中考数学几何图形专题训练50题-含答案
2021年春九年级数学中考复习《几何图形的变换综合题》专题提升训练(附答案)

2021年春九年级数学中考复习《几何图形的变换综合题》专题提升训练(附答案)1.如图,在矩形ABCD中,AB=4,AD=4,点E为线段CD的中点,动点F从点C出发,沿C→B→A的方向在CB和BA上运动,将矩形沿EF折叠,点C的对应点为C',当点C'恰好落在矩形的对角线上时(不与矩形顶点重合),点F运动的距离为.2.如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(﹣1,0),(5,0),(0,2).若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P在移动的过程中,使△PBF成为直角三角形,则点F的坐标是.3.如图,Rt△OAB∽Rt△BCD,斜边都在x轴上,tan∠AOB=2,AB=,双曲线(x >0)与AO交于点E、交BC于点F,且OE=2AE,CF=2BF,则反比例函数解析式是,点C的坐标是.4.矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为.5.如图①,在△ABC中,∠ACB=90°,AC=BC,以C为顶点作∠DCE=45°,且CD、CE分别与AB相交于D、E两点,将△ACD绕点C逆时针旋转90°得到△BCF.(1)求证:∠AEC=∠FEC;(2)若AD=6,EB=4,求DE的长;(3)若将∠DCE绕点C逆时针旋转使CD与AB相交于点D,边CE与AB的延长线相交于点E,而其他条件不变,如图②所示,猜想DE与AD、EB之间有何数量关系?证明你的猜想.6.如图,在平面直角坐标系xOy中,点A(4,0),M是线段OA上一动点,N为y轴正半轴上的点,且满足AM=ON.(1)若∠OMN=45°,求AM的长;(2)以MN为斜边在第一象限内作等腰直角△MNB,求点B的坐标;(3)在(2)的条件下,点B关于MN的对称点为E,当点E落在y轴上时,求AM的长.7.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.8.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.9.【问题情境】如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.(1)【问题解决】延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是.【反思感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.(2)【尝试应用】如图②,△ABC中,∠BAC=90°,AD是BC边上的中线,试猜想线段AB,AC,AD之间的数量关系,并说明理由.(3)【拓展延伸】如图③,△ABC中,∠BAC=90°,D是BC的中点,DM⊥DN,DM 交AB于点M,DN交AC于点N,连接MN.当BM=4,MN=5,AC=6时,请直接写出中线AD的长.10.观察猜想(1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=;探究证明(2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸(3)如图③,在△ABC中,AB=AC,∠BAC=α,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=α,连接BF,则BE+BF的值是多少?请用含有n,α的式子直接写出结论.11.在△ABC中,∠BAC=90°,AB=AC.(I)如图,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC.求证:(1)△BAD≌△CAE;(2)BC=DC+EC.(Ⅱ)如图,D为△ABC外一点,且∠ADC=45°,仍将线段AD绕点A逆时针旋转90°得到AE,连接EC,ED.(1)△BAD≌△CAE的结论是否仍然成立?并请你说明理由;(2)若BD=9,CD=3,求AD的长.12.如图,在直角坐标系中,△ABC的三个顶点都在坐标轴上,A,B两点关于y轴对称,点C是y轴正半轴上一个动点,AD是角平分线.(1)如图1,若∠ACB=90°,直接写出线段AB,CD,AC之间数量关系;(2)如图2,若AB=AC+BD,求∠ACB的度数;(3)如图2,若∠ACB=100°,求证:AB=AD+CD.13.如图,在平面直角坐标系中,等边△ABC的顶点A,B,C均在坐标轴上,其中B(﹣4,0),C(4,0).(1)如图1,若将△AOC沿AC翻折得到△ACD,则A点坐标为,D点坐标为;(2)如图2,若点P为AO上一动点,作点P关于AC的对称点Q,连接QB,QC,是否存在这样的点P.使得△QBC的周长最小?如果存在,求出△QBC周长的最小值;如果不存在,请说明理由;(3)在(1)问的条件下,点E为y轴正半轴上一动点,是否存在点E使得△BDE为等腰三角形?如果存在,请直接写出△BDE的面积,若不存在,请说明理由.14.阅读下列材料,解答问题:定义:线段BE把等腰△ABC分成△ABE与△BCE(如图1),如果△ABE与△BCE均为等腰三角形,那么线段BE叫做△ABC的完美分割线.(1)如图1,已知△ABC中,AB=AC,∠BAC=36°,BE为△ABC的完美分割线,且CE<AE,则∠C=,∠AEB=;(2)如图2,已知△ABC中,AB=AC,∠BAC=108°,AC=CD,求证:AD为△ABC 的完美分割线;(3)如图3,已知△ABC是一等腰三角形纸片,AB=AC,AD是它的一条完美分割线,且BD>DC,将△ACD沿直线AD折叠后,点C落在点C1处,AC1交BD于点E.求证:BE=C1D.15.在等边△ABC中,点O在BC边上,点D在AC的延长线上且OA=OD.(1)如图1,若点O为BC中点,求证:∠COD的度数.(2)如图2,若点O为BC上任意一点,求证:AD=2BO+OC.(3)如图3,若点O为BC上任意一点,点D关于直线BC的对称点为点P,连接AP,OP,请判断△AOP的形状,并说明理由.16.在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分别交直线AB、AC于点M、N.(1)如图1,当α=90°时,求证:AM=CN;(2)如图2,当α=45°时,求证:BM=AN+MN;(3)当α=45°时,旋转∠MON至图3位置,请你直接写出线段BM、MN、AN之间的数量关系.17.人教版初中数学教科书八年级上册第84页探究了“三角形中边与角之间的不等关系”,部分原文如下:如图1,在△ABC中,如果AB>AC,那么我们可以将△ABC折叠,使边AC落在AB上,点C落在AB上的D点,折线交BC于点E,则∠C=∠ADE.∵∠ADE>∠B(想一想为什么),∴∠C>∠B.(1)请证明上文中的∠ADE>∠B;(2)如图2,在△ABC中,如果∠ACB>∠B,能否证明AB>AC?同学小雅提供了一种方法:将△ABC折叠,使点B落在点C上,折线交AB于点F,交BC于点G,再运用三角形三边关系即可证明,请你按照小雅的方法完成证明;(3)如图3,在△ABC中,∠C=2∠B,按照图1的方式进行折叠,得到折痕AE,过点E作AC的平行线交AB于点M,若∠BEA=110°,求∠DEM的度数.18.(1)如图1,在正方形ABCD中,∠F AG=45°,请直接写出DG,BF与FG的数量关系,不需要证明.(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC,E,F分别是BC上两点,∠EAF =45°.①写出BE,CF,EF之间的数量关系,并证明;②若将(2)中的△AEF绕点A旋转至如图3所示的位置,上述结论是否仍然成立?若不成立,直接写出新的结论,无需证明.(3)如图4,△AEF中,∠EAF=45°,AG⊥EF于G,且GF=2,GE=3,则S△AEF =.19.在△ABC中,AB=AC=6,∠BAC=90°,AD⊥BC于点D,E为线段AD上的一点,AE:DE=2:1,以AE为直角边在直线AD右侧构造等腰Rt△AEF,使∠EAF=90°,连接CE,G为CE的中点.(1)如图1,EF与AC交于点H,连接GH,求线段GH的长度.(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α且45°<α<135°,H为线段EF的中点,连接DG,HG,猜想∠DGH的大小是否为定值,并证明你的结论;(3)如图3,连接BG,将△AEF绕点A逆时针旋转,在旋转过程中,请直接写出BG 长度的最大值.20.如图,在平面直角坐标系中,A(﹣6,0),B(0,8),AB=10,点C在线段OB上,现将△AOC翻折,使得线段AO的对应边AD落到AB上,点O的对应点是点D,折痕为AC.(1)求点C的坐标;(2)连接OD,过点O作OH⊥CD于点H,求OH的长;(3)在(2)的条件下,若点P从点C出发,沿着C﹣D﹣A运动,速度为每秒1个单位,时间为t,是否存在t值,使得△AOP的面积为12,若存在求出t的值;若不存在,请说明理由.参考答案1.解:分两种情况:①当点C′落在对角线BD上时,连接CC′,如图1所示:∵将矩形沿EF折叠,点C的对应点为点C′,且点C'恰好落在矩形的对角线上,∴CC′⊥EF,∵点E为线段CD的中点,∴CE=ED=EC′,∴∠CC′D=90°,即CC′⊥BD,∴EF∥BD,∴点F是BC的中点,∵在矩形ABCD中,AD=4,∴BC=AD=4,∴CF=2,∴点F运动的距离为2;②当点C′落在对角线AC上时,作FH⊥CD于H,则CC′⊥EF,四边形CBFH为矩形,如图2所示:在矩形ABCD中,AB=4,AD=4,∠B=∠BCD=90°,AB∥CD,∴BC=AD=4,tan∠BAC===,∴∠BAC=30°,∵EF⊥AC,∴∠AFE=60°,∴∠FEH=60°,∵四边形CBFH为矩形,∴HF=BC=4,∴EH===,∵EC=CD=2,∴BF=CH=CE﹣EH=2﹣=,∴点F运动的距离为4+;综上所述:点F运动的距离为2或4+;故答案为:2或4+.2.解:能;①若F为直角顶点,过F作FD⊥x轴于D,则BP=6﹣t,DP=2OC=4,在Rt△OCP中,OP=t﹣1,由勾股定理易求得CP2=t2﹣2t+5,那么PF2=(2CP)2=4(t2﹣2t+5);在Rt△PFB中,FD⊥PB,由射影定理可求得PB=PF2÷PD=t2﹣2t+5,而PB的另一个表达式为:PB=6﹣t,联立两式可得t2﹣2t+5=6﹣t,即t=,P点坐标为(,0),则F点坐标为:(,);②B为直角顶点,那么此时的情况与(2)题类似,△PFB∽△CPO,且相似比为2,那么BP=2OC=4,即OP=OB﹣BP=1,此时t=2,P点坐标为(1,0).FD=2(t﹣1)=2,则F点坐标为(5,2).故答案是:(5,2),(,).3.解:分别过点E、A、F、C作EN⊥x轴,AM⊥x轴,FQ⊥x轴,CS⊥x轴于点N,M,Q,S.∵Rt△OAB,tan∠AOB=2,∴==2,∵AB=,∴AO=3,∵OE=2AE,∴EO=2,设NO=x,则EN=2x,由勾股定理得出:x2+(2x)2=(2)2,解得:x1=2,x2=﹣2(不合题意舍去),则EN=4,故E点坐标为:(2,4),则xy=k=2×4=8,故双曲线为:y=;∵AO=3,AB=6,∴BO==15,∵Rt△OAB∽Rt△BCD,tan∠AOB=2,∴tan∠FBQ==2,设BQ=y,则FQ=2y,故BQ=15+y,FQ=2y,则QO×FQ=8,即(15+y)×2y=8,解得:y1=,y2=(不合题意舍去),则FQ=﹣15+,∵FQ∥CS,CF=2BF,∴===,∴CS=﹣45+3,BS=,则OS=15+=,故C点坐标为:.故答案为:y=,(,3﹣45).4.解:由矩形ABCD中,AB=4,AD=3,可得对角线AC=BD=5.依题意画出图形,如右图所示.由轴对称性质可知,∠P AF+∠P AE=2∠P AB+2∠P AD=2(∠P AB+∠P AD)=180°,∴点A在菱形EFGH的边EF上.同理可知,点B、C、D均在菱形EFGH的边上.∵AP=AE=AF,∴点A为EF中点.同理可知,点C为GH中点.连接AC,交BD于点O,则有AF=CG,且AF∥CG,∴四边形ACGF为平行四边形,∴FG=AC=5,即菱形EFGH的边长等于矩形ABCD的对角线长.∴EF=FG=5,∵AP=AE=AF,∴AP=EF=2.5.∵OA=AC=2.5,∴AP=AO,即△APO为等腰三角形.过点A作AN⊥BD交BD于点N,则点N为OP的中点.由S△ABD=AB•AD=AC•AN,可求得:AN=2.4.在Rt△AON中,由勾股定理得:ON===0.7,∴OP=2ON=1.4;同理可求得:OQ=1.4,∴PQ=OP+OQ=1.4+1.4=2.8.故答案为:2.8.5.(1)证明:如图①中,∵△CBF是由∠CAD旋转得到,∴∠ACD=∠BCF,CD=CF,∴∠ACB=∠DCF=90°,∵∠DCE=90°,∴∠ECF=∠ECD=45°,∵CE=CE,∴△ECD≌△ECF(SAS),∴∠CED=∠CEF.(2)解:如图①中,∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∵∠A=∠CBF=45°,∴∠EBF=90°,∵AD=BF=6,EB=4,∴EF===2,∵△ECD≌△ECF,∴DE=DF=2.(3)解:结论:DE2=AD2+BE2.理由:如图2中,连接EF.∵△CBF是由∠CAD旋转得到,∴∠ACD=∠BCF,CD=CF,AD=BF,∠A=∠CBF=45°,∴∠ACB=∠DCF=90°,∵∠DCE=90°,∴∠ECF=∠ECD=45°,∵CE=CE,∴△ECD≌△ECF(SAS),∴DE=EF,∵∠ABC=45°,∠CBF=45°,∴∠ABF=∠EBF=90°,∴BF2+BE2=EF2,∵BF=AD,EF=DE,∴DE2=AD2+BE2.6.解:(1)∵∠OMN=45°,∴OM=ON,∵AM=ON,∴AM=OM,∵A(4,0),∴OA=4,∴;(2)如图1,过点B作BF⊥x轴于F,BH⊥y轴于H,则∠BFM=∠BFO=∠BHN=90°,∴∠HBF=360°﹣∠NOM﹣∠BFO﹣∠BHN=90°,∵△MNB为等腰直角三角形,∴BM=BN,∠MBN=90°,∴∠FBM=∠HBN,∴△BFM≌△BHN(AAS),∴BF=BH,MF=NH,∴可设点B的坐标为(m,m),∴OF=OH=m,∵OM+ON=OM+AM=4,∴OF+OH=OM﹣MF+ON+HN=OM+ON或OF+OH=OM+MF+ON﹣HN=OM+ON,∴2m=4,解得m=2,∴点B的坐标为(2,2);(3)如备用图,(注:图形OMBN是正方形,为了更好的解决问题,图形画的偏差了一些),设BE交MN于G,则BG⊥MN,GB=GE,∵BM=BN,∴GM=GN,设OM=t,则ON=AM=4﹣t,过点G作GD⊥x轴于D,GC⊥y轴于C,连接OG,∵∠NOM=90°,∴,∴,,∴,∵B(2,2),同理,得E(t﹣2,2﹣t),∵点E在y轴上,∴t﹣2=0,解得t=2,∴AM=4﹣2=2.7.解:(1)BD=AC,BD⊥AC,理由是:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)不发生变化.理由:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC.②能.∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC所成的角的度数为60°或120°.8.