高考物理二轮复习专题分层突破练5动能定理机械能守恒定律功能关系的应用含解析

合集下载

2020届高三高考二轮复习专项练习实验:验证机械能守恒定律(PDF版)

2020届高三高考二轮复习专项练习实验:验证机械能守恒定律(PDF版)

2020届高三高考二轮复习专项练习实验:验证机械能守恒定律一、实验题1.如图(甲)所示,一位同学利用光电计时器等器材做“验证机械能守恒定律”的实验.有一直径为d 、质量为m 的金属小球由A 处从静止释放,下落过程中能通过A 处正下方、固定于B 处的光电门,测得A 、B 间的距离为H (H >>d ),光电计时器记录下小球通过光电门的时间为t ,当地的重力加速度为g .则:(1)如图(乙)所示,用游标卡尺测得小球的直径d =________mm .(2)小球经过光电门B 时的速度表达式为__________.(3)多次改变高度H ,重复上述实验,作出随H 的变化图象如图(丙)所示,当图中已知量t 0、H 0和重力加速度g 及小球的直径d 满足以下表达式:_______时,可判断小球下落过程中机械能守恒.2.某同学利用如图甲所示的实验装置验证机械能守恒定律。

B 处固定着一光电门,带有宽度为d 的遮光条的滑块,其总质量为M ,质量为:的钩码通过细线与滑块连接。

现将滑块从A 处由静止释放,遮光条经过光电门时的挡光时间为t ,已知A 、B 之间的距离为L ,重力加速度为g 。

(1)某同学用螺旋测微器测遮光条的宽度,其示数如图乙所示,则d =_______mm 。

(2)调整光电门的位置,使滑块通过B 点时钩码没有落地,则滑块由A 点运动到B 点的过程中,系统重力势能的减少量为p E ∆=_____,系统动能的增加量为k E ∆=_______。

比较p E ∆和k E ∆,若在实验误差允许的范围内相等,即可认为系统机械能守恒(以上结果均用题中所给字母表示)。

3.某实验小组设计了如图所示的实验装置验证机械能守恒定律,其主要步骤如下:(1)物块P、Q用跨过光滑定滑轮的轻绳相连,P底端固定了一竖直宽度为d的轻质遮光条。

托住P,使系统处于静止状态(如图所示),用刻度尺测出遮光条所在位置A与固定在铁架台上的光电门B之间的高度h。

2020年高考物理专题复习:能量守恒定律的应用技巧

2020年高考物理专题复习:能量守恒定律的应用技巧

2020年高考物理专题复习:能量守恒定律的应用技巧考点精讲1. 对能量守恒定律的理解(1)转化:某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等。

(2)转移:某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量相等。

2. 运用能量守恒定律解题的基本流程典例精讲例题1 如图所示,一物体质量m=2kg,在倾角θ=37°的斜面上的A点以初速度v0=3m/s下滑,A点距弹簧上端B的距离AB=4m。

当物体到达B点后将弹簧压缩到C点,最大压缩量BC=0.2m,然后物体又被弹簧弹上去,弹到的最高位置为D点,D点距A点的距离AD=3m。

挡板及弹簧质量不计,g取10m/s2,sin37°=0.6,求:(1)物体与斜面间的动摩擦因数μ。

(2)弹簧的最大弹性势能E pm。

【考点】能量守恒定律的应用【思路分析】(1)物体从开始位置A 点运动到最后D 点的过程中,弹性势能没有发生变化,动能和重力势能减少,机械能的减少量为ΔE =ΔE k +ΔE p =21mv 20+mgl AD sin37° ① 物体克服摩擦力产生的热量为Q =F f x ① 其中x 为物体运动的路程,即x =5.4m ① F f =μmg cos37°① 由能量守恒定律可得ΔE =Q①由①②③④⑤式解得μ≈0.52。

(2)由A 到C 的过程中,动能减少ΔE k =21mv 20 ① 重力势能减少ΔE p ′=mgl AC sin37° ① 摩擦生热Q ′=F f l AC =μmg cos37°l AC①由能量守恒定律得弹簧的最大弹性势能为 ΔE pm =ΔE k +ΔE p ′-Q ′①联立⑥⑦⑧⑨解得ΔE pm ≈24.46J 。

【答案】(1)0.52 (2)24.46J【规律总结】应用能量守恒定律解题的基本思路1. 分清有多少种形式的能(如动能、势能(包括重力势能、弹性势能、电势能)、内能等)在变化。

新人教版高考物理总复习第五章机械能《动能定理及其应用》

新人教版高考物理总复习第五章机械能《动能定理及其应用》

Wf=
1 2
m
v
2 B
-0,解得Wf=
=1×10×5 J-
1 2
×1×62 J=32 J,故A正确,B、C、D错误。
题型3 求解多过程问题
【典例3】(2019·信阳模拟)如图所示AB和CDO都是处
于竖直平面内的光滑圆弧形轨道,OA处于水平位置。 AB是半径为R=1 m的 1 圆周轨道,CDO是半径为r=
(2)小球仅仅与弹性挡板碰撞一次且刚好不脱离CDO轨 道的条件是在O点重力提供向心力,碰后再返回最高 点恰能上升到D点。
【解析】(1)设小球第一次到达D的速度为vD,对小球
从P到D点的过程,根据动能定理得:
mg(H+r)-μmgL1=m
2
v
2 D
-0
在D点轨道对小球的支持力FN提供向心力,则有:
(5)物体的动能不变,所受的合外力必定为零。 ( × ) (6)做自由落体运动的物体,物体的动能与下落时间的 二次方成正比。 ( √ )
考点1 对动能、动能定理的理解 【题组通关】 1.(2018·江苏高考)从地面竖直向上抛出一只小球, 小球运动一段时间后落回地面。忽略空气阻力,该过 程中小球的动能Ek与时间t的关系图象是 ( )
【解析】选A。对于整个竖直上抛过程(包括上升与下
落),速度与时间的关系为v=v0-gt,v2=g2t2-2v0gt+
v
2 0

Ek=
1 2
mv2,可见动能与时间是二次函数关系,由
数学中的二次函数知识可判断A正确。
2.(2018·全国卷Ⅱ)如图,某同学用绳子拉动木箱, 使它从静止开始沿粗糙水平路面运动至具有某一速度。 木箱获得的动能一定 ( )
A.小于8 J C.大于8 J

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。

0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。

2021年新高考物理总复习检测:第五章第3节机械能守恒定律及其应用检测(含解析)

2021年新高考物理总复习检测:第五章第3节机械能守恒定律及其应用检测(含解析)

