧随其后的数就是2a b⨯-”得到的,那么这组数中y表示的数为______.19.a-b,b-c,c-a三个多项式的和是____________20.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.21.礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.22.用代数式表示:(1)甲数与乙数的和为10,设甲数为y,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x,则乙数为____;(3)大华身高为a(cm),小亮身高为b(cm),他们俩的平均身高为____cm;(4)把a(g)盐放进b(g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h,顺流行驶速度是y km/h,则这条河的水流速度是______km/h.23.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a、b、c、d.若|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,则|b﹣c|=___.24.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.25.在迎新春活动中,三位同学玩抢2018游戏,甲、乙、丙围成一圈依序报数,规定:甲、乙、丙首次报的数依次为1、2、3,接着甲报4、乙报5…按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是2018时,报数结束;按此规则,最后能抢到2018的同学是______.26.如图,大、小两个正方形ABCD与正方形BEFG并排放在一起,点G在边BC上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF的面积是______平方厘米.三、解答题27.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?28.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).29.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.30.某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%. (1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样? (3)你能总结出什么规律吗?。
浙教版 七年级数学上册 2.3-2.4 :有 数的乘除法
1 2.3-2.4有理数的乘法 【知识清单】有理数的乘法1. 乘法法则:(1)两数相乘,同号得________,异号得________,并把绝对值________。
(2)任何数与零相乘,积为________。
(3)互为倒数的两个有理数乘积为________。
(注意:0没有倒数)2. 有理数乘法的计算步骤:(1)首先确定符号,再把绝对值相乘。
(2)几个不等于0的因数相乘,积的符号由___的个数决定。
当负因数有奇数个时,积的符号为___;当负因数有偶数个时,积的符号为____。
只要有一个因数为0,积就为0。
3. 乘法的运算律交换律.:a ×b =_________ 结合律:(a ×b )×c =__________ 分配律:a ×(b +c )= __________4. 除法法则(1)两数相除,同号得________,异号得________,并把绝对值________;0除以任何一个不等于0的数都得________;(2)除以一个数等于乘上这个数的________,即b a b a1⨯=÷ (b≠0) 5. 除法运算中的注意事项(1)除法可以统一成乘法,这时要注意倒数问题(2)0不能作除数(3)除法没有交换律、结合律和分配率。
例如:316216)3121(6÷+÷≠+÷ 6. 倒数与相反数的区别与联系(1)符号的区别: 互为相反数的两个数符号________;互为倒数的两个数符号________。
(2)含义不同:互为相反数的两个数和为________;互为倒数的两个数积为_________。
即a 与-a 互为相反数,a 与a1互为倒数。
2(3)关于0:0的相反数是________,但0没有倒数。
相反数是本身的数只有________;倒数是它本身的数是________。
【经典例题1】(1)3(4)⨯-= (2)(6)(2)-⨯-=(2)32()43-⨯= (4)(0.5)(8)-⨯-= 【经典例题2】写出下列各数的倒数(1)-3 (2)13 (3)314- (4)0.25 【经典例题3】运用乘法运算律计算:(1)4(0.17)25⨯-⨯= (2)310.125()(2)(8)73⨯-⨯-⨯-=【经典例题4】两个非零有理数的和为0,则他们的商是( )A .0B .﹣1C .1D .不能确定 【经典例题5】计算:(1)()()3.0-4575.0-÷÷ (2)()()11-31-33.0-÷⎪⎭⎫ ⎝⎛÷【经典例题6】下列四个算式中,误用分配律的是( )A .12×⎝⎛⎭⎫2-13+16=12×2-12×13+12×16 B.⎝⎛⎭⎫2-13+16×12=2×12-13×12+16×12 C .12÷⎝⎛⎭⎫2-13+16=12÷2-12÷13+12÷16 D.⎝⎛⎭⎫2-13+16÷12=2÷12-13÷12+16÷12 【夯实基础】1. 下列说法不正确的是( )A .一个数(不为0)与它的倒数之积是1B .