(1)证明:如图1,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF;(2)如图2,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴EF=CF,∴AF+EF=AF+CF=AC=DE;(3)如图3,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF,∵AC=DE,∴AF=AC+FC=DE+EF.9.解:(1)延长AD至E,使DE=AD,连接BE,如图①所示,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)结论:AB2+AC2=4AD2.理由:延长AD至E,使DE=AD,连接BE,如图②所示,由(1)可知:△BDE≌△CDA,∴BA=AC,∠E=∠CAD,∵∠BAC=90°,∴∠E+∠BAE=∠BAE+∠CAD=∠BAC=90°,∴∠ABE=90°,∴AB2+BE2=AE2,∴AB2+AC2=4AD2.(3)如图,延长ND到E,使得DN=DE,连接BE、EM.∵BD=DC,∠BDE=∠CDN,DE=DN,∴△BDE≌△CDN,∴BE=CM.∠EBD=∠C,∵∠ABC+∠C=90°,∴∠ABD+∠DBE=90°,∵MD⊥EN,DE=DN,∴ME=MN=5,在Rt△BEM中,BE==3,∴CN=BE=3,∵AC=6,∴AN=NC,∵∠BAC=90°,BD=DC,∴AD=DC=BD,∴DN⊥AC,在Rt△AMN中,AM==4,∴AM=BM,∵DA=DB,∴DM⊥AB,∴∠AMD=∠AND=∠MAN=90°,∴四边形AMDN是矩形,∴AD=MN=5.10.解:(1)如图①中,∵∠EAF=∠BAC=90°,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△BAF≌△CAE,∴∠ABF=∠C,BF=CE,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,故答案为:BF⊥BE,BC.(2)如图②中,作DH∥AC交BC于H.∵DH∥AC,∴∠BDH=∠A=90°,△DBH是等腰直角三角形,由(1)可知,BF⊥BE,BF+BE=BH,∵AB=AC=3,AD=1,∴BD=DH=2,∴BH=2,∴BF+BE=BH=2;(3)如图③中,作DH∥AC交BC的延长线于H,作DM⊥BC于M.∵AC∥DH,∴∠ACB=∠H,∠BDH=∠BAC=α,∵AB=AC,∴∠ABC=∠ACB∴∠DBH=∠H,∴DB=DH,∵∠EDF=∠BDH=α,∴∠BDF=∠HDE,∵DF=DE,DB=DH,∴△BDF≌△HDE,∴BF=EH,∴BF+BE=EH+BE=BH,∵DB=DH,DM⊥BH,∴BM=MH,∠BDM=∠HDM,∴BM=MH=BD•sin.∴BF+BE=BH=2n•sin.11.解:(Ⅰ)(1)∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);(2)∵△BAD≌△CAE∴BD=CE,∴BC=BD+CD=EC+CD;(Ⅱ)(1)△BAD≌△CAE的结论仍然成立,理由:∵将线段AD绕点A逆时针旋转90°得到AE,∴△ADE是等腰直角三角形,∴AE=AD,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS);(2)∵△BAD≌△CAE,∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.12.解:(1)如图1,过D作DM⊥AB于M,∵A,B两点关于y轴对称,∴CA=CB,∵∠ACB=90°,AD是角平分线,∴CD=MD,∠ABC=45°,∴∠BDM=45°,∴BM=DM,∴BM=CD,在RT△ADC和RT△ADM中,,∴RT△ADC≌RT△ADM(HL),∴AC=AM,∴AB=AM+BM=AC+CD,即AB=AC+CD;(2)设∠ACB=α,则∠CAB=∠CBA=90°﹣α,在AB上截取AK=AC,连结DK,∵AB=AC+BD,∴BK=BD,∵AD是角平分线,∴在△CAD和△KAD中,,∴△CAD≌△KAD(SAS),∴∠ACD=∠AKD=α,∴∠BKD=180°﹣α,∵BK=BD,∴∠BDK=180°﹣α,在△BDK中,180°﹣α+180°﹣α+90°﹣α=180°,∴α=108°,∴∠ACB=108°;(3)如图2,在AB上截取AH=AD,连接DH,∵∠ACB=100°,AC=BC,∴∠CAB=∠CBA=40°,∵AD是角平分线,∴∠HAD=∠CAD=20°,∴∠ADH=∠AHD=80°,在AB上截取AK=AC,连接DK,由(1)得,△CAD≌△KAD,∴∠ACB=∠AKD=100°,CD=DK,∴∠DKH=80°=∠DHK,∴DK=DH=CD,∵∠CBA=40°,∴∠BDH=40°,∴DH=BH,∴BH=CD,∵AB=AH+BH,∴AB=AD+CD.13.解:(1)如图1中,过点D作DH⊥x轴于H.∵B(﹣4,0),C(4,0),∴OB=OC=4,∵△ABC是等边三角形,∴AB=AC=BC=8,∠ACO=60°,∵∠AOC=90°,∴∠OAC=30°,∴AC=2OC=8,∴OA===4,∴A(0,4),∵将△AOC沿AC翻折得到△ACD,∴∠ACD=∠ACO=60°,CD=CO=4,∴∠DCH=180°﹣60°﹣60°=60°,∵DH⊥CH,∴∠DHC=90°,∴∠CDH=30°,∴CH=CD=2,∴DH===2,OH=OC+CH=6,∴D(6,2).故答案为:(0,4),(6,2).(2)如图2中,∵P,Q关于AC对称,点P在线段OA上,∴点Q在线段AD上,作点C关于直线AD的对称点C′,连接BC′交AD于Q′,连接CQ′,此时△BCQ′的周长最小,∵C(4,0),D(6,2),CD=DC′,∴C′(8,4),∵B(﹣4,0),∴BC′==8,∴△BCQ′的周长=BC+CQ′+BQ′=BC+C′Q′+BQ′=BC+BC′=8+8,∴△BCQ的周长的最小值为8+8.(3)存在.如图3中,设BD交y轴于F,E(0,m).由题意,∠BAC=60°,∠CAD=∠CAO=30°,∴∠BAD=90°,∵AB=8,AD=4,∴S△ABD=•AB•AD=•AF•(x D﹣x B),∴AF==,∴OF=4﹣=,①当EB=ED时,42+m2=62+(m﹣2)2,解得m=,∴E(0,),∴S△EBD=×(﹣)×10=.②当BD=BE′时,m2+42=102+(2)2,解得m=4或﹣4(舍弃),∴E′(0,4),∴S△BDE′=×(4﹣)×10=20﹣4.③当DB=DE″时,62+(m﹣2)2=102+(2)2,解得m=2+2或﹣2+2(舍弃),∴E(0,2+2),∴S△BDE″=×(2+2﹣)×10=10+6,综上所述,△BDE的面积为或20﹣4或10+6.14.解:(1)如图1,∵AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BE为△ABC的完美分割线,且CE<AE,∴△ABE与△BCE均为等腰三角形,∴∠BEC=∠C=72°,∴∠AEB=108°.故答案为:72°,108°;(2)如图2,∵AB=AC,∠BAC=108°,∴∠B=∠C=(180°﹣∠BAC)=36°,∵AC=CD,∴∠CAD=∠CDA=(180°﹣∠C)=72°,∴∠DAB=36°,∴∠BAD=∠B,∴DA=DB,∴△ABD、△ACD均为等腰三角形,∴AD为△ABC的完美分割线;(3)∵AD是△ABC的一条完美分割线,∴AD=CD,AB=BD,∴∠C=∠CAD,∠BAD=∠BDA,∵∠C+∠CAD+∠ADC=180°,∠ADC+∠BDA=180°,∴∠BDA=∠C+∠CAD=2∠CAD,∴∠BAD=2∠CAD,∵∠CAD=∠C1AD,∴∠BAD=2∠C1AD,∵∠BAD=∠C1AD+∠BAE,∴∠C1AD=∠BAE,∵AC=AB,∴∠C=∠B,∴∠C1=∠B,∵AC=AC1,∴AC1=AB,∴△AC1D≌△ABE(ASA),∴DC1=BE.15.解:(1)∵△ABC为等边三角形,∴∠BAC=60°,∵O为BC中点,∴,且AO⊥BC,∠AOC=90°,∵OA=OD,∴△AOD中,∠D=∠CAO=30°,∴∠AOD=180°﹣∠D﹣∠CAO=120°,∴∠COD=∠AOD﹣∠AOC=30°;(2)如图1,过O作OE∥AB,OE交AD于E,∵OE∥AB∴∠EOC=∠ABC=60°∠CEO=∠CAB=60°,∴△COE为等边三角形,∴OE=OC=CE∠AEO=180°﹣∠CEO=120°∠DCO=180°﹣∠ACB=120°,又∵OA=OD,∴∠EAO=∠CDO,在△AOE和△COD中,,∴△AOE≌△DOC(AAS),∴CD=EA,∵EA=AC﹣CE,BO=BC﹣CO,∴BO=CD,又∵AD=AC+CD,AB=BC,∴AD=AB+BO=BC+BO=BO+CO+BO=2BO+CO;(3)△AOP为等边三角形.证明:如图2,连接PC,PD,延长OC交PD于F,∵P、D关于OC对称,∴PF=DF,∠PFO=∠DFO=90°,在△OPE与△OPF中,,∴△OPE≌△OPF(SAS),∴∠POF=∠DOF,OP=OD,∴△AOP为等腰三角形,过O作OE∥AB,OE交AD于E,由(2)得△AOE≌△DOC∠AOE=∠DOC,∴∠AOE=∠POF,∴∠AOE+∠POE=∠POF+∠POE,即∠AOP=∠COE=60°,∴△AOP是等边三角形.16.证明:(1)如图1,连接OA,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠MON=∠AOC=90°,∴∠AOM=∠CON,且AO=CO,∠BAO=∠ACO=45°,∴△AOM≌△CON(ASA)∴AM=CN;(2)证明:如图2,在BA上截取BG=AN,连接GO,AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∵BG=AN,∠ABO=∠NAO=45°,AO=BO,∴△BGO≌△AON(SAS),∴OG=ON,∠BOG=∠AON,∵∠MON=45°=∠AOM+∠AON,∴∠AOM+∠BOG=45°,∵∠AOB=90°,∴∠MOG=∠MON=45°,∵MO=MO,GO=NO,∴△GMO≌△NMO(SAS),∴GM=MN,∴BM=BG+GM=AN+MN;(3)MN=AN+BM,理由如下:如图3,过点O作OG⊥ON,连接AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠GBO=∠NAO=135°,∵MO⊥GO,∴∠NOG=90°=∠AOB,∴∠BOG=∠AON,且AO=BO,∠NAO=∠GBO,∴△NAO≌△GBO(ASA),∴AN=GB,GO=ON,∵MO=MO,∠MON=∠GOM=45°,GO=NO,∴△MON≌△MOG(SAS),∴MN=MG,∵MG=MB+BG,∴MN=AN+BM.17.(1)证明:∵∠ADE=∠B+∠BED,∴∠ADE>∠B;(2)证明:由折叠知,BF=CF,在△ACF中,AF+FC>AC,∴AF+BF>AC,∴AB>AC;(3)由折叠知,∠MAE=∠EAC,∠ADE=∠C,∵∠C=2∠B,∴∠ADE=2∠B,∵∠ADE=∠B+∠BED,∴∠B=∠BED,∵ME∥AC,∴∠MEA=∠EAC,∵∠MAE=∠EAC,∴∠MAE=∠MEA,∵∠BEA=110°,∴∠B+∠BAE=180°﹣∠BEA=180°﹣110°=70°,∴∠BED+∠MEA=∠B+∠BAM=70°,∴∠DEM=∠BEA﹣(∠BED+∠MEA)=110°﹣70°=40°.18.解:(1)结论:FG=BF+DG.理由如下:如图1中,在正方形ABCD中,∵AB=AD,∠BAD=∠ADC=∠B=90°,把△ABF绕点A逆时针旋转90°得到△ADE,∵∠ADG=∠ADE=90°,∴点G、D、E共线,∴∠EAG=90°﹣45°=45°=∠F AG,在△AGF和△AGE中,,∴△AGF≌△AGE(SAS),∴FG=GE=DE+DG=BF+DG.(2)①BE、CF、EF之间的数量关系为:EF2=BE2+FC2.证明如下:∵∠BAC=90°,AB=AC,∴将△ABE绕点A顺时针旋转90°得△ACG,连FG,如图2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=45°,而∠EAG=90°,∴∠GAF=90°﹣45°=45°,而AG=AE,AF公共,∴△AGF≌△AEF(SAS),∴FG=EF,∴EF2=BE2+FC2.②如图3,将△AEB沿直线AE折叠,得△AED,连DF,∴△ADE≌△ABE,∴AD=AB,DE=EB,∠DAE=∠BAE,∠ADE=∠ABE=45°,又∵AB=AC,∴AD=AC,∵∠DAE=∠DAF+∠EAF=∠DAF+45°,∠BAE=∠BAC﹣∠EAC=90°﹣(∠EAF﹣∠F AC)=45°+∠F AC,∴∠DAF=∠F AC,在△AFD和△AFC中,,∴△ADF≌△ACF(SAS),∴FC=DF,∠ADF=∠ACF=∠BAC+∠B=135°,∴∠EDF=∠ADF﹣∠ADE=135°﹣45°=90°,在Rt△EDF中,DE2+FD2=EF2,即EF2=BE2+FC2.(3)证明:如图4,将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.∴AD=AG=AB,∠D=∠AGF=90°,∠B=∠AGE=90°,∠DAF=∠GAF,∠BAE =∠GAE,∵∠EAF=45°=∠F AG+∠GAE,∴∠DAF+∠BAE=45°,∴∠DAB=45°+45°=90°,即∠B=∠D=∠DAB=90°,AD=AB,∴四边形ABCD是正方形.由折叠知,Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,∴BE=EG=3,DF=FG=2,∵EF=5,设AG=x,则AB=BC=CD=AG=x,CE=CB﹣BE=x﹣3,CF=x﹣2.∵CE2+CF2=EF2,∴(x﹣3)2+(x﹣2)2=52.解得x1=6,x2=﹣1(舍去).∴AG=6.∴△AEF的面积=EF•AG=×5×6=15.故答案为:15.19.解:(1)如图1中,连接BE,CF.∵AB=AC=6,∠BAC=90°,AD⊥BC于点D,∴BC=AB=12,BD=CD=6,∠BAD=∠CAD=30°,∴AD=BD=DC=6,∵△AEF是等腰直角三角形,∴AE=AF∵∠DAH=∠F AH=45°,∴EH=HF,∵AE:DE=2:1,∴AE=4,DE=2,∴BE===2,∵AB=AC,AE=AF,∠BAC=∠EAF=90°,∴∠BAE=∠CAF,∴△BAE≌△CAF(SAS),∴CF=BE=2,∵EG=CG,EH=FH,∴GH=CF=.(2)结论:∠DGH=90°是定值.理由:连接BE,CF,设CF交BE于点O,BE交AC于J.同法可证△BAE≌△CAF(SAS),∴∠ABE=∠ACF,∵∠AJB=∠CJO,∴∠COJ=∠BAJ=90°,∴CF⊥BE,∵EH=EH,EG=GC,∴GH∥CF,∵CD=DB,CG=GE,∴DG∥BE,∴DG⊥GH,∴∠DGH=90°.(3)如图3中,取AC的中点J,连接BJ,JG.由题意AJ=JC=3,AB=6,∵∠BAJ=90°,∴BJ===3,∵AJ=JC,EG=CG,∴JG=AE=3,∵BG≤BJ+JG,∴BG≤3+2,∴BG的最大值为3+2.20.解:(1)设C(0,m),∵A(﹣6,0),B(0,8),∴OA=6,OB=8,由翻折的性质可知,∠CDA=∠AOC=90°,OC=CD=m,∵S△AOB=S△AOC+S△ACB,∴•OA•OB=•OC•OA+•AB•CD,∴6×8=6m+10m,∴m=3,∴C(0,3).(2)如图2中,由翻折的性质可知,OA=AD=6,CD=OC=3,∵AB=10,∴BD=AB﹣AD=10﹣6=4,∴BD:AB=4:10=2:5,∴S△BOD=•S△AOB=××6×8=,∵OC:OB=3:8,∴S△CDO=S△BOD,∵OH⊥CD,∴×3×OH=×,∴OH=.(3)如图3中,设P(m,n).∴S△POA=12,∴×6×n=12,∴n=4,∴当点P在线段AB上时,P A=PB=5,此时P(3.4),∴PD=AD﹣P A=6﹣5=1,∴CD+PD=3+1=4,∴t=4(s).当点P′在线段CD上时,CP′=t,则有S四边形AOCD﹣S△ADP′﹣S△P′OC=S△P′OA,∴2××3×6﹣×6×(3﹣t)﹣×t×=12,∴t=(s).综上所述,满足条件的t的值为4s或s。