机械能守恒定律及其应用(建议用时:45分钟)【A级基础题练熟快】1. (2019 •浙江杭州模拟)如图所示,荡秋千是小朋友们最喜欢的一项传统游戏,人通过下蹲和站起,使秋千越荡越高.忽略绳的质量及空气阻力,则()A. 在最高点人下蹲时,重力势能转化为动能B. 在最高点时人和秋千板所受到的合力为零C. 在最低点秋千板对人的支持力等于人的重力D. 在摆动过程中人和秋千的机械能总和不变解析:选A.在最高点人下蹲时,重力势能转化为动能,选项A正确;在最高点时人和秋千板的速度为零,但是所受到的合力不为零,有斜向下的切向加速度,选项B错误;在最低点加速度竖直向上,则秋千板对人的支持力大于人的重力,选项C错误;在摆动过程中,人要对秋千板做功,使得人和秋千的机械能总和增加,选项D错误.2 . (2019 •河北廊坊联考)如图所示,一轻质弹簧一端固定在水平天花板上,另一端挂一重物,当弹簧处于原长时,重物由静止释放,不计空气阻力,关于重物下落过程,下列说法正确的是()A. 加速度一直变大B. 动能先变大后变小C. 弹簧与重物组成的系统的机械能一直变小D. 重物的重力势能先变大后变小解析:选B.重物从释放至下落到最低点的过程中,合力先向下,向下运动的过程中,弹力增大,加速度减小,当弹力等于重力后,弹力大于重力,加速度向上,弹力增大,加速度增大,所以加速度先减小后增大,在平衡位置时,加速度为零;速度方向先与加速度方向相同,然后与加速度方向相反,则重物的速度先增大后减小,当加速度为零时,速度最大,故A 错误;结合加速度的方向可知,重物的动能先增大后减小,故B正确;整个过程中只有重力和弹簧的弹力做功,所以弹簧与重物组成的系统的机械能一直不变,故C错误;重物下降的过程中重力一直做正功,所以重物的重力势能一直减小,故D错误.3. (2019 •湖南岳阳质检)如图,游乐场中,从高处A到水面B处有两条长度相同的光滑轨道•甲、乙两小孩沿不同轨道同时从A处以相同大小的速度自由滑向B处,下列说法正确的有()A. 甲的切向加速度始终比乙的大B. 甲、乙在同一高度的速度相同C. 甲比乙先到达B处D. 甲、乙在同一时刻总能到达同一高度解析:选C.由受力分析及牛顿第二定律可知,甲的切向加速度先比乙的大,后比乙的小,故A错误;由机械能守恒定律可知,各点的机械能保持不变,高度(重力势能)相等处的动能也相等,故速度大小相等,但速度方向不同,故B错误;甲的切向加速度先比乙的大,速度增大的比较快,开始阶段的位移比较大,故甲总是先达到同一高度的位置,故C正确,D错误.4. (2019 •浙江温州九校联考)如图是在玩“跳跳鼠”的儿童,该玩具弹簧上端连接脚踏板,下端连接跳杆,儿童在脚踏板上用力向下压缩弹簧,然后弹簧将人向上弹起,最终弹簧将跳杆带离地面,下列说法正确的是()A. 从人被弹簧弹起到弹簧第一次恢复原长,人一直向上加速运动B. 无论下压弹簧的压缩量多大,弹簧都能将跳杆带离地面C. 人用力向下压缩弹簧至最低点的过程中,人和“跳跳鼠”组成的系统机械能增加D. 人用力向下压缩弹簧至最低点的过程中,人和“跳跳鼠”组成的系统机械能守恒解析:选C.从人被弹簧弹起到弹簧第一次恢复原长,人先向上做加速运动,当人的重力与弹力相等时,速度最大,由于惯性人向上做减速运动,故A错误;当下压弹簧的压缩量较小时,弹簧的拉伸量也较小,小于跳杆的重力时,跳杆不能离开地面,故B错误;人用力向下压缩弹簧至最低点的过程中,人的体能转化为系统的机械能,所以人和“跳跳鼠”组成的系统机械能增加,故C正确,D错误.5. (多选)(2019 •江西景德镇模拟)如图所示,一根不可伸长的轻绳两端各系一个小球a和b,跨在两根固定在同一高度的光滑水平细杆上,a球置于地面上,质量为m的b球从水平位置静止释放.当 b 球第一次经过最低点时,a 球对地面压力刚好为零.下列结论正确的是A. a 球的质量为2mb 球的机械能守恒,则有: mgL = j mv 2;当b 球摆过的角度为90。

2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)

2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)
C.5mgRD.6mgR
2.某电影里两名枪手在房间对决,他们各自背靠墙壁,一左一右。假设他们之间的地面光滑随机放着一均匀木块,木块到左右两边的距离不一样。两人拿着相同的步枪和相同的子弹同时朝木块射击一发子弹,听天由命。但是子弹都没有射穿木块,两人都活了下来反而成为了好朋友。假设你是侦探,仔细观察木块发现右边的射孔(弹痕)更深。设子弹与木块的作用力大小一样,请你分析一下,哪个结论是正确的( )
2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)
考纲指导
能量观点是高中物理解决问题的三大方法之一,既在选择题中出现,也在综合性的计算题中应用,常将动量与能量等基础知识融入其他问题考查,也常将动能定理、机械能守恒、功能关系、动量定理和动量守恒定律作为解题工具在综合题中应用。考查的重点有以下几方面:(1)动量定理和动量守恒定律的应用;(2)“碰撞模型”问题;(3)“爆炸模型”和“反冲模型”问题;(4)“板块模型”问题。
A.小车上表面长度
B.物体A与小车B的质量之比
C.A与小车B上表面的动摩擦因数
D.小车B获得的动能
2.某兴趣小组设计了一个玩具轨道模型如图甲所示,将一质量为m=0.5 kg的玩具小车(可以视为质点)放在P点,用弹簧装置将其从静止弹出(弹性势能完全转化为小车初始动能),使其沿着半径为r=1.0 m的光滑圆形竖直轨道OAO′运动,玩具小车受水平面PB的阻力为其自身重力的0.5倍(g取10 m/s2),PB=16.0 m,O为PB中点。B点右侧是一个高h=1.25 m,宽L=2.0 m的壕沟。求:
【答案】BC
2.【解析】(1)在最高点mg= ,得vA= m/s
O→A:-mg2r= mv - mv ,得vO=5 m/s
FNO-mg= ,得FNO=6mg=30 N。

2022届高考物理核心考点知识归纳典例剖析与同步练习功能关系能量守恒定律(解析版)

2022届高考物理核心考点知识归纳典例剖析与同步练习功能关系能量守恒定律(解析版)2021年高考物理核心考点知识归纳、典例分析与同步练习:功能关系能量守恒定律★重点归纳★一、能量1、概念:一个物体能够对外做功,我们就说这个物体具有能量.2、能量的转化:各种不同形式的能量可以相互转化,而且在转化过程中总量保持不变也就是说当某个物体的能量减少时,一定存在其他物体的能量增加,且减少量一定等于增加量;当某种形式的能量减少时,一定存在其他形式的能量增加,且减少量一定等于增加量.3、功是能量转化的量度.不同形式的能量之间的转化是通过做功实现的.做功的过程就是各种形式的能量之间转化(或转移)的过程.且做了多少功,就有多少能量发生转化(或转移)。