一个数与它的相反数之和为0C .两个数的商为﹣1,这两个数互为相反数D .两个数的积为1,这两个数互为相反数2.计算:的结果是()A.-8 B.8 C.-2 D.23.下列计算:①0-(-5)=-5;②(3)(9)12-+-=-;③293342⎛⎫⨯-=-⎪⎝⎭;④(36)(9)4-÷-=-;⑤若(2)3x=-⨯,则x的倒数是6.其中正确的个数是().A.1 B.2 C.3 D.44.若“!”是一种数学运算符号,并且1!=1,2!=2×1!,3!=3×2×1,4!=4×3×2×1,……,则100!98!的值是为()A.5040B.99! C.9900 D.2!5. 下列说法不正确的是()A.一个数(不为0)与它的倒数之积是1 B.一个数与它的相反数之和为0 C.两个数的商为﹣1,这两个数互为相反数D.两个数的积为1,这两个数互为相6. 已知:ab≠0,且M=,当a、b取不同的值时,M有()A.唯一确定的值B.2种不同的取值C.3种不同的取值D.4种不同的取值7.一对相反数的积是()A、正数B、0C、负数D、0或负数8.几个有理数相乘,下列结论正确的是()A.负因数有奇数个时,积为负B.负因数有偶数个时,积为正C.积为负数时,负因数有奇数个D.因数有偶数个时,积为正9.若a+b<0,ab>0,那么这两个数()A. 都是正数B. 都是负数C. 一正一负D. 符号不能确定10.已知(-ab)×(-ab)×(-ab)>0,则()A.ab<0 B.ab>0 C.a>0, b<0 D.a<0 ,b<011.绝对值小于2019的所有整数的积()A.0 B.﹣1 C.1 D.不能确定34 12.一个数和它的倒数相等,则这个数是( )A .1B .﹣1C .±1D .±1和0 填空: 13.计算﹣(﹣)的结果是 . 14.如果0y x <<,则化简x xy x xy+=15. 若|a|=3,b =-6,且a ÷b >0,则a+b =________.16.如果0,0ac bc b><,那么a 0. 17. 已知,则____________. 18.已知两个数的积为-1,若其中一个数为135-,则另一个数为____________.19.计算:(1)111(3)(2)(1)335-÷-÷- (2)9481(16)49-÷⨯÷-(2)11(15)13632⎛⎫-÷--⨯ ⎪⎝⎭(4)21-3443811-⨯⨯÷(5) )12765-433121()24(++-⨯- (6) 45)25.1()34()8(⨯-⨯-⨯-(7)137)18(137)9(137+-⨯+-⨯ (8)0)20182017()414(314⨯-⨯-⨯20.计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.5。
七年级上册数学每章知识点
七年级上册数学每章知识点本文章为七年级上册数学每章的知识点总结,帮助学生更好地掌握和理解数学知识。
第一章:集合与运算1. 集合的定义和表示方法2. 集合的分类:空集、单元素集、多元素集3. 集合的常见运算:并集、交集、补集、差集第二章:整数1. 整数的定义:正整数、零、负整数2. 整数的大小和比较3. 整数的加减法:同号相加、异号相减4. 整数的乘法:符号规律、绝对值的乘积5. 整数的除法:除数为正整数、除数为负整数、商的符号规律第三章:代数式1. 代数式的定义和表示方法2. 代数式的值:给定代数式和变量的值,求代数式的值3. 代数式的等价变形:化简、展开、配方法、分配律、合并同类项第四章:方程与不等式1. 方程的定义和表示方法2. 方程的解:解代数方程、几何方程的问题3. 不等式的定义和表示方法4. 不等式的解:解一元一次不等式、实际问题的解法第五章:初中数学常用公式与运算技巧1. 同底数幂的乘除法:指数的加减法2. 指数为0、1的规律3. 平方、立方及其根的运算4. 两项之积等于零的性质5. 四则运算的优先级第六章:几何图形的认识和初步应用1. 点、线、线段、射线的定义和表示方法2. 角的定义和分类:锐角、直角、钝角3. 三角形的定义和分类:等边三角形、等腰三角形、直角三角形、一般三角形4. 三角形的周长和面积的计算:海伦公式5. 矩形、平行四边形、梯形的定义和性质第七章:数据的收集和整理1. 数据的来源和分类:调查、统计、文献、实验2. 数据的整理方法:频数表、频率表、统计图表以上便是七年级上册数学每章知识点的总结,其中知识点还包括了一些例题和详细步骤。
在学习的过程中,同学们还需不断进行巩固和练习,加深对数学知识的理解和掌握。
希望本文可以帮助大家更好地学习数学,取得好成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学知识点浙江
一、整数和分数
整数是由0、正整数和负整数组成,可以进行加、减、乘、除
等基本运算。
分数是由分子和分母组成的数,可以表示两个整数之间的关系。
分数可以进行加、减、乘、除等基本运算。
二、代数式
代数式是由数、字母和运算符号组成的式子,可以进行加、减、乘、除等基本运算。
三、线段和角
线段是指两个端点之间的部分,可以用长度表示。
角是由两条线段的公共端点和这两条线段分别在公共端点的一侧组成的图形。
四、平面图形
平面图形是指二维几何图形,如三角形、四边形、正方形等,可以进行面积、周长等基本运算。
五、比例
比例是指两个物体或数量之间的大小关系,可以用分数或小数表示。
六、百分数
百分数是将整体分成100份,表示其中的若干份的数,可以用百分数和百分数的小数形式表示。
七、图形的相似
相似图形是指形状相似但大小不同的图形,它们对应的边之间的比相等。
以上是七年级上册数学常见知识点,掌握这些知识点可以帮助同学们更好地学习和理解初中数学知识,也为以后的学习打下良好的基础。