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。
2018年中考数学《几何图形的动点问题》同步提分训练含答案解析

2018年中考数学提分训练: 几何图形的动点问题一、选择题1.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x 的大致图象是()A. B. C. D.2.如图1,在矩形ABCD中,动点E从A出发,沿方向运动,当点E到达点C时停止运动,过点E做,交CD于F点,设点E运动路程为x, ,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )A. B. C. 6 D. 53.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④4.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.5.如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别为AM,MR的中点,则EF的长随M点的运动( )A. 变短B. 变长C. 不变D. 无法确定二、填空题6.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)7.如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为________.8.如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC 在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=________;(2)当△ABC的边与坐标轴平行时,t=________。
2020年九年级数学中考几何图形综合题专题训练(含答案)

2020年九年级数学中考几何图形综合题专题训练1、如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF=BE ,BE 与CD 交于点G(1)求证:BD ∥EF ;(2)若=,BE=4,求EC 的长.2、如图,在Rt △ABC 中,∠C =90°,AC =6,∠BAC =60°,AD 平分∠BAC 交BC 于点D ,过点D 作DE ∥AC 交AB 于点E .点M 是线段AD 上的动点,连接BM 并延长分别交DE ,AC 于点F ,G .(1)求CD 的长;(2)若点M 是线段AD 的中点,求EF DF的值;(3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得∠CPG =60°?3、如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△AC D∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.4、如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.5、如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF(1)根据题意,补全原形;(2)求证:BE=DF.6、如图,在正方形ABCD中,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在正方形ABCD的内部,延长AF交CD于点G.(1)猜想并证明线段FG与CG的数量关系;(2)若将图①中的正方形改成矩形,其他条件不变,如图②,那么线段FG与CG之间的数量关系是否改变?请证明你的结论;(3)若将图①中的正方形改成平行四边形,其他条件不变,如图③,那么线段FG与CG 之间的数量关系是否会改变?请证明你的结论.7、如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.8、如图,□A BCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N。
几何最值问题-2023年中考数学压轴题专项训练(全国通用)(解析版)

12023年中考数学压轴题专项训练1.几何最值问题一、压轴题速练1一、单选题1(2023·山东烟台·模拟预测)如图,在矩形ABCD 中,AB =8,AD =4,点E 是矩形ABCD 内部一动点,且∠BEC =90°,点P 是AB 边上一动点,连接PD 、PE ,则PD +PE 的最小值为()A.8 B.45 C.10 D.45-2【答案】A【分析】根据∠BEC =90°得到点的运动轨迹,利用“将军饮马”模型将PE 进行转化即可求解.【详解】解:如图,设点O 为BC 的中点,由题意可知,点E 在以BC 为直径的半圆O 上运动,作半圆O 关于AB 的对称图形(半圆O '),点E 的对称点为E 1,连接O 'E 1,则PE =PE 1,∴当点D 、P 、E 1、O '共线时,PD +PE 的值最小,最小值为DE 1的长,如图所示,在Rt △DCO '中,CD =8,CO '=6,∴DO '=82+62=10,又∵O 'E 1=2,∴DE 1=DO '-O 'E 1=8,即PD +PE 的最小值为8,故选:A .【点睛】本题考查线段和最短问题、轴对称的性质、勾股定理及圆周角定理,利用“将军饮马”模型将PE 进行转化时解题的关键.2(2023·安徽黄山·校考模拟预测)如图,在平面直角坐标系中,二次函数y =32x 2-32x -3的图象与x 轴交于点A ,C 两点,与y 轴交于点B ,对称轴与x 轴交于点D ,若P 为y 轴上的一个动点,连接PD ,则12PB +PD 的最小值为()2A.334B.32C.3D.543【答案】A【分析】作射线BA ,作PE ⊥BA 于E ,作DF ⊥BA 于F ,交y 轴于P ,可求得∠ABO =30°,从而得出PE =12PB ,进而得出PD +12PB =PD +EP ,进一步得出结果.【详解】解:如图,作射线BA ,作PE ⊥BA 于E ,作DF ⊥BA 于F ,交y 轴于P ,抛物线的对称轴为直线x =--322×32=12,∴OD =12,当x =0时,y =-3,∴OB =3,当y =0时,32x 2-32x -3=0,∴x 1=-1,x 2=2,∴A (-1,0),∴OA =1,∵tan ∠ABO =OA OB =13=33,∴∠ABO =30°,∴PE =12PB ,∴12PB +PD =PD +PE ≥DF ,当点P 在P 时,PD +PE 最小,最大值等于DF ,在Rt △ADF 中,∠DAF =90°-∠ABO =60°,AD =OD +PA =12+1=32,∴DF =AD ⋅sin ∠DAE =32×32-334,∴12PB +PD 最小=DF =334,故选:A .【点睛】本题以二次函数为背景,考查了二次函数与一元二次方程之间的关系,解直角三角形等知识,解决问题的关键是用三角函数构造12PB .3(2023秋·浙江金华·九年级统考期末)如图,正方形ABCD 的边长为4,点E 是正方形ABCD 内的动点,点P 是BC 边上的动点,且∠EAB =∠EBC .连结AE ,BE ,PD ,PE ,则PD +PE 的最小值为()3A.213-2B.45-2C.43-2D.215-2【答案】A【分析】先证明∠AEB =90°,即可得点E 在以AB 为直径的半圆上移动,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD =PF ,则有:PE +PD =PE +PF ,则线段EF 的长即为PE +PD 的长度最小值,问题随之得解.【详解】解:∵四边形ABCD 是正方形,∴∠ABC =90°,∴∠ABE +∠EBC =90°,∵∠EAB =∠EBC ,∴∠EAB +∠EBA =90°,∴∠AEB =90°,∴点E 在以AB 为直径的半圆上移动,如图,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD =PF ,则有:PE +PD =PE +PF ,则线段EF 的长即为PE +PD 的长度最小值,E∵∠G =90°,FG =BG =AB =4,∴OG =6,OA =OB =OE =2,∴OF =FG 2+OG 2=213,∴EF =OF -OE =213-2,故PE +PD 的长度最小值为213-2,故选:A .【点睛】本题考查了轴对称-最短路线问题,正方形的性质,勾股定理,正确的作出辅助线,得出点E 的运动路线是解题的关键.4(2022秋·安徽池州·九年级统考期末)如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 为AC 边上的动点,过点P 作PD ⊥AB 于点D ,则PB +PD 的最小值为()4 A.154 B.245 C.5 D.203【答案】B【分析】作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,点P 即为所求作的点,此时PB +PD 有最小值,连接AB ,根据对称性的性质,可知:BP =B P ,△ABC ≅△AB C ,根据S △ABB =S △ABC +S △AB C =2S △ABC ,即可求出PB +PD 的最小值.【详解】解:如下图,作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,连接AB ,点P 即为所求作的点,此时PB +PD 有最小值,根据对称性的性质,可知:BP =B P ,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,∴AB =AC 2+BC 2=5,根据对称性的性质,可知:△ABC ≅△AB C ,∴S △ABB =S △ABC +S △ABC =2S △ABC ,即12×AB ⋅B D =2×12BC ⋅AC ,∴5B D =24,∴B D =245,故选:B .【点睛】本题考查了轴对称一最短路线问题,解题的关键是掌握轴对称的性质.5(2023秋·甘肃定西·八年级校考期末)如图所示,在△ABC 中,∠ABC =68°,BD 平分∠ABC ,P 为线段BD 上一动点,Q 为 边AB 上一动点,当AP +PQ 的值最小时,∠APB 的度数是()A.118°B.125°C.136°D.124°【答案】D【分析】先在BC 上截取BE =BQ ,连接PE ,证明△PBQ ≌△PBE SAS ,得出PE =PQ ,说明AP +PQ =AP +PE ,找出当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ 最小,过点A 作AE ⊥BC 于点E ,交BD 于点P ,根据三角形外角的性质可得答案.【详解】解:在BC 上截取BE =BQ ,连接PE ,如图:∵BD 平分∠ABC ,∠ABC =68°,∴∠ABD =∠CBD =12∠ABC =34°,∵BP =BP ,∴△PBQ ≌△PBE SAS ,∴PE =PQ ,∴AP +PQ =AP +PE ,∴当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ最小,过点A作AE ⊥BC 于点E ,交BD 于点P ,如图:∵∠AEB =90°,∠CBD =34°,∴∠APB =∠AEB +∠CBD =124°.故选:D .5【点睛】本题主要考查了角平分线的定义,三角形全等的判定和性质,垂线段最短,三角形内角和定理与三角形的外角的性质,解题的关键是找出使AP +PQ 最小时点P 的位置.6(2022秋·重庆沙坪坝·八年级重庆市凤鸣山中学校联考期末)如图,E 为正方形ABCD 边AD 上一点,AE =1,DE =3,P 为对角线BD 上一个动点,则PA +PE 的最小值为()A.5B.42C.210D.10【答案】A【分析】连接EC 交BD 于P 点,根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长,求出EC 的长即可.【详解】连接EC ,交BD 于P 点∵四边形ABCD 为正方形∴A 点和C 点关于BD 对称∴PA =PC∴PA +PE =PC +PE =EC根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长.∵AE =1,DE =3∴AD =4∴DC =4∴CE =DE 2+CD 2=32+42=5∴PA +PE 的最小值为5故选:A【点睛】本题主要考查了正方形的性质和两点之间线段最短,这是一个将军饮马模型.熟练掌握正方形的性质并且能够识别出将军饮马模型是解题的关键.7(2023春·湖南张家界·八年级统考期中)如图,正方形ABCD 的边长为4,点M 在DC 上,且DM =1,N 是AC 上一动点,则DN +MN 的最小值为()A.4B.42C.25D.5【答案】D【分析】由正方形的对称性可知点B 与D 关于直线AC 对称,连接BM 交AC 于N ′,N ′即为所求在Rt △BCM 中利用勾股定理即可求出BM 的长即可.【详解】∵四边形ABCD 是正方形,∴点B 与D 关于直线AC 对称,6连接BD ,BM 交AC 于N ′,连接DN ′,∴当B 、N 、M 共线时,DN +MN 有最小值,则BM 的长即为DN +MN 的最小值,∴AC 是线段BD 的垂直平分线,又∵CD =4,DM =1∴CM =CD -DM =4-1=3,在Rt △BCM 中,BM =CM 2+BC 2=32+42=5故DN +MN 的最小值是5.故选:D .【点睛】本题考查的是轴对称-最短路线问题及正方形的性质,先作出D 关于直线AC 的对称点,由轴对称及正方形的性质判断出D 的对称点是点B 是解答此题的关键.8(2022秋·浙江杭州·九年级杭州外国语学校校考开学考试)如图,在平面直角坐标系中,二次函数y =-x 2+bx +3的图像与x 轴交于A 、C 两点,与x 轴交于点C (3,0),若P 是x 轴上一动点,点D 的坐标为(0,-1),连接PD ,则2PD +PC 的最小值是()A.4B.2+22C.22D.32+232【答案】A【分析】过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H ,根据2PD +PC =2PD +22PC =2PD +PJ ,求出DP +PJ 的最小值即可解决问题.【详解】解:连接BC ,过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H .