功能的变化表达式重力做功正功重力势能减少重力势能变化负功重力势能增加弹力做功正功弹性势能减少弹性势能变化负功弹性势能增加合力做功正功动能增加动能变化负功动能减少除重力(或系统内弹力)外其他力做功正功机械能增加机械能变化负功机械能减少二、能量守恒定律1、内容:能量既不会消灭,也不会产生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移过程中,能量的总量保持不变,这个规律叫做能量守恒定律.2、表达式:;.3、利用能量守恒定律解题的基本思路.(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量一定和增加量相等.(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.4、利用能量守恒定律解题应注意的问题:(1)该定律是贯穿整个物理学的基本规律之一,是学习物理的一条主线.(2)要分清系统中有多少种形式的能量,发生哪些转移和转化.(3)滑动摩擦力与相对距离的乘积在数值上等于产生的内能,即.★举一反三★【例1】一线城市道路越来越拥挤,因此自行车越来越受城市人们的喜爱,如图,当你骑自行车以较大的速度冲上斜坡时,假如你没有蹬车,受阻力作用,则在这个过程中,下面关于你和自行车的有关说法正确的是()A.机械能增加B.克服阻力做的功等于机械能的减少量C.减少的动能等于增加的重力势能D.因为要克服阻力做功,故克服重力做的功小于克服阻力做的功答案:B【练习1】如图所示,一固定斜面倾角为30°,一质量为m的小物块自斜面底端以一定的初速度沿斜面向上做匀减速运动,加速度的大小等于重力加速度的大小g。