∵二次函数y =-x 2+bx +3的图像与x 轴交于点C (3,0),∴b =2,∴二次函数的解析式为y =-x 2+2x +3,令y =0,-x 2+2x +3=0,解得x =-1或3,∴A (-1,0),令x =0,y =3,∴B (0,3),∴OB =OC =3,∵∠BOC =90°,∴∠OBC =∠OCB =45°,∵D(0,-1),∴OD =1,BD =4,∵DH ⊥BC ,∴∠DHB =90°,设DH =x ,则BH =x ,∵DH 2+BH 2=BD 2,7∴x =22,∴DH =22,∵PJ ⊥CB ,∴∠PJC =90°,∴PJ =22PC ,∴2PD +PC =2PD +22PC =2PD +PJ ,∵DP +PJ ≥DH ,∴DP +PJ ≥22,∴DP +PJ 的最小值为22,∴2PD +PC 的最小值为4.故选:A .【点睛】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,得到∠OBC =∠OCB =45°,PJ =22PC 是解题的关键.9(2022·山东泰安·统考中考真题)如图,四边形ABCD 为矩形,AB =3,BC =4.点P 是线段BC 上一动点,点M 为线段AP 上一点.∠ADM =∠BAP ,则BM 的最小值为()A.52 B.125 C.13-32 D.13-2【答案】D【分析】证明∠AMD =90°,得出点M 在O 点为圆心,以AO 为半径的圆上,从而计算出答案.【详解】设AD 的中点为O ,以O 点为圆心,AO 为半径画圆∵四边形ABCD 为矩形∴∠BAP +∠MAD =90°∵∠ADM =∠BAP∴∠MAD +∠ADM =90°∴∠AMD =90°∴点M 在O 点为圆心,以AO 为半径的圆上连接OB 交圆O 与点N∵点B 为圆O 外一点∴当直线BM 过圆心O 时,BM 最短∵BO 2=AB 2+AO 2,AO =12AD =2∴BO 2=9+4=13∴BO =13∵BN =BO -AO =13-2故选:D .【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.810(2022·河南·校联考三模)如图1,正方形ABCD 中,点E 是BC 的中点,点P 是对角线AC 上的一个动点,设AP =x ,PB +PE =y ,当点P 从A 向点C 运动时,y 与x 的函数关系如图2所示,其中点M 是函数图象的最低点,则点M 的坐标是()A.42,35B.22,35C.35,22D.35,42【答案】A【分析】根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,从而确定正方形的边长为6,根据将军饮马河原理,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,利用相似三角形,计算AG 的长即为横坐标.【详解】如图,根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,∵点E 是BC 的中点,∴BC =6,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,∵四边形ABCD 是正方形,AB =6,∴CE ∥AD ,AC =62+62=62,DE =62+32=35,∴△CGE ∽△AGD ,∴CG AG =CE AD =12,∴AC AG=32,∴AG =42,故点M 的坐标为(42,35),故A 正确.故选:A .【点睛】本题考查了正方形的性质,三角形相似的判定和性质,函数图像信息的获取,将军饮马河原理,熟练掌握正方形的性质,灵活运用三角形相似,构造将军饮马河模型求解是解题的关键.2二、填空题11(2023春·江苏宿迁·九年级校联考阶段练习)如图,矩形ABCD ,AB =4,BC =8,E 为AB 中点,F 为直线BC 上动点,B 、G 关于EF 对称,连接AG ,点P 为平面上的动点,满足∠APB =12∠AGB ,则DP 的最小值.【答案】210-22【分析】由题意可知,∠AGB =90°,可得∠APB =12∠AGB =45°,可知点P 在以AB 为弦,圆周角∠APB =45°的9圆上,(要使DP 最小,则点P 要靠近蒂点D ,即点P 在AB 的右侧),设圆心为O ,连接OA ,OB ,OE ,OP ,OD ,过点O 作OQ ⊥AD ,可知△AOB 为等腰直角三角形,求得OA =22AB =22=OP ,AQ =OQ =22OA =2,QD =AD -AQ =6,OD =OQ 2+QD 2=210,再由三角形三边关系可得:DP ≥OD -OP =210-22,当点P 在线段OD 上时去等号,即可求得DP 的最小值.【详解】解:∵B 、G 关于EF 对称,∴BH =GH ,且EF ⊥BG∵E 为AB 中点,则EH 为△ABG 的中位线,∴EH ∥AG ,∴∠AGB =90°,∵∠APB =12∠AGB ,即∠APB =12∠AGB =45°,∴点P 在以AB 为弦,圆周角∠APB =45°的圆上,(要使DP 最小,则点P 要靠近蒂点D ,即点P 在AB 的右侧)设圆心为O ,连接OA ,OB ,OE ,OP ,OD ,过点O 作OQ ⊥AD ,则OA =OB =OP ,∵∠APB =45°,∴∠AOB =90°,则△AOB 为等腰直角三角形,∴OA =22AB =22=OP ,又∵E 为AB 中点,∴OE ⊥AB ,OE =12AB =AE =BE ,又∵四边形ABCD 是矩形,∴∠BAD =90°,AD =BC =8,∴四边形AEOQ 是正方形,∴AQ =OQ =22OA =2,QD =AD -AQ =6,∴OD =OQ 2+QD 2=210,由三角形三边关系可得:DP ≥OD-OP =210-22,当点P 在线段OD 上时去等号,∴DP 的最小值为210-22,故答案为:210-22.【点睛】本题考查轴对称的性质,矩形的性质,隐形圆,三角形三边关系,正方形的判定及性质,等腰直角三角形的判定及性质,根据∠APB =12∠AGB =45°得知点P 在以AB 为弦,圆周角∠APB =45°的圆上是解决问题的关键.12(2023春·江苏连云港·八年级期中)如图,在边长为8的正方形ABCD 中,点G 是BC 边的中点,E 、F 分别是AD 和CD 边上的点,则四边形BEFG 周长的最小值为.【答案】2410【分析】作点G 关于CD 的对称点G ,作点B 关于AD 的对称点B ,连接B G ,根据两点之间线段最短即可解决问题.【详解】作点G 关于CD 的对称点G ,作点B 关于AD 的对称点B ,连接B G∵EB =EB ,FG =FG ,∴BE +EF +FG +BG =B E +EF +FG +BG ,∵EB +EF +FG ≥B G ,∴四边形BEFG 的周长的最小值=BG +B G ,∵正方形ABCD 的边长为8∴BG =4,BB =16,BG =12,∴B G =162+122=20,∴四边形BEFG 的周长的最小值为=4+20=24.故答案为:24.【点睛】本题考查轴对称求线段和的最短问题,正方形的性质,勾股定理,解题的关键是学会利用轴对称解决最短问题.13(2022·湖南湘潭·校考模拟预测)如图,菱形草地ABCD 中,沿对角线修建60米和80米两条道路AC <BD ,M 、N 分别是草地边BC 、CD 的中点,在线段BD 上有一个流动饮水点P ,若要使PM +PN 的距离最短,则最短距离是米.【答案】50【分析】作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,当P 点与P 重合时,MP +NP =MP +NP =NQ 的值最小,根据菱形的性质和勾股定理求出BC 长,即可得出答案.【详解】解:作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,当P 点与P 重合时,MP +NP =MP +NP =NQ 的值最小,∵四边形ABCD 是菱形,∴AC ⊥BD ,∠QBP =∠MBP ,即Q 在AB 上,∵MQ ⊥BD ,∴AC ∥MQ ,∴M 为BC 中点,∴Q 为AB 中点,∵N 为CD 中点,四边形ABCD 是菱形,∴BQ ∥CD ,BQ =CN ,∴四边形BQNC 是平行四边形,∴NQ =BC ,设AC 与BD 的交点为点O ,∵四边形ABCD 是菱形,∴AC ⊥BD,OC =12AC =30米,OB =12BD =40米,∴BC =OB 2+OC 2=50米,∴PM +PN 的最小值是50米.故答案为:50.11【点睛】本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P 的位置.14(2023春·江苏·九年级校考阶段练习)如图,正方形ABCD 的边长为4,⊙B 的半径为2,P 为⊙B 上的动点,则2PC -PD 的最大值是.【答案】2【分析】解法1,如图:以PD 为斜边构造等腰直角三角形△PDM ,连接MC ,BD ,连接PM 、DM ,推得2PC -PD=2PC -22PD =2PC -PM ,因为PC -PM ≤MC ,求出MC 即可求出答案.解法2:如图:连接BD 、BP 、PC ,在BD 上做点M ,使BM BP =24,连接MP ,证明△BMP ∼△BPD ,在BC 上做点N ,使BN BP=12,连接NP ,证明△BNP ∼△BPC ,接着推导出2PC -PD =22MN ,最后证明△BMN ∼△BCD ,即可求解.【详解】解法1如图:以PD 为斜边构造等腰直角三角形△PDM ,连接MC ,BD ,∴∠PDM =45,DM =PM =22PD ,∵四边形ABCD 正方形∴∠BDC =45°,DB DC=2又∵∠PDM =∠PDB +MDB ,∠BDC =∠MDB +MDC∴∠PDB =∠MDC在△BPD 与△MPC 中∠PDB =∠MDC ,DB DC=DP DM =2∴△BPD ∼△MPC∴PB MC=2∵BP =2∴MC =2∵2PC -PD =2PC-22PD =2PC -PM ∵PC -PM ≤MC ∴2PC -PD =2PC -PM ≤2MC =2故答案为:2.解法2如图:连接BD 、BP 、PC根据题意正方形ABCD 的边长为4,⊙B 的半径为2∴BP =2,BD =BC 2+CD 2=42+42=42∵BP BD =242=2412在BD 上做点M ,使BM BP=24,则BM =22,连接MP 在△BMP 与△BPD 中∠MBP =∠PBD ,BP BD =BM BP∴△BMP ∼△BPD∴PM PD =24,则PD =22PM ∵BP BC =24=12在BC 上做点N ,使BN BP=12,则BN =1,连接NP 在△BNP 与△BPC 中∠NBP =∠PBC ,BN BP =BP PC∴△BNP ∼△BPC∴PN PC=12,则PC =2PN ∴如图所示连接NM ∴2PC -PD =2×2PN -22PM =22PN -PM ∵PN -PM ≤NM ∴2PC -PD =22PN -PM ≤22NM在△BMN 与△BCD 中∠NBM=∠DBC ,BM BC =224=28,BN BD =142=28∴BM BC=BN BD ∴△BMN ∼△BCD∴MN CD=28∵CD =4∴MN =22∴22MN =22×22=2∴2PC -PD ≤22NM =2故答案为:2.【点睛】本题考查正方形的性质,相似三角形,勾股定理等知识,难度较大,熟悉以上知识点运用是解题关键.15(2023秋·广东广州·九年级统考期末)如图,四边形ABCD 中,AB ∥CD ,AC ⊥BC ,∠DAB =60°,AD =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则△MBC 面积的最小值为.【答案】63-4【分析】取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于点E ,过点O 作OF ⊥BC 于F ,交CD 于G ,则OM +ME ≥OF ,通过计算得出当O ,M ,E 三点共线时,ME 有最小值,求出最小值即可.【详解】解:如图,取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于点E ,过点O 作OF ⊥BC 于F ,交CD 于G ,则13OM +ME ≥OF ,∵AB ∥CD ,∠DAB =60°,AD =CD =4,∴∠ADC =120°,∵AD =CD ,∴∠DAC =30°,∴∠CAB =30°,∵AC ⊥BC ,∴∠ACB =90°∴∠B =90°-30°=60°,∴∠B =∠DAB ,∴四边形ABCD 为等腰梯形,∴BC =AD =4,∵∠AMD =90°,AD =4,OA =OD ,∴OM =12AD =2,∴点M 在以点O 为圆心,2为半径的圆上,∵AB ∥CD ,∴∠GCF =∠B =60°,∴∠DGO =∠CGF =30°,∵OF ⊥BC ,AC ⊥BC ,∴∠DOG =∠DAC =30°=∠DGO ,∴DG =DO =2,∴OG =2OD ⋅cos30°=23,GF =3,OF =33,∴ME ≥OF -OM =33-2,∴当O ,M ,E 三点共线时,ME 有最小值33-2,∴△MBC 面积的最小值为=12×4×33-2 =63-4.【点睛】本题考查了解直角三角形、隐圆、直角三角形的性质等知识点,点M 位置的确定是解题关键.16(2023春·全国·八年级专题练习)如图,在等边△ABC 中,BD ⊥AC 于D ,AD =3cm .点P ,Q 分别为AB,AD 上的两个定点且BP =AQ =1cm ,点M 为线段BD 上一动点,连接PM ,QM ,则PM +QM 的最小值为cm .【答案】5【分析】如图所示,作点P 关于BD 的对称点P ,且点P 在BC 上,则PM +QM =P M+QM ,当P ,M ,Q 在同一条直线上时,有最小值,证明四边形PP QA 是平行四边形,P Q =AP =AB -BP ,由此即可求解.【详解】解:如图所示,作点P 关于BD 的对称点P ,∵△ABC 是等边三角形,BD ⊥AC ,∴∠ABD =∠DBC =12∠ABC =12×60°=30°,14∴点P 在BC 上,∴P M =PM ,则PM +QM =P M +QM ,当P ,M ,Q 在同一条直线上时,有最小值,∵点P 关于BD 的对称点P ,∠ABD =∠DBC =30°,∴PP ⊥BM ,BP =BP =1cm ,∴∠BP P =60°,∴△BPP 是等边三角形,即∠BP P =∠C =60°,∴PP ∥AC ,且PP =AQ =1cm ,∴四边形PP QA 是平行四边形,∴P Q =AP =AB -BP ,在Rt △ABD 中,∠ABD =30°,AD =3,∴AB =2AD =2×3=6,∴AP =P Q =P M +QM =PM +QM =AB -BP =6-1=5,故答案为:5.【点睛】本题主要考查动点与等边三角形,对称-最短路径,平行四边形的判定和性质的综合,理解并掌握等边三角形得性质,对称-最短路径的计算方法,平行四边形的判定和性质是解题的关键.17(2022秋·山东菏泽·九年级校考阶段练习)如图,在周长为12的菱形ABCD 中,DE =1,DF =2,若P 为对角线AC 上一动点,则EP +FP 的最小值为.【答案】3【分析】作F 点关于BD 的对称点F ,连接EF 交BD 于点P ,则PF =PF ,由两点之间线段最短可知当E 、P 、F 在一条直线上时,EP +FP 有最小值,然后求得EF 的长度即可.【详解】解:作F 点关于BD 的对称点F ,则PF =PF ,连接EF '交BD 于点P .∴EP +FP =EP +F P .由两点之间线段最短可知:当E 、P 、F '在一条直线上时,EP +FP 的值最小,此时EP +FP =EP +F P =EF .∵四边形ABCD 为菱形,周长为12,∴AB =BC =CD =DA =3,AB ∥CD ,∵AF =2,AE =1,∴DF =AE =1,∴四边形AEF D 是平行四边形,∴EF =AD =3.∴EP +FP 的最小值为3.故答案为:3.【点睛】本题主要考查的是菱形的性质、轴对称--路径最短问题,明确当E 、P 、F 在一条直线上时EP +FP 有最小值是解题的关键.18(2023春·上海·八年级专题练习)如图,直线y =x +4与x 轴,y 轴分别交于A和B ,点C 、D 分别为线段AB 、OB 的中点,P 为OA 上一动点,当PC +PD 的值最小时,点P 的坐标为.15【答案】(-1,0)【分析】直线y =x +4与x 轴,y 轴分别交于A 和B ,可求出点A ,B 的坐标,点C 、D 分别为线段AB 、OB 的中点,可求出点C 、D 的坐标,作点C 关于x 轴的对称点C ,连接C D 与x 轴的交点就是所求点P 的坐标.【详解】解:直线y =x +4与x 轴,y 轴分别交于A 和B ,∴当y =0,x =-4,即A (-4,0);当x =0,y =4,即B (0,4),∵点C 、D 分别为线段AB 、OB 的中点,∴C (-2,2),D (0,2),如图所示,过点C 关于x 轴的对称点C,∴C (-2,-2),∴直线C D 的解析式为:y =2x +2,当y =0,x =-1,即P (-1,0),故答案为:(-1,0).【点睛】本题主要考查一次函数与最短线段的综合,掌握对称中最短线段的解题方法是解题的关键.19(2023秋·黑龙江鸡西·九年级统考期末)如图,抛物线y =x 2-4x +3与x 轴分别交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,在其对称轴上有一动点M ,连接MA ,MC ,AC ,则△MAC 周长的最小值是.【答案】32+10【分析】根据“将军饮马”模型,先求出A 1,0 ,B 3,0 ,C 0,3 ,由二次函数对称性,A ,B 关于对称轴对称,从而C △MAC =CA +CM +MA =CA +CM +MB ,AC =OA 2+OC 2=10,则△MAC 周长的最小值就是CM +MB 的最小值,根据两点之间线段最短即可得到CM +MB 的最小值为C ,M ,B 三点共线时线段CB 长,从而得到CB =OC 2+OB 2=32,即可得到答案.【详解】解:∵抛物线y =x 2-4x +3与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,16∴当y =0时,0=x 2-4x +3解得x =1或x =3,即A 1,0 ,B 3,0 ;当x =0时,y =3,即C 0,3 ,由二次函数对称性,A ,B 关于对称轴对称,即MA =MB ,∴C △MAC =CA +CM +MA =CA +CM +MB ,∵AC =OA 2+OC 2=10,∴△MAC 周长的最小值就是CM +MB 的最小值,根据两点之间线段最短即可得到CM +MB 的最小值为C ,M ,B 三点共线时线段CB 长,∵CB =OC 2+OB 2=32,∴△MAC 周长的最小值为CA +CB =32+10,故答案为:32+10.【点睛】本题考查动点最值问题与二次函数综合,涉及“将军饮马”模型求最值、二次函数图像与性质、解一元二次方程、勾股定理求线段长等知识,熟练掌握动点最值的常见模型是解决问题的关键.20(2023秋·浙江温州·九年级校考期末)如图所示,∠ACB =60°,半径为2的圆O 内切于∠ACB.P 为圆O 上一动点,过点P 作PM 、PN 分别垂直于∠ACB 的两边,垂足为M 、N ,则PM +2PN 的取值范围为.【答案】6-23≤PM +2PN ≤6+23【分析】根据题意,本题属于动点最值问题-“阿氏圆”模型,首先作MH ⊥NP 于H ,作MF ⊥BC 于F ,如图所示,通过代换,将PM +2PN 转化为PN +12PM =PN +HP =NH ,得到当MP 与⊙O 相切时,MF 取得最大值和最小值,分两种情况,作出图形,数形结合解直角三角形即可得到相应最值,进而得到取值范围.【详解】解:作MH ⊥NP 于H ,作MF ⊥BC 于F ,如图所示:∵PM ⊥AC ,PN ⊥CB ,∴∠PMC =∠PNC =90°,∴∠MPN =360°-∠PMC -∠PNC -∠C =120°,∴∠MPH =180°-∠MPN =60°,∴HP =PM ⋅cos ∠MPH =PM ⋅cos60°=12PM ,∴PN +12PM =PN +HP =NH ,∵MF =NH ,∴当MP 与⊙O 相切时,MF 取得最大和最小,①连接OP ,OG ,OC ,如图1所示:可得:四边形OPMG 是正方形,∴MG =OP =2,在Rt △COG 中,CG =OG ⋅tan60°=23,∴CM =CG +GM =2+23,在Rt △CMF 中,MF =CM ⋅sin60°=3+3,∴HN =MF =3+3,即PM +2PN =212PM +PN =2HN =6+23;②连接OP ,OG ,OC ,如图2所示:可得:四边形OPMG 是正方形,17∴MG =OP =2,由上同理可知:在Rt △COG 中,CG =OG ⋅tan60°=23,∴CM =CG -GM =23-2,在Rt △CMF 中,MF =CM ⋅sin60°=3-3,∴HN =MF =3-3,即PM +2PN =212PM +PN =2HN =6-23,∴6-23≤PM +2PN ≤6+23.故答案为:6-23≤PM +2PN ≤6+23.【点睛】本题考查动点最值模型-“阿氏圆”,难度较大,掌握解决动点最值问题的方法,熟记相关几何知识,尤其是圆的相关知识是解决问题的关键.3三、解答题21(2022春·江苏·九年级专题练习)综合与探究如图,已知抛物线y =ax 2+bx +4经过A -1,0 ,B 4,0 两点,交y 轴于点C .(1)求抛物线的解析式,连接BC ,并求出直线BC 的解析式;(2)请在抛物线的对称轴上找一点P ,使AP +PC 的值最小,此时点P 的坐标是;(3)点Q 在第一象限的抛物线上,连接CQ ,BQ ,求出△BCQ 面积的最大值.【答案】(1)y =-x 2+3x +4;y =-x +4(2)32,52(3)8【分析】(1)将A -1,0 ,B 4,0 两点,代入抛物线解析式,可得到抛物线解析式,从而得到C 0,4 ,再设直线BC 的解析式为y =kx +b k ≠0 ,把点B 、C 的坐标代入,即可求解;(2)连接BC ,PB ,根据题意可得A 、B 关于抛物线的对称轴直线x =32对称,从而得到当P 在直线AB 上三点共线时,AP +CP 的值最小,把x =32代入直线BC 的解析式,即可求解;(3)过Q 作QD ⊥x 轴,交BC 于D ,设Q d ,-d 2+3d +4 ,其中0≤d ≤4,则D d ,-d +4 ,可得QD =-d 2+4d ,从而得到S ΔBCQ =12OB ×QD =-2d -2 2+8,即可求解;【详解】(1)解:(1)∵抛物线y =ax 2+bx +4经过A -1,0 ,B 4,0 两点,∴a -b +4=016a +4b +4=0,解得:a =-1b =3 ,18∴抛物线的解析式为y =-x 2+3x +4;∵抛物线与y 轴的交点为C ,∴C 0,4 ,设直线BC 的解析式为y =kx +b k ≠0 ,把点B 、C 的坐标代入得:4k +b =0b =4 ,解得:k =-1b =4 ,∴直线BC 的解析式为y =-x +4;(2)如图,连接BC ,PB ,∵y =-x 2+3x +4=-x -32 2+74,∴抛物线的对称轴为直线x =32,根据题意得:A 、B 关于抛物线的对称轴直线x =32对称,∴AP =BP ,∴AP +CP =BP +CP ≥BC ,即当P 在直线AB 上时,AP +CP 的值最小,∴当x =32时,y =-32+4=52,∴P 32,52 ,故答案是:32,52 ;(3)过Q 作QD ⊥x 轴,交BC 于D ,设Q d ,-d 2+3d +4 ,其中0≤d ≤4,则D d ,-d +4 ,∴QD =-d 2+3d +4 --d +4 =-d 2+4d ,∵B 4,0 ,∴OB =4,∴S ΔBCQ =12OB ×QD =-2d 2+8d =-2d -2 2+8,当d =2时,S ΔBCQ 取最大值,最大值为8,∴△BCQ 的最大面积为8;【点睛】本题主要考查了二次函数的图像和性质,利用数形结合思想和分类讨论思想是解题的关键.22(2023秋·江苏淮安·八年级统考期末)如图1,直线AB :y =-x +6分别与x ,y 轴交于A ,B 两点,过点B 的直线交x 轴负半轴于点C -3,0 .(1)请直接写出直线BC 的关系式:(2)在直线BC 上是否存在点D,使得S △ABD =S △AOD 若存在,求出点D 坐标:若不存请说明理由;(3)如图2,D 11,0 ,P 为x 轴正半轴上的一动点,以P 为直角顶点、BP 为腰在第一象限内作等腰直角三角形△BPQ ,连接QA ,QD .请直接写出QB -QD 的最大值:.19【答案】(1)y =2x +6(2)当D 185,665 或D -185,-65时,S △ABD =S △AOD (3)37【分析】(1)根据直线AB 与y 轴的交点,可求出点B 的坐标,再用待定系数法即可求解;(2)设D (a ,2a +6),分别用含a 的式子表示出出S △AOD ,S △ABD ,由此即可求解;(3)△BPQ 是等腰直角三角形,设P (m ,0)(m >0),可表示出QB ,再证Rt △BOP ≌Rt △PTQ (AAS ),如图所示,当点B ,R ,Q 在一条直线上时,QB -QD 的值最大,最大值为BR 的值,可求得点R 的坐标,根据勾股定理即可求解.【详解】(1)解:∵直线AB :y =-x +6分别与x ,y 轴交于A ,B 两点,令x =0,则y =6,∴B (0,6),且C -3,0 ,设直线BC 的解析式为y =kx +b ,∴b =6-3k +b =0,解得,k =2b =6 ,∴直线BC 的解析式为y =2x +6,故答案为:y =2x +6.(2)解:由(1)可知直线BC 的解析式为y =2x +6,直线AB 的解析式为y =-x +6,∴A (6,0),B (0,6),C (-3,0),∴OA =6,BO =6,OC =3,如图所示,点D 在直线BC 上,过点D 作DE ⊥x 轴于E ,∴设D (a ,2a +6),E (a ,0),∴S △ABC =12AC ·OB =12×(6+3)×6=27,S △ADC =12AC ·DE =12×(6+3)×a =92a ,S △AOD =12OA ·DE =12×6×a =3a ,∴S △ABD =S △ABC -S △ADC =27-92a ,若S △ABD =S △AOD ,则27-92a =3a ,当a >0时,27-92a =3a ,解得,a =185,即D 185,665 ;当a <0时,27+92a =-3a ,解得,a =-185,即D -185,-65 ;综上所述,当D 185,665 或D -185,-65时,S △ABD =S △AOD .(3)解:已知A (6,0),B (0,6),D (11,0),设P (m ,0)(m >0),∴在Rt △BOP 中,OB =6,OP =m ,∵△BPQ 是等腰直角三角形,∠BPQ =90°,∴BP =QP ;如图所示,过点Q 作QT ⊥x 轴于T ,20在Rt △BOP ,Rt △PTQ 中,∠BOP =∠PTQ =90°,∠BPO +∠QPA =∠QPA +∠PQT =90°,∴∠BPO =∠PQT ,∴∠BPO =∠PQT∠BOP =∠PTQ BP =QP,∴Rt △BOP ≌Rt △PTQ (AAS ),∴OP =TQ =m ,OB =PT =6,∴AT =OP +PT -OA =m +6-6=m ,∴AT =QT ,且QT ⊥x 轴,∴△ATQ 是等腰直角三角形,∠QAT =45°,则点Q 的轨迹在射线AQ 上,如图所示,作点D 关于直线AQ 的对称点R,连接QR ,BR ,AR ,A (6,0),B (0,6),D (11,0),∵△ATQ 是等腰直角三角形,即∠QAT =45°,根据对称性质,∴∠QAR =45°,∴RA ⊥x 轴,且△DQA ≌△RQA ,∴AR =AD =11-6=5,则R (6,5),如图所示,当点B ,R ,Q 在一条直线上时,QB -QD 的值最大,最大值为BR 的值;∴由勾股定理得:BR =62+(6-5)2=37,故答案为:37.【点睛】本题主要考查一次函数,几何的综合,掌握待定系数法求解析式,将军饮马问题,等腰直角三角形的性质,勾股定理是解题的关键.23(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)△ABC 中,∠B =60°.(1)如图1,若AC >BC ,CD 平分∠ACB 交AB 于点D ,且AD =3BD .证明:∠A =30°;(2)如图2,若AC <BC ,取AC 中点E ,将CE 绕点C 逆时针旋转60°至CF ,连接BF 并延长至G ,使BF =FG ,猜想线段AB 、BC 、CG 之间存在的数量关系,并证明你的猜想;(3)如图3,若AC =BC ,P 为平面内一点,将△ABP 沿直线AB 翻折至△ABQ ,当3AQ +2BQ +13CQ 取得最小值时,直接写出BPCQ的值.【答案】(1)见解析(2)BC =AB +CG ,理由见解析(3)213+33913【分析】(1)过点D 分别作BC ,AC 的垂线,垂足为E ,F ,易得DE =DF ,由∠B =60°,可得DE =DF =32BD ,由AD =3BD ,求得sin A =DE AD=12,可证得∠A =30°;(2)延长BA ,使得BH =BC ,连接EH ,CH ,易证△BCH 为等边三角形,进而可证△BCF ≌△HCE SAS ,可得BF =HE ,∠BFC =∠HEC ,可知∠AEH =∠CFG ,易证得△AEH ≌△CFG SAS ,可得AH =CG ,由BC =BH =AB +AH =AB +CG 可得结论;(3)由题意可知△ABC 是等边三角形,如图,作CM ⊥CA ,且CM =32CA ,作CN ⊥CQ ,且CN =32CQ ,可得CM CA=CN CQ =32,QN =CQ 2+CN 2=132CQ ,可知△ACQ ∽△MCN ,可得MN =32AQ ,由3AQ +2BQ +13CQ =232AQ +BQ +132CQ =2MN +BQ +QN ≥2BM 可知点Q ,N 都在线段BM 上时,3AQ +2BQ+13CQ 有最小值,过点C 作CR ⊥BM ,过点M 作MT ⊥BC 交BC 延长线于T ,可得CR =CQ ⋅sin ∠CQN =313CQ ,QR =CQ ⋅cos ∠CQN =213CQ ,可证△CBR ∽△MBT ,得BR CR =BT MT ,设BC =a 由等边三角形的性质,可得CM =32a ,进而可得CT =CM ⋅cos30°=334a ,MT =CM ⋅sin30°=34a ,结合BR CR=BTMT 可得:BQ +213CQ 313CQ =a +334a 34a ,可得BQ CQ =213+33913,由翻折可知,BP =BQ ,可求得BP CQ的值.