第一篇 专题二 第6讲 动能定理 机械能守恒定律 能量守恒定律

第6讲动能定理机械能守恒定律能量守恒定律命题规律 1.命题角度:(1)动能定理的综合应用;(2)机械能守恒定律及应用;(3)能量守恒定律及应用.2.常用方法:图像法、函数法、比较法.3.常考题型:计算题.考点一动能定理的综合应用1.应用动能定理解题的步骤图解:2.应用动能定理的四点提醒:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2022·河南信阳市质检)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来,如图是滑板运动的轨道.BC和DE是竖直平面内的两段光滑的圆弧形轨道,BC 的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.4.某运动员从轨道上的A点以v=4 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点距水平轨道CD的竖直高度分别为h=2 m 和H=3 m,忽略空气阻力.(g=10 m/s2)(1)运动员从A点运动到B点的过程中,求到达B点时的速度大小v B;(2)求水平轨道CD的长度L;(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,求出回到B点时速度的大小.如果不能,求出最后停止的位置距C点的距离.答案(1)8 m/s(2)5.5 m(3)见解析解析(1)运动员从A点运动到B点的过程中做平抛运动,到达B点时,其速度沿着B点的切线方向,可知运动员到达B 点时的速度大小为v B =vcos 60°, 解得v B =8 m/s(2)从B 点到E 点,由动能定理得mgh -μmgL -mgH =0-12m v B 2代入数值得L =5.5 m(3)设运动员能到达左侧的最大高度为h ′,从E 点到第一次返回到左侧最高处,由动能定理得mgH -μmgL -mgh ′=0 解得h ′=0.8 m<2 m故运动员不能回到B 点.设运动员从E 点开始返回后,在CD 段滑行的路程为s ,全过程由动能定理得 mgH -μmgs =0 解得总路程s =7.5 m 由于L =5.5 m所以可得运动员最后停止的位置在距C 点2 m 处.考点二 机械能守恒定律及应用1.判断物体或系统机械能是否守恒的三种方法定义判断法 看动能与势能之和是否变化能量转化判断法 没有与机械能以外的其他形式的能转化时,系统机械能守恒做功判断法只有重力(或弹簧的弹力)做功时,系统机械能守恒2.机械能守恒定律的表达式3.连接体的机械能守恒问题共速率模型分清两物体位移大小与高度变化关系共角速度模型两物体角速度相同,线速率与半径成正比关联速度模型此类问题注意速度的分解,找出两物体速度关系,当某物体位移最大时,速度可能为0轻弹簧模型①同一根弹簧弹性势能大小取决于弹簧形变量的大小,在弹簧弹性限度内,形变量相等,弹性势能相等②由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零)说明:以上连接体不计阻力和摩擦力,系统(包含弹簧)机械能守恒,单个物体机械能不守恒.例2(2022·全国乙卷·16)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于()A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积 答案 C解析 如图所示,设小环下降的高度为h ,大圆环的半径为R ,小环到P 点的距离为L ,根据机械能守恒定律得mgh =12m v 2,由几何关系可得h =L sin θ,sin θ=L 2R ,联立可得h =L 22R,则v =LgR,故C 正确,A 、B 、D 错误. 例3 (多选)(2022·黑龙江省八校高三期末)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),重力加速度为g ,则在圆环下滑到最大距离的过程中( )A .弹簧对圆环先做正功后做负功B .弹簧弹性势能增加了3mgLC .圆环重力势能与弹簧弹性势能之和先减小后增大D .圆环下滑到最大距离时,所受合力为零 答案 BC解析 弹簧一直伸长,故弹簧对圆环一直做负功,A 错误;由题可知,整个过程动能的变化量为零,根据几何关系可得圆环下落的高度h =(2L )2-L 2=3L ,根据能量守恒定律可得,弹簧弹性势能增加量等于圆环重力势能的减少量,则有ΔE p =mgh =3mgL ,B 正确;弹簧与小圆环组成的系统机械能守恒,则有ΔE k +ΔE p 重+ΔE p 弹=0,由于小圆环在下滑到最大距离的过程中先是做加速度减小的加速运动,再做加速度增大的减速运动,所以动能先增大后减小,则圆环重力势能与弹簧弹性势能之和先减小后增大,C 正确;圆环下滑到最大距离时,加速度方向竖直向上,所受合力方向为竖直向上,D 错误.例4 (2020·江苏卷·15)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h .答案 (1)2ωR (2)(2mω2R )2+(mg )2 (3)M +16m 2Mg (ωR )2解析 (1)重物落地后,小球线速度大小v =ωr =2ωR (2)向心力F n =2mω2R设F 与水平方向的夹角为α,则 F cos α=F n F sin α=mg 解得F =(2mω2R )2+(mg )2(3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.考点三 能量守恒定律及应用1.含摩擦生热、焦耳热、电势能等多种形式能量转化的系统,优先选用能量守恒定律. 2.应用能量守恒定律的基本思路 (1)守恒:E 初=E 末,初、末总能量不变.(2)转移:E A 减=E B 增,A 物体减少的能量等于B 物体增加的能量. (3)转化:|ΔE 减|=|ΔE 增|,减少的某些能量等于增加的某些能量.例5 (2021·山东卷·18改编)如图所示,三个质量均为m 的小物块A 、B 、C ,放置在水平地面上,A 紧靠竖直墙壁,一劲度系数为k 的轻弹簧将A 、B 连接,C 紧靠B ,开始时弹簧处于原长,A 、B 、C 均静止.现给C 施加一水平向左、大小为F 的恒力,使B 、C 一起向左运动,当速度为零时,立即撤去恒力,一段时间后A 离开墙壁,最终三物块都停止运动.已知A 、B 、C 与地面间的滑动摩擦力大小均为f ,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内.(弹簧的弹性势能可表示为:E p =12kx 2,k 为弹簧的劲度系数,x 为弹簧的形变量)(1)求B 、C 向左移动的最大距离x 0和B 、C 分离时B 的动能E k ; (2)为保证A 能离开墙壁,求恒力的最小值F min ;(3)若三物块都停止时B 、C 间的距离为x BC ,从B 、C 分离到B 停止运动的整个过程,B 克服弹簧弹力做的功为W ,通过推导比较W 与fx BC 的大小; 答案 (1)2F -4f k F 2-6fF +8f 2k(2)(3+102)f (3)W <fx BC解析 (1)从开始到B 、C 向左移动到最大距离的过程中,以B 、C 和弹簧为研究对象,由功能关系得 Fx 0=2fx 0+12kx 02弹簧恢复原长时B 、C 分离,从弹簧最短到B 、C 分离,以B 、C 和弹簧为研究对象,由能量守恒定律得 12kx 02=2fx 0+2E k联立方程解得x 0=2F -4fkE k =F 2-6fF +8f 2k.(2)当A 刚要离开墙时,设弹簧的伸长量为x ,以A 为研究对象,由平衡条件得kx =f 若A 刚要离开墙壁时B 的速度恰好等于零,这种情况下恒力为最小值F min ,从弹簧恢复原长到A 刚要离开墙的过程中,以B 和弹簧为研究对象, 由能量守恒定律得E k =12kx 2+fx结合第(1)问结果可知F min =(3±102)f 根据题意舍去F min =(3-102)f , 所以恒力的最小值为F min =(3+102)f . (3)从B 、C 分离到B 停止运动,设B 的位移为x B ,C 的位移为x C ,以B 为研究对象, 由动能定理得-W -fx B =0-E k 以C 为研究对象, 由动能定理得-fx C =0-E k 由B 、C 的运动关系得x B >x C -x BC 联立可知W <fx BC .1.(2022·江苏新沂市第一中学高三检测)如图所示,倾角为θ的斜面AB 段光滑,BP 段粗糙,一轻弹簧下端固定于斜面底端P 处,弹簧处于原长时上端位于B 点,可视为质点、质量为m 的物体与BP 之间的动摩擦因数为μ(μ<tan θ),物体从A 点由静止释放,将弹簧压缩后恰好能回到AB 的中点Q .已知A 、B 间的距离为x ,重力加速度为g ,则( )A .物体的最大动能等于mgx sin θB .弹簧的最大形变量大于12xC .物体第一次往返中克服摩擦力做的功为12mgx sin θD .物体第二次沿斜面上升的最高位置在B 点 答案 C解析 物体接触弹簧前,由机械能守恒定律可知,物体刚接触弹簧时的动能为E k =mgx sin θ,物体接触弹簧后,重力沿斜面向下的分力先大于滑动摩擦力和弹簧弹力的合力,物体先加速下滑,后来重力沿斜面向下的分力小于滑动摩擦力和弹簧弹力的合力,物体减速下滑,所以当重力沿斜面向下的分力等于滑动摩擦力和弹簧弹力的合力时物体所受的合力为零,速度最大,动能最大,所以物体的最大动能一定大于mgx sin θ,A 错误;设弹簧的最大压缩量为L ,弹性势能最大为E p ,物体从A 到最低点的过程,由能量守恒定律得mg (L +x )sin θ=μmgL cos θ+E p ,物体从最低点到Q 点的过程,由能量守恒得mg (L +x2)sin θ+μmgL cos θ=E p ,联立解得L =x tan θ4μ,由于μ<tan θ,但未知它们的具体参数,则无法说明弹簧的最大形变量是否大于12x ,B 错误;第一次往返过程中,根据能量守恒定律,可知损失的能量等于克服摩擦力做的功,则有ΔE =2μmgL cos θ=12mgx sin θ,C 正确;设从Q 到第二次最高点位置C ,有mgx QC sin θ=2μmgL ′cos θ,如果L ′=L ,则有x QC =x2,即最高点为B ,但由于物体从Q 点下滑,则弹簧的最大形变量L ′<L ,所以最高点应在B 点上方,D 错误.2.(2022·浙江温州市二模)我国选手谷爱凌在北京冬奥会自由式滑雪女子U 型场地技巧决赛中夺得金牌.如图所示,某比赛用U 型池场地长度L =160 m 、宽度d =20 m 、深度h =7.25 m ,两边竖直雪道与池底平面雪道通过圆弧雪道连接组成,横截面像“U ”字形状,池底雪道平面与水平面夹角为θ=20°.为测试赛道,将一质量m =1 kg 的小滑块从U 型池的顶端A 点以初速度v 0=0.7 m/s 滑入;滑块从B 点第一次冲出U 型池,冲出B 点的速度大小v B =10 m/s ,与竖直方向夹角为α(α未知),再从C 点重新落回U 型池(C 点图中未画出).已知A 、B 两点间直线距离为25 m ,不计滑块所受的空气阻力,sin 20°=0.34,cos 20°=0.94,tan 20°=0.36,g 取10 m/s 2.(1)A 点至B 点过程中,求小滑块克服雪道阻力所做的功W 克f ;(2)忽略雪道对滑块的阻力,若滑块从池底平面雪道离开,求滑块离开时速度的大小v;(3)若保持v B大小不变,速度v B与竖直方向的夹角调整为α0时,滑块从冲出B点至重新落回U型池的时间最长,求tan α0(结果保留两位有效数字).答案(1)1.35 J(2)35 m/s(3)0.36解析(1)小滑块从A点至B点过程中,由动能定理有mgx sin 20°-W克f=12m v B2-12m v02由几何关系得x=x AB2-d2,联立解得W克f=1.35 J(2)忽略雪道对滑块的阻力,滑块从A点运动到池底平面雪道离开的过程中,由动能定理得mgL sin 20°+mgh cos 20°=12m v2-12m v02,代入数据解得v=35 m/s(3)当滑块离开B点时,设速度方向与U型池斜面的夹角为θ,沿U型池斜面和垂直U型池方向分解速度v y=v B sin θ,v x=v B cos θ,a y=g cos 20°,a x=g sin 20°,v y=a y t1,t=2t1由此可知,当v y最大时,滑块从冲出B点至重新落回U型池的时间最长,此时v B垂直于U 型池斜面,即α0=20°tan α0=sin α0cos α0=0.340.94≈0.36.专题强化练[保分基础练]1.(2022·河北保定市高三期末)如图所示,固定在竖直面内横截面为半圆的光滑柱体(半径为R,直径水平)固定在距离地面足够高处,位于柱体两侧质量相等的小球A、B(视为质点)用细线相连,两球与截面圆的圆心O处于同一水平线上(细线处于绷紧状态).在微小扰动下,小球A 由静止沿圆弧运动到柱体的最高点P.不计空气阻力,重力加速度大小为g.小球A通过P点时的速度大小为()A.gRB.2gRC.(π2-1)gR D.