【详解】(1)证明:过点D 分别作BC ,AC 的垂线,垂足为E ,F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,∴DE =DF ,又∵∠B =60°,∴DE =BD ⋅sin60°=32BD ,则DE =DF =32BD ,又∵AD =3BD ,∴sin A =DE AD =32BD3BD=12,∴∠A =30°;(2)BC =AB +CG ,理由如下:延长BA ,使得BH =BC ,连接EH ,CH ,∵∠ABC =60°,BH =BC ,∴△BCH 为等边三角形,∴CB =CH ,∠BCH =60°,∵CE 绕点C 逆时针旋转60°至CF ,∴CE =CF ,∠ECF =60°,则∠BCH -∠ACB =∠ECF -∠ACB ,∴∠ECH =∠FCB ,∴△BCF ≌△HCE SAS ,∴BF =HE ,∠BFC =∠HEC ,则∠AEH =∠CFG ,∵BF =FG ,∴BF =HE =FG ,又∵E 为AC 中点,∴AE =CE =CF ,∴△AEH ≌△CFG SAS ,∴AH =CG ,∴BC =BH =AB +AH =AB +CG ;(3)∵∠ABC =60°,AC =BC ,∴△ABC 是等边三角形,如图,作CM ⊥CA ,且CM =32CA ,作CN ⊥CQ ,且CN =32CQ ,则CM CA=CN CQ =32,QN =CQ 2+CN 2=132CQ ,∴sin ∠CQN =CN QN =313,cos ∠CQN =CQ QN =213,则∠ACM =∠QCN =90°,∴∠ACM -∠ACN =∠QCN -∠ACN ,则∠ACQ =∠MCN∴△ACQ ∽△MCN ,∴MN AQ =CM CA=32,即:MN =32AQ ,∴3AQ +2BQ +13CQ =232AQ +BQ +132CQ =2MN +BQ +QN ≥2BM即:点Q ,N 都在线段BM 上时,3AQ +2BQ +13CQ 有最小值,如下图,过点C 作CR ⊥BM ,过点M 作MT ⊥BC 交BC 延长线于T ,则∠BRC =∠BTM =90°,CR =CQ ⋅sin ∠CQN =313CQ ,QR =CQ ⋅cos ∠CQN =213CQ ,又∵∠CBR =∠MBT ,∴△CBR ∽△MBT ,∴BR CR=BT MT ,∵△ABC 是等边三角形,设BC =a ∴∠ACB =60°,AC =BC =a ,则CM =32a ,∵∠ACM =90°,∴∠MCT =30°,则CT =CM ⋅cos30°=334a ,MT =CM ⋅sin30°=34a ,则由BR CR=BT MT 可得:BQ +213CQ 313CQ =a +334a34a ,整理得:133BQ CQ +23=4+333,得BQ CQ=213+33913,由翻折可知,BP =BQ ,∴BP CQ =BQ CQ=213+33913.【点睛】本题属于几何综合,考查了解直角三角形,等边三角形的判定及性质,全等三角形的判定及性质,相似三角形的判定及性质,旋转的性质以及费马点问题,掌握费马点问题的解决方法,添加辅助线构造全等三角形和相似三角形是解决问题的关键.24(2023春·江苏·八年级专题练习)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D 、E 分别在边AB 、AC 上,AD =AE ,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .(1)观察猜想线段PM 与PN 填(“是”或“不是”)“等垂线段”.(2)△ADE 绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若DE =2,BC =4,请直接写出PM 与PN 的积的最大值.。
2020中考数学 几何专题:平移和旋转(含答案)

2020中考数学几何专题:平移和旋转(含答案)例题1. 如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.例题2. 如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.例题3. 如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为.例题4. 如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=.巩固练习-旋转1.如图,在△ABC 中, 70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋 转到△//C AB 的位置, 使得AB CC ///, 则=∠/BAB ( )A. 30B. 35C. 40D. 502.如图,PQR ∆是ABC ∆经过某种变换后得到的图形.如果ABC ∆中任意一点M 的坐标为(a ,b ),那么它的对应点N 的坐标为 .3.如图,在Rt △ABC 中,∠ACB =90º,∠BAC=60º,AB =6.Rt △AB ´C ´可以看作是由Rt △ABC 绕A 点逆时针方向旋转60º得到的,则线段B ´C 的长为____________.4.如图,,可以看作是由绕点顺时针旋转角度得到的.若点在上,则旋转角的大小可以是( ) A 、 B 、 C 、 D 、9030AOB B ∠=∠=°,°A OB ''△AOB △O αA 'AB α30°45°60°90°A OBA 'B '5.如图,若将△ABC 绕点C, 顺时针旋转90°后得到,则A 点的对应点的坐标是 .6.下列图形中,中心对称图形有( ).7.下列几何图形中,即是中心对称图形又是轴对称图形的是( ) A .正三角形 B .等腰直角三角形 C .等腰梯形D .正方形8.如图,点A ,B ,C 的坐标分别为(2,4),(5,2),(3,-1).若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为 .C B A ''∆A'9.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3)。
中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)
中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。
几何图形初步-三年中考数学真题分项汇编(解析版)
几何图形初步共27道题一、单选题1.(2022·浙江绍兴)如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A .30°B .45°C .60°D .75°【答案】C【解析】【分析】 根据三角板的角度,可得60A ∠=︒,根据平行线的性质即可求解.【详解】解:30C ∠=︒,9060A C ∴∠=︒-∠=︒AC ∥EF ,160A ∴∠=∠=︒故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.2.(2021·浙江台州)小光准备从A 地去往B 地,打开导航、显示两地距离为37.7km ,但导航提供的三条可选路线长却分别为45km ,50km ,51km (如图).能解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线【答案】A【解析】【分析】根据线段的性质即可求解.【详解】解:两地距离显示的是两点之间的线段,因为两点之间线段最短,所以导航的实际可选路线都比两地距离要长,故选:A.【点睛】本题考查线段的性质,掌握两点之间线段最短是解题的关键.3.(2021·浙江金华)将如图所示的直棱柱展开,下列各示意图中不可能...是它的表面展开图的是()A.B.C.D.【答案】D【解析】【分析】由直棱柱展开图的特征判断即可.【详解】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故选D.【点睛】本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可.4.(2020·浙江台州)用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.【答案】A【解析】【分析】根据三视图的相关知识直接找出主视图即可.【详解】主视图即从图中箭头方向看,得出答案为A,故答案选:A.【点睛】此题考查立体图形的三视图,理解定义是关键.5.(2022·浙江金华)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.【答案】C【解析】【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB为底面直径,∵将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,∵两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.6.(2021·浙江湖州)将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是()A.B.C.D.【答案】A【解析】【分析】依据长方体的展开图的特征进行判断即可.【详解】解:A、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;B、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;C、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;D、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意.故选:A.【点睛】本题考查了长方体的展开图,熟练掌握长方体的展开图的特点是解题的关键.7.(2022·浙江丽水)如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分EAD∠交CD于点F,FG AD∥交AE于点G,若1cos4B=,则FG的长是()A.3B.83C215D.52【答案】B【解析】【分析】过点A作AH垂直BC于点H,延长FG交AB于点P,由题干所给条件可知,AG=FG,EG=GP,利用∵AGP=∵B可得到cos∵AGP=14,即可得到FG的长;【详解】过点A作AH垂直BC于点H,延长FG交AB于点P,由题意可知,AB =BC =4,E 是BC 的中点,∵BE =2,又∵1cos 4B =, ∵BH =1,即H 是BE 的中点,∵AB =AE =4,又∵AF 是∵DAE 的角平分线,AD ∵FG ,∵∵F AG =∵AFG ,即AG =FG ,又∵PF ∵AD ,AP ∵DF ,∵PF =AD =4,设FG =x ,则AG =x ,EG =PG =4-x ,∵PF ∵BC ,∵∵AGP =∵AEB =∵B , ∵cos∵AGP =12PG AG =22x x-=14, 解得x =83; 故选B .【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.8.(2021·浙江丽水)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD的长为( )A .259B .258C .157D .207【答案】D【解析】【分析】先根据勾股定理求出AB ,再根据折叠性质得出∵DAE=∵DFE ,AD=DF ,然后根据角平分线的定义证得∵BFD=∵DFE =∵DAE ,进而证得∵BDF=90°,证明Rt∵ABC ∵Rt∵FBD ,可求得AD 的长.【详解】解:∵90,4,3ACB AC BC ∠=︒==, ∵222243AB AC BC +=+,由折叠性质得:∵DAE=∵DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∵∵BFD =∵DFE=∵DAE ,∵∵DAE +∵B =90°,∵∵BDF +∵B =90°,即∵BDF =90°,∵Rt∵ABC ∵Rt∵FBD ,∵BD BC DF AC =即534AD AD -=, 解得:AD =207, 故选:D .【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.9.(2020·浙江湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1B.1和2C.2和1D.2和2【答案】D【解析】【分析】解答此题要熟悉中国和日本七巧板的结构,中国七巧板的结构:五个等腰直角三角形,有大、小两对全等三角形;一个正方形;一个平行四边形;日本七巧板的结构:三个等腰直角三角形,一个直角梯形,一个等腰梯形,一个平行四边形,一个正方形,根据这些图形的性质便可解答.【详解】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.【点睛】此题是一道趣味性探索题,结合我国传统玩具七巧板,用七巧板来拼接图形,可以培养学生动手能力,展开学生的丰富想象力.10.(2020·浙江金华)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到//a b,理由是()A .在同一平面内,垂直于同一条直线的两条直线平行B .在同一平面内,过一点有且仅有一条直线垂直于已知直线C .连接直线外一点与直线各点的所有直线中,垂线段最短D .经过直线外一点,有且只有一条直线与这条直线平行【答案】A【解析】【分析】根据在同一平面内,垂直于同一条直线的两条直线平行判断即可.【详解】解:由题意得:,,a AB b ab ⊥⊥∵a ∵b (在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行),故选:A .【点睛】本题考查平行线的判定,平行公理,解题关键是理解题意,灵活运用所学直线解决问题.11.(2021·浙江金华)某同学的作业如下框,其中∵处填的依据是( ) 如图,已知直线1234,,,l l l l .若12∠=∠,则34∠=∠.请完成下面的说理过程.解:已知12∠=∠,根据(内错角相等,两直线平行),得12//l l . 再根据( ∵ ),得34∠=∠.A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补【答案】C【解析】【分析】首先准确分析题目,已知12//l l ,结论是34∠=∠,所以应用的是平行线的性质定理,从图中得知∵3和∵4是同位角关系,即可选出答案.【详解】解:∵12//l l ,∵34∠=∠(两直线平行,同位角相等).故选C .【点睛】本题主要考查了平行线的性质的应用,解题的关键是理解平行线之间内错角的位置,从而准确地选择出平行线的性质定理.12.(2022·浙江台州)如图,已知190∠=︒,为保证两条铁轨平行,添加的下列条件中,正确的是( )A .290∠=︒B .390∠=︒C .490∠=︒D .590∠=︒【答案】C【解析】【分析】 根据平行线的判定方法进行判断即可.【详解】解:A.∵1与∵2是邻补角,无法判断两条铁轨平行,故此选项不符合题意;B. ∵1与∵3与两条铁轨平行没有关系,故此选项不符合题意;C. ∵1与∵4是同位角,且∵1=∵4=90°,故两条铁轨平行,所以该选项正确;D. ∵1与∵5与两条铁轨平行没有关系,故此选项不符合题意;故选:C .【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定是解答本题的关键.13.(2022·浙江杭州)如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∵C =20°,∵AEC =50°,则∵A =( )A.10°B.20°C.30°D.40°【答案】C【解析】【分析】根据三角形外角的性质、平行线的性质进行求解即可;【详解】解:∵∵C+∵D=∵AEC,∵∵D=∵AEC-∵C=50°-20°=30°,∥,∵AB CD∵∵A=∵D=30°,故选:C.【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.14.(2021·浙江台州)一把直尺与一块直角三角板按如图方式摆放,若∵1=47°,则∵2=()A.40°B.43°C.45°D.47°【答案】B【解析】【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∵3147∠=∠=︒,∵490343∠=︒-∠=︒,∵2443∠=∠=︒,故选:B .【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.15.(2021·浙江杭州)如图,设点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,点T 是直线l 上的一个动点,连接PT ,则( )A .PT PQ ≥2B .PT PQ ≤2C .PT PQ ≥D .PT PQ ≤【答案】C【解析】【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点P 是直线l 外一点,PQ l ⊥,垂足为点Q , PQ ∴是垂线段,即连接直线外的点P 与直线上各点的所有线段中距离最短,当点T 与点Q 重合时有PQ PT =,综上所述:PT PQ ≥,故选:C.【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.16.(2020·浙江衢州)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.【答案】D【解析】【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.二、填空题17.(2022·浙江嘉兴)如图,在ABC中,∵ABC=90°,∵A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.23 【解析】【分析】 先求解33,,3ABAD 再利用线段的和差可得答案. 【详解】 解:由题意可得:1,15123,DE DC60,90,A ABC ∠=︒∠=︒ 33,tan 603BC AB 同理:13,tan 6033DE AD 3233,33BD AB AD23【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.18.(2021·浙江湖州)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB 的长应是______.21【解析】【分析】 根据裁剪和拼接的线段关系可知3CD =1BD CE ==,在Rt ACD △中应用勾股定理即可求解.【详解】解:∵地毯平均分成了3份,∵133=∵3CD =在Rt ACD △中,根据勾股定理可得222AD CD AC =-=根据裁剪可知1BD CE ==, ∵21AB AD BD =-, 21.【点睛】本题考查勾股定理,根据裁剪找出对应面积和线段的关系是解题的关键.19.(2022·浙江金华)如图,木工用角尺的短边紧靠∵O 于点A ,长边与∵O 相切于点B ,角尺的直角顶点为C ,已知6cm,8cm AC CB ==,则∵O 的半径为_____cm .【答案】253##183【解析】【分析】设圆的半径为r cm ,连接OB 、OA ,过点A 作AD ∵OB ,垂足为D ,利用勾股定理,在Rt∵AOD 中,得到r 2=(r −6)2+82,求出r 即可.【详解】解:连接OB 、OA ,过点A 作AD ∵OB ,垂足为D ,如图所示:∵CB 与O 相切于点B ,∵OB CB ⊥,∵90CBD BDA ACB ∠=∠=∠=︒,∵四边形ACBD 为矩形,∵8AD CB ==,6BD AC ==,设圆的半径为r cm ,在Rt∵AOD 中,根据勾股定理可得:222OA OD AD =+,即r 2=(r −6)2+82,解得:253r =, 即O 的半径为253cm . 故答案为:253.【点睛】本题主要考查了切线的性质,矩形的判定和性质,勾股定理,作出辅助线,构造直角三角形,利用勾股定理列出关于半径r的方程,是解题的关键.20.(2020·浙江杭州)如图,AB∵CD,EF分别与AB,CD交于点B,F.若∵E=30°,∵EFC=130°,则∵A =_____.【答案】20°【解析】【分析】直接利用平行线的性质得出∵ABF=50°,进而利用三角形外角的性质得出答案.【详解】∵AB∵CD,∵∵ABF+∵EFC=180°,∵∵EFC=130°,∵∵ABF=50°,∵∵A+∵E=∵ABF=50°,∵E=30°,∵∵A=20°.故答案为:20°.【点睛】此题主要考查了平行线的性质以及三角形外角的性质,求出∵ABF=50°是解答此题的关键.三、解答题21.(2022·浙江温州)如图,BD是ABC的角平分线,DE BC∥,交AB于点E.(1)求证:EBD EDB ∠=∠.(2)当AB AC =时,请判断CD 与ED 的大小关系,并说明理由.【答案】(1)见解析(2)相等,见解析【解析】【分析】(1)利用角平分线的定义和平行线的性质可得结论;(2)利用平行线的性质可得ADE AED ∠=∠, 则AD= AE ,从而有CD = BE ,由(1) 得,EBD EDB ∠=∠,可知BE = DE ,等量代换即可.(1)证明:∵BD 是ABC 的角平分线,∵CBD EBD ∠=∠.∵DE BC ∥,∵CBD EDB ∠=∠,∵EBD EDB ∠=∠.(2)CD ED =.理由如下:∵AB AC =,∵C ABC ∠=∠.∵DE BC ∥,∵,ADE C AED ABC ∠=∠∠=∠,∵ADE AED ∠=∠,∵AD AE =,∵AC AD AB AE -=-,即CD BE =.由(1)得EBD EDB ∠=∠,∵BE ED =,∵CD ED =.【点睛】本题主要考查了平行线的性质,等腰三角形的判定与性质,角平分线的定义等知识,熟练掌握平行与角平分线可推出等腰三角形是解题的关键.22.(2021·浙江绍兴)问题:如图,在ABCD 中,8AB =,5AD =,DAB ∠,ABC ∠的平分线AE ,BF 分别与直线CD 交于点E ,F ,求EF 的长.答案:2EF =.探究:(1)把“问题”中的条件“8AB =”去掉,其余条件不变.∵当点E 与点F 重合时,求AB 的长;∵当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“8AB =,5AD =”去掉,其余条件不变,当点C ,D ,E ,F 相邻两点间的距离相等时,求AD AB的值.【答案】(1)∵10;∵5;(2)13,23,2 【解析】【分析】(1)∵利用平行四边形的性质和角平分线的定义先分别求出5DE AD ==,5BC CF ==,即可完成求解; ∵证明出EF CD =即可完成求解;(2)本小题由于E 、F 点的位置不确定,故应先分情况讨论,再根据每种情况,利用 DE AD =,CF CB =以及点 C ,D ,E ,F 相邻两点间的距离相等建立相等关系求解即可.【详解】(1)∵如图1,四边形ABCD 是平行四边形,//AB CD ∴,DEA EAB ∴∠=∠.AE ∵平分DAB ∠,DAE EAB ∴∠=∠.DAE DEA ∴∠=∠.5DE AD ∴==.同理可得:5BC CF ==.点E 与点F 重合,10AB CD ∴==.∵如图2,点E 与点C 重合, 同理可证5DE DC AD ===, ∵∵ABCD 是菱形,5CF BC ==,∴点F 与点D 重合,5EF DC ∴==.(2)情况1,如图3, 可得AD DE EF CF ===, 13ADAB ∴=.情况2,如图4,同理可得,AD DE BC CF ==,, 又DF FE CE ==,23AD DE AB AB ∴==.情况3,如图5,由上,同理可以得到AD DE CB CF ==,,又FD DC CE ==,2AD DE AB CD∴==.综上:AD AB 的值可以是13,23,2. 【点睛】本题属于探究型应用题,综合考查了平行四边形的性质、角平分线的定义、菱形的判定与性质等内容,解决本题的关键是读懂题意,正确画出图形,建立相等关系求解等,本题综合性较强,要求学生有较强的分析能力,本题涉及到的思想方法有分类讨论和数形结合的思想等.23.(2020·浙江)如图,已知△ABC 是∵O 的内接三角形,AD 是∵O 的直径,连结BD ,BC 平分∵ABD . (1)求证:∵CAD =∵ABC ;(2)若AD =6,求CD 的长.【答案】(1)证明见解析;(2)32π. 【解析】【分析】(1)利用角平分线的性质结合圆周角定理即可证明;(2)可证得CD =AC ,则CD 的长为圆周长的14. 【详解】(1)证明:∵BC 平分∵ABD ,∵∵DBC =∵ABC ,∵∵CAD =∵DBC ,∵∵CAD =∵ABC ;(2)解:∵∵CAD =∵ABC ,∵CD =AC ,∵AD 是∵O 的直径,且AD =6, ∵CD 的长=14×π×6=32π. 【点睛】本题考查了角平分线的性质以及圆周角定理,证得CD =AC 是解(2)题的关键.24.(2022·浙江金华)图1是光伏发电场景,其示意图如图2,EF 为吸热塔,在地平线EG 上的点B ,B '处各安装定日镜(介绍见图3).绕各中心点(),A A '旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F 处.已知1m,8m,83m AB A B EB EB ='==''=,在点A 观测点F 的仰角为45︒.(1)点F 的高度EF 为______m .(2)设,DAB D A B αβ''∠'=∠=,则α与β的数量关系是_______.【答案】 9 7.5αβ-=︒ 【解析】【分析】(1)过点A 作AG ∵EF ,垂足为G ,证明四边形ABEG 是矩形,解直角三角形AFG ,确定FG ,EG 的长度即可.(2)根据光的反射原理画出光路图,清楚光线是平行线,运用解直角三角形思想,平行线的性质求解即可.【详解】(1)过点A 作AG ∵EF ,垂足为G .∵∵ABE =∵BEG =∵EGA =90°,∵四边形ABEG 是矩形,∵EG =AB =1m ,AG =EB =8m ,∵∵AFG =45°,∵FG =AG =EB =8m ,∵EF =FG +EG =9(m ).故答案为:9;(2)7.5αβ-=︒.理由如下:∵∵A 'B 'E =∵B 'EG =∵EG A '=90°,∵四边形A 'B 'EG 是矩形,∵EG =A 'B '=1m ,A 'G =E B '=83m ,∵tan ∵A 'FG =833A G FG '= ∵∵A 'FG =60°,∵F A 'G =30°,根据光的反射原理,不妨设∵F AN =2m ,∵F A 'M =2n ,∵ 光线是平行的,∵AN∥A 'M ,∵∵GAN =∵G A 'M ,∵45°+2m =30°+2n ,解得n -m =7.5°,根据光路图,得90,90DAB m D A B n αβ'∠==-∠==-'',∵9090m n n m αβ-=--+=-,故7.5αβ-=︒,故答案为:7.5αβ-=︒ .【点睛】本题考查了解直角三角形的应用,矩形的判定和性质,特殊角的三角函数值,光的反射原理,熟练掌握解直角三角形,灵活运用光的反射原理是解题的关键.25.(2021·浙江温州)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.【答案】(1)见解析;(2)35°【解析】【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证;(2)先求出∵ADE ,再利用平行线的性质求出∵ ABC ,最后利用角平分线的定义即可完成求解.【详解】 解:(1)BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2)65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒, 即35EBC ∠=︒.【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.26.(2020·浙江绍兴)如图1,矩形DEFG 中,DG =2,DE =3,Rt∵ABC 中,∵ACB =90°,CA =CB =2,FG ,BC 的延长线相交于点O ,且FG ∵BC ,OG =2,OC =4.将∵ABC 绕点O 逆时针旋转α(0°≤α<180°)得到∵A ′B ′C ′.(1)当α=30°时,求点C ′到直线OF 的距离.(2)在图1中,取A ′B ′的中点P ,连结C ′P ,如图2.∵当C ′P 与矩形DEFG 的一条边平行时,求点C ′到直线DE 的距离.∵当线段A ′P 与矩形DEFG 的边有且只有一个交点时,求该交点到直线DG 的距离的取值范围.【答案】(1)点C ′到直线OF 的距离为3(2)∵点C ′到直线DE 的距离为2±2;∵2≤d <4417或d =3. 【解析】【分析】(1)过点C′作C′H∵OF 于H .根据直角三角形的边角关系,解直角三角形求出CH 即可. (2)∵分两种情形:当C′P∵OF 时,过点C′作C′M∵OF 于M ;当C′P∵DG 时,过点C′作C′N∵FG 于N .通过解直角三角形,分别求出C′M,C′N即可.∵设d为所求的距离.第一种情形:当点A′落在DE上时,连接OA′,延长ED交OC于M.当点P落在DE上时,连接OP,过点P作PQ∵C′B′于Q.结合图象可得结论.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=52,即d=52;当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.求出QG可得结论.第三种情形:当A′P经过点F时,此时显然d=3.综上所述即可得结论.【详解】解:(1)如图,过点C′作C′H∵OF于H.∵∵A′B′C′是由∵ABC绕点O逆时针旋转得到,∵C′O=CO=4,在Rt∵HC′中,∵∵HC′O=α=30°,∵C′H=C′O•cos30°=3∵点C′到直线OF的距离为3(2)∵如图,当C′P∵OF时,过点C′作C′M∵OF于M.∵∵A′B′C′为等腰直角三角形,P为A′B′的中点,∵∵A′C′P=45°,∵∵A′C′O=90°,∵∵OC′P=135°.∵C′P∵OF,∵∵O=180°﹣∵OC′P=45°,∵∵OC′M是等腰直角三角形,∵OC′=4,∵C′M=2=22∵点C′到直线DE的距离为222.如图,当C′P∵DG时,过点C′作C′N∵FG于N.同法可证∵OC′N是等腰直角三角形,∵C′N=22∵GD=2,∵点C′到直线DE的距离为222.∵设d 为所求的距离.第一种情形:如图,当点A′落在DE 上时,连接OA′,延长ED 交OC 于M .∵OC=4,AC=2,∵ACO=90°,2216425OA CO AC +∴+∵OM =2,∵OMA′=90°,∵A′M 22A O OM '-()22252-4,又∵OG=2,∵DM=2,∵A′D =A′M -DM=4-2=2,即d =2,如图,当点P 落在DE 上时,连接OP ,过点P 作PQ∵C′B′于Q .∵P 为A′B′的中点,∵A′C′B′=90°, ∵PQ∵A′C′,∵'12B PC Q PQ B A B C A C '''''''===∵B′C′=2∵PQ=1,C'Q=1,∵Q点为B′C′的中点,也是旋转前BC的中点,∵OQ=OC'+C'Q=5∵OP22+2651∵PM2226422--=OP OM∵PD=222-=,PM DM∵d222,222.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=52,即d=52,如图,当点P落在EF上时,设OF交A′B′于Q,过点P作PT∵B′C′于T,过点P作PR∵OQ交OB′于R,连接OP.