π2gR 答案 C解析 对A 、B 组成的系统,从开始运动到小球A 运动到最高点的过程有mg ·πR 2-mgR =12×2m v 2,解得v =(π2-1)gR ,故选C. 2.(2022·山东泰安市模拟)如图所示,细绳AB 和BC 连接着一质量为m 的物体P ,其中绳子的A 端固定,C 端通过大小不计的光滑定滑轮连接着一质量也为 m 的物体Q (P 、Q 均可视为质点).开始时,用手托住物体P ,使物体P 与A 、C 两点等高在一条水平直线上,且绳子处于拉直的状态,把手放开, P 下落到图示位置时,夹角如图所示.已知AB =L ,重力加速度为g .则由开始下落到图示位置的过程中,下列说法正确的是( )A .物体Q 与物体P 的速度大小始终相等B .释放瞬间P 的加速度小于gC .图示位置时,Q 的速度大小为3gL2 D .图示位置时,Q 的速度大小为2-32gL 答案 D解析 P 与Q 的速度关系如图所示释放后,P 绕A 点做圆周运动,P 的速度沿圆周的切线方向,当绳BC 与水平夹角为30°时,绳BC 与绳AB 垂直,P 的速度方向沿CB 的延长线,此时物体Q 与物体P 的速度大小相等,之前的过程中,速度大小不相等,故A 错误;释放瞬间,P 所受合力为重力,故加速度等于g ,故B 错误;由几何关系知AC =2L ,P 处于AC 的中点时,则有BC =L ,当下降到图示位置时BC =3L ,Q 上升的高度h 1=(3-1)L ,P 下降的高度为h 2=L cos 30°=32L ,由A 项中分析知此时P 、Q 速度大小相等,设为v ,根据系统机械能守恒得mgh 2=mgh 1+12×2m v 2,解得v =2-32gL ,故D 正确,C 错误. 3.(多选)(2022·重庆市涪陵第五中学高三检测)如图所示,轻绳的一端系一质量为m 的金属环,另一端绕过定滑轮悬挂一质量为5m 的重物.金属环套在固定的竖直光滑直杆上,定滑轮与竖直杆之间的距离OQ =d ,金属环从图中P 点由静止释放,OP 与直杆之间的夹角θ=37°,不计一切摩擦,重力加速度为g ,sin 37°=0.6,cos 37°=0.8,则( )A .金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小B .金属环从P 上升到Q 的过程中,绳子拉力对重物做的功为103mgdC .金属环在Q 点的速度大小为2gd3D .若金属环最高能上升到N 点,则ON 与直杆之间的夹角α=53° 答案 AD解析 金属环在P 点时,重物的速度为零,则重物所受重力的瞬时功率为零,当环上升到Q 点,环的速度与绳垂直,则重物的速度为零,此时,重物所受重力的瞬时功率也为零,故金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小,故A 正确;金属环从P 上升到Q 的过程中,设绳子拉力做的功为W ,对重物应用动能定理有W +W G =0,则W =-W G =-5mg (d sin θ-d )=-103mgd ,故B 错误;设金属环在Q 点的速度大小为v ,对环和重物整体,由动能定理得5mg (d sin θ-d )-mg d tan θ=12m v 2,解得v =2gd ,故C 错误;若金属环最高能上升到N 点,则整个过程中,金属环和重物整体的机械能守恒,有5mg (d sin θ-dsin α)=mg (d tan θ+d tan α),解得α=53°,故D 正确. 4.(2021·浙江1月选考·11)一辆汽车在水平高速公路上以80 km/h 的速度匀速行驶,其1 s 内能量分配情况如图所示.则汽车( )A .发动机的输出功率为70 kWB .每1 s 消耗的燃料最终转化成的内能是5.7×104 JC .每1 s 消耗的燃料最终转化成的内能是6.9×104 JD .每1 s 消耗的燃料最终转化成的内能是7.0×104 J 答案 C解析 据题意知,发动机的输出功率为P =Wt =17 kW ,故A 错误;根据能量守恒定律结合能量分配图知,1 s 消耗的燃料最终转化成的内能为进入发动机的能量,即6.9×104 J ,故B 、D 错误,C 正确.[争分提能练]5.(2022·山西太原市高三期末)如图甲所示,一物块置于粗糙水平面上,其右端通过水平弹性轻绳固定在竖直墙壁上.用力将物块向左拉至O 处后由静止释放,用传感器测出物块的位移x 和对应的速度,作出物块的动能E k -x 关系图像如图乙所示.其中0.10~0.25 m 间的图线为直线,其余部分为曲线.已知物块与水平面间的动摩擦因数为0.2,取g =10 m/s 2,弹性绳的弹力与形变始终符合胡克定律,可知( )A .物块的质量为0.2 kgB .弹性绳的劲度系数为50 N/mC .弹性绳弹性势能的最大值为0.6 JD .物块被释放时,加速度的大小为8 m/s 2 答案 D解析 由分析可知,x =0.10 m 时,弹性绳恢复原长,根据动能定理有μmg Δx =ΔE k ,则m =ΔE k μg Δx =0.300.2×10×(0.25-0.10)kg =1 kg ,所以A 错误;动能最大时弹簧弹力等于滑动摩擦力,则有k Δx 1=μmg ,Δx 1=0.10 m -0.08 m =0.02 m ,解得k =100 N/m ,所以B 错误;根据能量守恒定律有E pm =μmgx m =0.2×1×10×0.25 J =0.5 J ,所以C 错误;物块被释放时,加速度的大小为a =k Δx m -μmg m =100×0.10-0.2×1×101m/s 2=8 m/s 2,所以D 正确.6.(多选)(2022·广东揭阳市高三期末)图为某蹦极运动员从跳台无初速度下落到第一次到达最低点过程的速度-位移图像,运动员及装备的总质量为60 kg ,弹性绳原长为10 m ,不计空气阻力,g =10 m/s 2.下列说法正确的是( )A .下落过程中,运动员机械能守恒B .运动员在下落过程中的前10 m 加速度不变C .弹性绳最大的弹性势能约为15 300 JD .速度最大时,弹性绳的弹性势能约为2 250 J 答案 BCD解析 下落过程中,运动员和弹性绳组成的系统机械能守恒,运动员在绳子绷直后机械能一直减小,所以A 错误;运动员在下落过程中的前10 m 做自由落体运动,其加速度恒定,所以B 正确;在最低点时,弹性绳的形变量最大,其弹性势能最大,由能量守恒定律可知,弹性势能来自运动员减小的重力势能,由题图可知运动员下落的最大高度约为25.5 m ,所以E p =mgH m =15 300 J ,所以C 正确;由题图可知,下落约15 m 时,运动员的速度最大,根据能量守恒可知此时弹性绳的弹性势能约为E pm =mgH -12m v m 2=2 250 J ,所以D 正确.7.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧绳子始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L ,现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置为E 点,D 、E 两点间距离为L 2,若A 、B 的质量分别为4m 和m ,A 与斜面之间的动摩擦因数μ=38,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 在从C 运动至D 的过程中的加速度大小; (2)物体A 从C 至D 点时的速度大小; (3)弹簧的最大弹性势能. 答案 (1)120g (2)gL 10 (3)38mgL 解析 (1)物体A 从C 运动到D 的过程,对物体A 、B 整体进行受力分析,根据牛顿第二定律有4mg sin 30°-mg -4μmg cos 30°=5ma 解得a =120g(2)物体A 从C 运动至D 的过程,对整体应用动能定理有4mgL sin 30°-mgL -4μmgL cos 30°=12·5m v 2 解得v =gL 10(3)当A 、B 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对A 、B 整体应用动能定理得4mg (L +L 2)sin 30°-mg (L +L 2)-μ·4mg cos 30°(L +L2)-W 弹=0-0解得W 弹=38mgL则弹簧具有的最大弹性势能 E p =W 弹=38mgL .8.(2022·江苏南京市二模)现将等宽双线在水平面内绕制成如图甲所示轨道,两段半圆形轨道半径均为R = 3 m ,两段直轨道AB 、A ′B ′长度均为l =1.35 m .在轨道上放置一个质量m =0.1 kg 的小圆柱体,如图乙所示,圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°,如图丙所示.两轨道与小圆柱体间的动摩擦因数均为μ=0.5,小圆柱尺寸和轨道间距相对轨道长度可忽略不计.初始时小圆柱位于A 点处,现使之获得沿直轨道AB 方向的初速度v 0.重力加速度大小g =10 m/s 2,求:(1)小圆柱沿AB 运动时,内、外轨道对小圆柱的摩擦力F f1、F f2的大小;(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时,外轨和内轨对小圆柱的压力F N1、F N2的大小;(3)为了让小圆柱不脱离内侧轨道,v 0的最大值以及在v 0取最大值情形下小圆柱最终滑过的路程s .答案 (1)0.5 N 0.5 N (2)1.3 N 0.7 N (3)57 m/s 2.85 m解析 (1)圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°, 根据对称性可知,两侧弹力大小均与重力相等,为1 N , 内、外轨道对小圆柱的摩擦力F f1=F f2=μF N =0.5 N(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时有12m v 2-12m v 02=-(F f1+F f2)l在B 点有F N1sin 60°-F N2sin 60°=m v 2R ,F N1cos 60°+F N2cos 60°=mg解得F N1=1.3 N ,F N2=0.7 N(3)为了让小圆柱不脱离内侧轨道,v 0最大时,在B 点恰好内轨对小圆柱的压力为0,有 F N1′sin 60°=m v m 2R ,F N1′cos 60°=mg且12m v m 2-12m v 0m 2=-(F f1+F f2)l 解得v 0m =57 m/s ,在圆弧上受摩擦力为 F f =μF N1′=μmg cos 60°=1 N即在圆弧上所受摩擦力大小与在直轨道所受总摩擦力大小相等 所以12m v 0m 2=F f s解得s =2.85 m.[尖子生选练]9.(2022·浙江1月选考·20)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB 、圆心为O 1的半圆形光滑轨道BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上.已知可视为质点的滑块质量m =0.1 kg ,轨道BCD 和DEF 的半径R =0.15 m ,轨道AB 长度l AB =3 m ,滑块与轨道FG 间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cos 37°=0.8.滑块开始时均从轨道AB 上某点静止释放.(1)若释放点距B 点的长度l =0.7 m ,求滑块到最低点C 时轨道对其支持力F N 的大小; (2)设释放点距B 点的长度为l x ,滑块第一次经F 点时的速度v 与l x 之间的关系式; (3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值. 答案 (1)7 N (2)v =12l x -9.6,其中l x ≥0.85 m (3)见解析 解析 (1)滑块由静止释放到C 点过程,由能量守恒定律有 mgl sin 37°+mgR (1-cos 37°)=12m v C 2在C 点由牛顿第二定律有 F N -mg =m v C 2R解得F N =7 N(2)要保证滑块能到F 点,必须能过DEF 的最高点,当滑块恰能达到最高点时,根据动能定理可得mgl 1sin 37°-(3mgR cos 37°+mgR )=0 解得l 1=0.85 m因此要能过F 点必须满足l x ≥0.85 m能过最高点,则能到F 点,根据动能定理可得 mgl x sin 37°-4mgR cos 37°=12m v 2,解得v =12l x -9.6,其中l x ≥0.85 m.(3)设摩擦力做功为第一次到达中点时的n 倍mgl x sin 37°-mg l FG 2sin 37°-nμmg l FG 2cos 37°=0,l FG =4Rtan 37°解得l x =7n +615 m(n =1,3,5,…)又因为l AB ≥l x ≥0.85 m ,l AB =3 m , 当n =1时,l x 1=1315 m当n =3时,l x 2=95 m当n =5时,l x 3=4115m.。

2020高考物理计算题专练06机械能守恒定律的应用(解析版)-备战2020高考物理满分卷题型专练

计算题06机械能守恒定律的应用时间:50分钟 满分:100分1.(2020·通榆县第一中学高三月考)如图所示,将质量为m =0.1kg 的小球从平台末端A 点以v 0=2m/s 的初速度水平抛出,平台的右下方有一个表面光滑的斜面体,小球在空中运动一段时间后,恰好从斜面体的顶端B 无碰撞地进入斜面,并沿斜面运动,而后经过C 点再沿粗糙水平面运动。

在粗糙水平面的右边固定一竖直挡板,轻质弹簧拴接在挡板上,弹簧的自然长度为x 0=0.3m 。

之后小球开始压缩轻质弹簧,最终当小球速度减为零时,弹簧被压缩了Δx =0.1m 。

已知斜面体底端C 距挡板的水平距离为d 2=1m ,斜面体的倾角为θ=45︒,斜面体的高度h =0.5m 。

小球与水平面间的动摩擦因数μ=0.5,设小球经过C 点时无能量损失,重力加速度g =10m/s 2,求: (1)平台与斜面体间的水平距离d 1 (2)压缩弹簧过程中的最大弹性势能Ep【答案】(1)0.4m(2)0.5J 【解析】 【详解】(1)小球到达斜面顶端时0=tan By v v θ且1By v gt =101d v t =联立解得10.4m d =(2)在B 点cos B v v θ=从B 到小球速度为0,有220P 1()2B mv mgh mg d x x E μ+=-+∆+ 解得P 0.5J E =2.(2020·上海上外浦东附中高三月考)如图,粗糙直轨道AB 与水平方向的夹角θ=37°;曲线轨道BC 光滑且足够长,它们在B 处光滑连接.一质量m =0.2kg 的小环静止在A 点,在平行于AB 向上的恒定拉力F 的作用下,经过t =0.8s 运动到B 点,立即撤去拉力F ,小环沿BC 轨道上升的最大高度h =0.8m .已知小环与AB 间动摩擦因数μ=0.75.(g 取10m/s 2,sin37°=0.6,cos37°=0.8)求:(1)小环上升到B 点时的速度大小; (2)拉力F 的大小;(3)简要分析说明小环从最高点返回A 点过程的运动情况.【答案】(1) 4m/s (2) 3.4N (3) 小环从最高点返回B 点过程中,只有重力做功,机械能守恒 ,小环做加速运动,回到B 点时速度大小为4m/s .小环由B 向A 运动过程中,根据小环受力有F 合=mg sinθ—μmg cosθ =0,小环在BA 段以4m/s 平行BA 向下匀速直线运动 【解析】试题分析:因BC 轨道光滑,小环在BC 上运动时只有重力做功,其机械能守恒,根据机械能守恒定律求解小环在B 点时的速度大小;小环在AB 段运动过程,由牛顿第二定律和运动学公式结合求解拉力F 的大小.(1)因BC 轨道光滑,小环在BC 上运动时只有重力做功,机械能守恒,即小环在B 处与最高处的机械能相等,且在最高处时速度为零,以B 点为零势能点, 根据机械能守恒定律:212B mv mgh = 代入数据得小环在B 点速度:v B =4m/s (2)小环在AB 段受到恒力作用,做初速度为零的匀加速直线运动 所以有v B =at代入数据得a=5m/s2小环受力如图:根据小环受力,由牛顿第二定律:F合=ma 即F—mg sinθ—f=ma其中:f=μN=μmg cosθ可得:F=mg sinθ+μmg cosθ+ma代入数据得F=3.4N(3)小环从最高点返回B点过程中,只有重力做功,机械能守恒,小环做加速运动,回到B点时速度大小为4m/s.小环由B向A运动过程中,根据小环受力有:F合=mg sinθ—μmg cosθ =0,小环在BA段以4m/s平行BA向下匀速直线运动.点睛:本题主要考查了牛顿第二定律和机械能守恒定律,物体做好受力分析,理清物体的运动过程,抓住物体在最高处时速度为零这一隐含条件,再由动力学方法进行研究.3.(2020·北京市师达中学高三)如图所示,竖直平面内的光滑形轨道的底端恰好与光滑水平面相切。

专题五 解决物理问题的“三大观点—2020高中物理二轮复习课件(共54张PPT)

【答案】 C
[例 3] [动量观点和能量观点的综合应用] [2019·全国卷Ⅰ,25]竖直面内一倾斜轨道与一足够长的水平轨 道通过一小段光滑圆弧平滑连接,小物块 B 静止于水平轨道的最左 端,如图(a)所示.t=0 时刻,小物块 A 在倾斜轨道上从静止开始 下滑,一段时间后与 B 发生弹性碰撞(碰撞时间极短);当 A 返回到 倾斜轨道上的 P 点(图中未标出)时,速度减为 0,此时对其施加一 外力,使其在倾斜轨道上保持静止.物块 A 运动的 v -t 图象如图(b) 所示,图中的 v1 和 t1 均为未知量.已知 A 的质量为 m,初始时 A 与 B 的高度差为 H,重力加速度大小为 g,不计空气阻力.
A.2 kg B.1.5 kg C.1 kg D.0.5 kg
【命题意图】 本题考查动能定理,体现了模型建构素养.
【解析】 设外力大小为 F,在距地面高度 3 m 内的上升过程
中,由动能定理知-(mg+F)h=12mv22-12mv12,由图象可知,12mv21= 72 J,12mv22=36 J,得 mg+F=12 N. 同理结合物体在下落过程中的 Ek -h 图象有 mg-F=8 N,联立解得 mg=10 N,则 m=1 kg,选项 C 正确.
(3)t 时刻后 A 将继续向左运动,假设它能与静止的 B 碰撞,碰 撞时速度的大小为 vA′,由动能定理有
12mAvA′2-12mAvA2 =-μmAg(2l+xB)⑩ 联立③⑧⑩式并代入题给数据得
vA′= 7 m/s⑪ 故 A 与 B 将发生碰撞.设碰撞后 A、B 的速度分别为 vA″和 vB″,由动量守恒定律与机械能守恒定律有 mA(-vA′)=mAvA″+mBvB″⑫ 12mAvA′2=12mAvA″2+12mBvB″2⑬
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题分层突破练5 动能定理、机械能守恒定律、功能关系的应用A组1.(多选)(2021广东阳江高三二模)关于下列配图的说法正确的是()A.图甲中“蛟龙号”在钢绳作用下匀速下降的过程中,它的机械能不守恒B.图乙中火车在匀速转弯时所受合力为零,动能不变C.图丙中握力器在手的压力作用下弹性势能增大D.图丁中撑竿跳高运动员在上升过程中机械能守恒2.(2021山西高三二模)如图所示,竖直平面内有一个半径为R的半圆形轨道,A、B为水平直径的两端点,O为圆心,现将半径远小于轨道半径、质量为m的小球从O点以初速度v0=水平向右抛出,小球落在圆周上某一点,不计空气阻力,重力加速度为g,则小球落在圆周上时的动能为()A.mgRB.mgRC.(-1)mgRD.mgR3.(2021江西高三一模)研究“蹦极”运动时,在运动员身上系好弹性绳并安装传感器,可测得运动员竖直下落的距离及其对应的速度大小。

根据传感器收集到的数据,得到如图所示的“速度—位移”图象,若空气阻力和弹性绳的重力可忽略,根据图象信息,下列说法正确的是()A.弹性绳原长为15 mB.当运动员下降10 m时,处于超重状态,当运动员下降20 m时,处于失重状态C.若以运动员、弹性绳、地球为系统研究,此过程机械能守恒D.当运动员下降15 m时,绳的弹性势能最大4.(2021广东高三二模)高铁在高速行驶时,受到的阻力F f与速度v的关系为F f=kv2(k为常量)。

若某高铁以v1的速度匀速行驶时机车的输出功率为P,则该高铁以2v1的速度匀速行驶时机车的输出功率为()A.8PB.4PC.2PD.P5.(2021广东东莞高三月考)如图所示,质量为m的物体静止在地面上,物体上面连着一个轻弹簧,用手拉住弹簧上端向上移动H,将物体缓缓提高h,拉力F做功W F,不计弹簧的质量,已知重力加速度为g,则下列说法正确的是()A.重力做功-mgh,重力势能减少mghB.弹力做功-W F,弹性势能增加W FC.重力势能增加mgh,弹性势能增加FHD.重力势能增加mgh,弹性势能增加W F-mgh6.(多选)(2021广东佛山高三三模)无动力翼装飞行运动员穿戴着拥有双翼的飞行服装和降落伞设备,从飞机、悬崖绝壁等高处一跃而下,运用肢体动作来掌控滑翔方向,最后打开降落伞平稳落地完成飞行。

若某次无动力翼装飞行从A到B的运动过程可认为是在竖直平面内的匀速圆周运动,如图所示,则从A到B的运动过程中,下列说法正确的是()A.运动员所受重力逐渐减小B.运动员所受重力的功率逐渐减小C.运动员所受的合力逐渐减小D.运动员的机械能逐渐减小7.(2021江西上饶高三二模)如图所示的光滑斜面长为l,宽为b=0.6 m,倾角为θ=30°,一物块(可看成质点)沿斜面左上方顶点P水平射入,恰好从斜面右下方底端Q点离开斜面,已知物块的初速度v0=1 m/s,质量m=1 kg,g取10 m/s2,试求:(1)物块由P运动到Q所用的时间t;(2)光滑斜面的长l;(3)物块在斜面上运动过程中重力的平均功率P。

B组8.(多选)如图所示,水平传送带两端A、B间的距离为L,传送带以速度v沿顺时针运动,一个质量为m的小物体以一定的初速度从A端滑上传送带,运动到B端,此过程中物块先做匀加速直线运动后做匀速直线运动,物块做匀加速直线运动的时间与做匀速直线运动的时间相等,两过程中物块运动的位移之比为2∶3,重力加速度为g,传送带速度大小不变。

下列说法正确的是()A.物块的初速度大小为B.物块做匀加速直线运动的时间为C.物块与传送带间的动摩擦因数为D.整个过程中物块与传动带因摩擦产生的热量为9.(多选)(2021四川成都高三二模)从地面竖直向上抛出一物体,运动过程中,物体除受到重力外还受到一大小不变、方向始终与运动方向相反的外力F作用。

以地面为零势能面,物体从抛出到落回地面的过程中,机械能E随路程s的变化关系如图所示,重力加速度大小取10 m/s2。

则()A.物体到达的最高点距地面的高度为1.0 mB.外力F的大小为3.5 NC.物体动能的最小值为1.0 JD.物体的质量为0.4 kg10.(多选)如图所示,小滑块P、Q的质量均为m,P套在固定光滑竖直杆上,Q放在光滑水平面上。

P、Q间通过铰链用长为L的轻杆连接,轻杆与竖直杆的夹角为α,一水平轻弹簧左端与Q相连,右端固定在竖直杆上。

当α=30°时,弹簧处于原长。

P由静止释放,下降到最低点时α变为60°。

整个运动过程中,P、Q始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。

则P下降过程中()A.弹簧弹性势能最大值为mgLB.滑块P的动能达到最大前,P的机械能先增大后减小C.滑块P的动能达到最大时,Q受到地面的支持力等于2mgD.滑块P的动能达到最大时,Q受到地面的支持力大于2mg11.(多选)如图所示,光滑直角细杆POQ固定在竖直平面内,OP边水平,OP与OQ在O点平滑相连,A、B两小环用长为L的轻绳相连,分别套在OP和OQ杆上。

已知A环质量为m,B环质量为2m。

初始时刻,将轻绳拉至水平位置拉直(即B环位于O点),然后同时释放两小环,A环到达O点后,速度大小不变,方向变为竖直向下,已知重力加速度为g,下列说法正确的是()A.B环下降高度为L时,A环与B环速度大小相等B.在A环到达O点的过程中,B环速度一直增大C.A环到达O点时速度大小为D.当A环到达O点后,再经的时间能追上B环12.(2021江苏南京高三二模)如图所示,电动传送带以恒定速度v0=1.2 m/s顺时针运行,传送带与水平面的夹角α=37°,现将质量m=20 kg的箱子轻放到传送带底端,经过一段时间后,箱子被送到h=1.8 m的平台上。

已知箱子与传送带间的动摩擦因数μ=0.85,不计其他损耗,g取10 m/s2,sin 37°=0.6,cos 37°=0.8。

求:(1)箱子在传送带上刚开始运动时加速度的大小;(2)箱子从传送带底端送到平台上的过程中,箱子与传送带之间因摩擦而产生的热量。

13.如图所示,AB为长直轨道,与水平方向的夹角为37°,BCD为光滑曲线轨道,两段轨道在B处平滑连接。

B、C、D三点离水平地面的高度分别为h1=0.50 m、h2=1.75 m和h3=1.50 m。

一质量m=0.20 kg的小环套在轨道AB上,由静止释放,到达B点时速度大小v B=6.0 m/s。

(g取10 m/s2,sin37°=0.6,cos 37°=0.8)(1)求小环离开轨道D处时速度的大小v D;(2)若AB为光滑的长直轨道,使小环以最小速度落地,则小环在AB上释放处距地面的高度h;(3)若AB为粗糙的长直轨道,已知小环与长直轨道间的动摩擦因数μ=0.25,C处圆形轨道半径R C=0.4 m,则为使小环运动到C处恰好对轨道的压力为零,小环在AB上释放处距地面的高度H。

专题分层突破练5动能定理、机械能守恒定律、功能关系的应用1.AC解析图甲中“蛟龙号”匀速下降的过程中,钢绳对它做负功,所以机械能不守恒,故A正确;图乙中火车在匀速转弯时做匀速圆周运动,所受的合力指向圆心,不为零,故B错误;图丙中握力器在手的压力作用下形变增大,弹簧弹力做负功,所以弹性势能增大,故C正确;图丁中撑竿跳高运动员上升过程中,撑竿的弹性势能转化为运动员的机械能,所以运动员的机械能不守恒,故D错误。

2.A解析设小球下落的时间为t,根据平抛运动规律,水平方向的位移为x=v0t,竖直方向的位移为y=gt2,由几何关系可得x2+y2=R2,解得y=(-1)R,小球落在圆周上时的动能为E k=+mgy=mgR,故选A。

3.C解析运动员下降15m时速度最大,此时加速度为0,合外力为0,弹力不为0,弹力等于重力,弹簧处于伸长状态,所以A错误;运动员下降10m时,处于加速下落过程,加速度向下,处于失重状态,当运动员下降20m时,处于减速下落过程,加速度向上,处于超重状态,所以B错误;以运动员、弹性绳、地球为系统研究,此过程机械能守恒,所以C正确;运动员下降15m时,速度不为0,继续向下运动,弹性绳继续伸长,弹性势能继续增大,所以D错误。

4.A解析当高铁匀速行驶时,牵引力F与阻力F f大小相等,由题意可知,当高铁以v1行驶时机车的输出功率为P=Fv1=k,所以当高铁以v2=2v1行驶时机车的输出功率为P'=F'v2=k=8k=8P,故选A。

5.D解析由题知重物缓慢上升h,则重力做功为W G=-mgh,重力势能增加mgh,整个过程,根据功能关系有W F+W弹+W G=0,解得W弹=mgh-W F,故弹性势能增加ΔE p=-W弹=W F-mgh,故选D。

6.BD解析运动员所受重力恒定不变,故A错误;由于速率不变,速度与重力的夹角(锐角)逐渐增大,重力的功率逐渐减小,故B正确;由于运动员做匀速圆周运动,合力提供向心力,合力大小不变,故C错误;运动员高度降低而动能不变,机械能逐渐减小,选项D正确。

7.答案(1)0.6 s(2)0.9 m(3)7.5 W解析(1)物块做类平抛运动,沿斜面向右的方向做匀速运动,有b=v0t解得t=0.6s。

(2)物块沿斜面向下做初速度为零的匀加速运动mg sinθ=mal=at2联立解得l=0.9m。

(3)物块在斜面上运动过程中重力做的功W=mgl sinθ重力的平均功率P=联立解得P=7.5W。

8.BC解析由题意知∶v=2∶3,得v0=,A错误;匀速运动中=vt,则t=,匀加速与匀速时间相等,B正确;由运动学公式v2-=2ax,x=L,μg=a得动摩擦因数为μ=,C正确;由热量Q=F f s相对,s相对=L-L=L,得Q=,D错误。

9.AD解析根据图象可知,物块总共的路程为s=2m,故上升的最大高度为1.0m,A正确;整个过程,由功能关系得E k-E k0=-Fs,根据图象可知E k0=7J,E k=1J,可得F=3N,B错误;到达最高点速度为零,动能为零,故最小动能为零,C错误;由图象知s=1m时E=4J,此时动能为0,故E p=E=4J,E p=mgh,得m=0.4kg,故D正确。

10.AC解析P下降到最低点时α变为60°,弹性势能达到最大,由能量守恒可得E p=mgL(cos30°-cos60°)=mgL,A正确;滑块P的动能达到最大前,P、Q及弹簧组成的系统机械能守恒,由于Q的动能及弹簧的弹性势能均增大,故P的机械能一直减小,B错误;滑块P的动能达到最大时,P、Q及弹簧组成的整体在竖直方向加速度为零,受到整体的重力及地面支持力作用而平衡,故Q受到地面的支持力等于2mg,C正确,D错误。

相关文档
最新文档