由上可知OP26OF=5,∵FP22-1,-2625OP OF∵OF=OT,PF=PT,∵F=∵PTO=90°,∵Rt∵OPF∵Rt∵OPT(HL),∵∵FOP=∵TOP,∵PR∵OQ,∵∵OPR=∵POF,∵∵OPR=∵POR,∵OR=PR,∵PT2+TR2=PR2,222 15PR PR∴+(﹣)=∵PR=2.6,RT=2.4,∵∵B′PR∵∵B′QO,∵B ROB''=PRQO,∵3.46=2.6OQ,∵OQ=78 17,∵QG=OQ﹣OG=4417,即d=441752≤d<44 17,第三种情形:当A′P经过点F时,如图,此时FG=3,即d=3.综上所述,2≤d<4417或d=3.【点睛】(1)本题考查了通过解直角三角形求线段长,解决本题的关键是构建直角三角形,熟练掌握直角三角形中边角关系.(2)∵本题综合性较强,考查了平行线的性质,解直角三角形,解决本题的关键是正确理解题意,能够根据题目条件进行分类讨论,然后通过解直角三角形求出相应的线段长即可.∵本题综合性较强,考查了辅助线的作法,平行线的性质以及解直角三角形,解决本题的关键是正确理解题意,能够根据情况对题目进行分类讨论,通过不同情形,能够作出辅助线,在解决本题的过程中要求熟练掌握直角三角形中的边角关系. 27.(2020·浙江绍兴)如图,点E是∵ABCD的边CD的中点,连结AE并延长,交BC的延长线于点F.(1)若AD的长为2.求CF的长.(2)若∵BAF=90°,试添加一个条件,并写出∵F的度数.【答案】(1)2;(2)当∵B=60°时,∵F=30°(答案不唯一).【解析】【分析】(1)由平行四边形的性质得出AD∵CF,则∵DAE=∵CFE,∵ADE=∵FCE,由点E是CD的中点,得出DE=CE,由AAS证得∵ADE∵∵FCE,即可得出结果;(2)添加一个条件当∵B=60°时,由直角三角形的性质即可得出结果(答案不唯一).【详解】解:(1)∵四边形ABCD是平行四边形,∵AD∵CF,∵∵DAE=∵CFE,∵ADE=∵FCE,∵点E是CD的中点,∵DE=CE,在∵ADE和∵FCE中,DAE CFEADE FCEDE CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∵∵ADE∵∵FCE(AAS),∵CF=AD=2;(2)∵∵BAF=90°,添加一个条件:当∵B=60°时,∵F=90°-60°=30°(答案不唯一).【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解题的关键.3132。
2024陕西中考数学二轮专题训练 题型八 几何测量问题 (含答案)
2024陕西中考数学二轮专题训练题型八几何测量问题类型一与锐角三角函数有关的几何测量【类型解答】与锐角三角函数有关的几何测量应用题近10年解答题中考查3次,分值为6分或7分.考查特点:设问均为底部不可及的测量问题,且都是通过在两个直角三角形中解决问题.1.西安奥体中心体育馆是第十四届全运会的主场馆之一,其顶部有16个角舒展绽放,像盛开的花瓣.某日,家住附近的小华和小明想测量其中一个角顶部距离地面的高度AB,由于施工,点B周围设有20米宽的禁行区域MN.如图所示,小明先在距离点M60米远的D处用测倾器CD测得顶部A的仰角为30°,然后小华在距离点N30米远的F处用测倾器EF测得顶部A的仰角为45°,已知测倾器的高CD=EF=1.5米,点D、M、B、N、F在同一条直线上,CD、EF均垂直于DF,求角顶部距离地面的高度A B.(结果用根号表示)第1题图2.某广场的平面示意图大致如图所示,小明和小凯想用测量知识测量广场的南北长度.首先,他们在广场最北边选取一点A,测得建筑物最西端M位于点A南偏东37°方向,然后沿着广场边缘向东行走10m,到达点B,测得该建筑物最东端N位于点B南偏东45°方向.已知建筑物东西长度MN为60m,且点M、N在广场的最南端边上,求该广场的南北长度.(结果精确到1m.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41)第2题图3.[真实问题情境]如图①,是一个手动饸饹机的实物图,图②是其示意图,已知手柄的长度AB=36cm,BD=4cm,支架的高度EF=33cm.抬至最高时与水平方向的夹角∠ABC约为52°,A、C、E、F四点共线.(结果精确到0.1cm,参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)(1)求饸饹机手柄上的点A到水平面GF的距离;(2)李师傅压制饸饹时,某一时刻AB与水平方向的夹角为30°,则手柄AB上点A的高度降低了多少?第3题图类型二与相似三角形有关的几何测量【类型解读】与相似三角形有关的几何测量应用题近10年解答题考查6次.考查特点:以利用“标杆”测高、中心投影、平行投影、镜面反射或固定视角等问题为背景,设问多为测量高度.1.大约公元前600年,几何学家泰勒斯第一个测量出了金字塔的高度.如图①,他首先测量了金字塔正方形底座的边长为230米,然后他站立在沙地上的点B′处,请人不断测量他的影子B′C′,当他的影子B′C′和身高A′B′相等时,立刻测量出该金字塔塔尖P的影子A与相应底棱中点B的距离约为22.2米,此时点A与点B的连线恰好与相应的底棱垂直,即正方形底座中心O与A和B在一条直线上,聪明的小明根据老师的讲述,迅速画出图②所示的测量金字塔高度的平面图形,请你根据这个平面图形计算出该金字塔的高度.第1题图2.小唯想利用所学的知识测量学校旗杆的高度,一天下午,她和学习小组来到旗杆前,由于旗杆下面有旗杆台,到旗杆底部的距离无法测量到,于是她们先在旗杆周围的空地上选择一点E并放置小平面镜,小唯沿着BE方向移动到点D处,她恰好在小平面镜内看到旗杆顶端A的像,此时测得DE=0.8m,然后小唯拿着自制的直角三角板FMN在BE方向移动,在点G处用眼睛观察到斜边FM与点A在同一条直线上,测得DG=7.4m.已知直角三角板的直角边MN=9cm,FN=12cm,小唯的眼睛与地面的距离CD=FG=1.6m,AB、CD、FG、MN均垂直于BG,求旗杆的高度A B.(平面镜大小忽略不计)第2题图3.如图,河岸旁种植了两排平行的树,且每排每两棵树之间的距离为3m,为测量这两排树之间的距离PQ,小明先在中间两棵树QP的延长线上选取一点A,恰好发现点A、树B、树C在一条直线上,然后小明后退10m到达点D处,发现点D、树E、树F在一条直线上.已知PQ所在的直线垂直于两岸的树,且两排树均用图中的黑点表示,求河岸旁两排树之间的距离PQ.第3题图类型三与全等三角形有关的几何测量1.如图所示,物体从一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,求旗杆的高度OM和物体在荡绳索过程中离地面的最低点的高度MN.第1题图2.(北师九下P22活动二改编)如图所示,小明与小华计划测量学校春晖楼的高度A B.小明先站在点E处,用测倾器EF测得求实楼CD的顶端D的仰角为α,然后走到点C处,用测倾器CG测得春晖楼AB的顶端B的仰角为β,发现α+β=90°.已知AB、EF、CD均垂直于AC,EF=CG=1.6m,CE=25.2m,求实楼的高CD=31.6m,两栋楼之间的距离AC=30m,求春晖楼的高度A B.第2题图类型四与勾股定理有关的几何测量1.[数学文化](北师八上P15习题1.4T5改编)《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′(如图).水深和芦苇长各多少尺?第1题图2.一天,小明带着弟弟去图书大厦买书,已知该图书大厦装有一个自动感应门,当人体进入感应范围内,感应门会自动打开,小明发现门打开时,自己和弟弟距离门的位置不相同,于是小明利用所学的知识计划测量该感应门的最大感应范围.小明先站在D处,门恰好自动打开,然后小明后退,让弟弟去打开门,发现当弟弟站在点F处时,门恰好自动打开,且小明发现自己与弟弟所站的位置中间相隔2个地砖.已知小明的身高CD=1.6m,弟弟的身高EF=1.3m,感应器距离地面的高度AB=2.5m,每个地砖的宽度为15cm,AB、CD、EF 均垂直于BD,求该感应门的最大感应距离AC(或AE).第2题图参考答案类型一与锐角三角函数有关的几何测量1.解:如解图,连接CE 交AB 于点G ,由题知,CD 、EF 均垂直于DF ,且CD =EF ,第1题解图∴四边形CDFE 为矩形,∴CE =DF =60+20+30=110.在Rt △AGE 中,∵∠AEG =45°,∴AG =EG .设AG =EG =x ,∵在Rt △ACG 中,∠ACG =30°,∴CG =AG tan30°=3x ,∴3x +x =110,解得x =553-55,∵CD =EF =1.5,∴BG =1.5,∴AB =AG +BG =553-55+1.5=(553-53.5)米.答:该角顶部距离地面的高度AB 为(553-53.5)米.2.解:如解图,过点A 作AE ⊥MN 于点E ,过点B 作BF ⊥MN 于点F ,则四边形ABFE 是矩形,由题意可知∠EAM =37°,∠FBN =45°,设FM =x ,则EM =10+x ,FN =60+x ,在Rt △BFN 中,∵∠FBN =45°,∴BF =FN =60+x .∴AE =BF =60+x .在Rt △AEM 中,∵∠EAM =37°,∴tan ∠EAM =EM AE =10+x 60+x≈0.75,解得x =140,∴AE =60+140=200m ,答:该广场的南北长度约为200m.第2题解图3.(1)解:在Rt △ABC 中,∵∠ACB =90°,∠ABC =52°,AB =36cm ,∴AC =AB ·sin52°≈36×0.79=28.44cm.∵BD ⊥DE ,BD ⊥BC ,BC ⊥AF ,∴四边形BDEC 是矩形.∴CE =BD =4cm.又∵EF =33cm ,∴AF =AC +CE +EF =28.44+4+33=65.44≈65.4cm.答:饸饹机手柄上的点A 到水平面GF 的距离约为65.4cm ;(2)由(1)知,AC =28.44cm ,当∠ABC =30°时,AC =AB ·sin ∠ABC =36×12=18cm ,∴手柄AB 上点A 的高度降低了28.44-18≈10.4cm.类型二与相似三角形有关的几何测量1.解:由题意可知,△POA ∽△A ′B ′C ′,∴PO OA =A ′B ′B ′C ′.∵A ′B ′=B ′C ′,∴OP =OA.∵金字塔正方形底座的边长为230,点O 为正方形的对称中心,点B 为正方形边上的中点,∴OB =115,∴OA =OB +AB =115+22.2=137.2,∴OP =137.2.答:金字塔的高度约为137.2米.2.解:如解图,延长FN 交AB 于点H ,则FH ⊥AB ,∴四边形FGBH 是矩形,由题意可知△ABE ∽△CDE ,△MFN ∽△AFH ,∴AB CD =BE DE ,AH FH =MN FN =912=34.设AB =x ,则AH =x -1.6,则x 1.6=BE 0.8,∴BE =0.5x ,∴FH =BG =GD +DE +BE =7.4+0.8+0.5x =8.2+0.5x ,∴x -1.68.2+0.5x =34,解得x =12.4,答:旗杆的高度AB 为12.4m.第2题解图3.解:设AP =x ,由题意可知,BP =3,PE =6,CQ =6,FQ =9,EP ∥FQ ,∴△APB ∽△AQC ,△DPE ∽△DQF ,∴AP AQ =BP CQ =36=12,∴AQ =2AP =2x ,∴DP =x +10,DQ =2x +10,∴DP DQ =PE FQ ,即x +102x +10=69=23,解得x =10,∴PQ =10,答:河岸旁两排树之间的距离PQ 为10m.类型三与全等三角形有关的几何测量1.解:如解图,过点A作AE⊥OM于点E,过点B作BF⊥OM于点F,∵∠AOE+∠BOF=∠BOF+∠OBF=90°,∴∠AOE=∠OBF.在△AOE和△OBF中,OEA=∠BFOAOE=∠OBF,=OB∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17,∴2EO+EF=17.∵EF=EM-FM=AC-BD=10-3=7,∴EO=5,∴AE=12,∴在Rt△AOE中,OA=OE2+AE2=13.∵OM=OE+EM=15,∴MN=15-13=2.答:旗杆的高度OM为15米,物体在荡绳索过程中离地面的最低点的高度MN为2米.第1题解图2.解:如解图,延长GF交AB于点H,∵AB⊥AC,EF⊥AC,CD⊥AC,EF=CG,∴四边形AEFH、四边形EFGC、四边形ACGH均为矩形.∴HG=AC,∠BHG=∠FGD=90°.∴α+∠FDG=90°.∵α+β=90°,∴∠FDG=β.即∠D=∠BGH.又∵EF=CG=1.6m,CD=31.6m,AC=30m,∴HG=30m,GD=CD-CG=30m,在△BHG和△FGD中,BHG=∠FGD,=GDBGH=∠D∴△BHG≌△FGD(ASA).∴BH=FG=CE=25.2m.∴AB=BH+AH=BH+EF=26.8m.答:春晖楼的高度AB为26.8m.第2题解图类型四与勾股定理有关的几何测量1.解:设水深x尺,则芦苇长(x+1)尺.由题意得x2+52=(x+1)2.解得x=12.∴x+1=13.答:水深12尺,芦苇长13尺.2.解:如解图,过点C作CG⊥AB于点G,过点E作EH⊥AB于点H,则四边形EFBH和四边形CDBG是矩形,由题意可知DF=30cm=0.3m,GH=CD-EF=0.3m,AC=AE,设BF=x,则BD=CG=0.3+x,在Rt△AEH中,∵AH=2.5-1.3=1.2m,∴AE2=x2+1.22,在Rt△ACG中,∵AG=2.5-1.6=0.9m,∴AC2=(0.3+x)2+0.92.∵AC=AE,∴(0.3+x)2+0.92=x2+1.22,∴AC=1.5m,答:该感应门的最大感应距离AC(或AE)为1.5m.第2题解图。
几何图形初步与视图(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】
备战2023年中考数学必刷真题考点分类专练(全国通用)专题14几何图形初步与视图(共50题)一.选择题(共42小题)1.(2022•河北)①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A.①③B.②③C.③④D.①④2.(2022•岳阳)某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱3.(2022•宿迁)下列展开图中,是正方体展开图的是()A.B.C.D.4.(2022•广元)如图是某几何体的展开图,该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱5.(2022•武威)若∠A=40°,则∠A的余角的大小是()A.50°B.60°C.140°D.160°6.(2022•新疆)如图是某几何体的展开图,该几何体是()A.长方体B.正方体C.圆锥D.圆柱7.(2022•自贡)如图,将矩形纸片ABCD绕边CD所在直线旋转一周,得到的立体图形是()A.B.C.D.8.(2022•遂宁)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁9.(2022•随州)如图,直线l1∥l2,直线l与l1,l2相交,若图中∠1=60°,则∠2为()A.30°B.40°C.50°D.60°10.(2022•娄底)一条古称在称物时的状态如图所示,已知∠1=80°,则∠2=()A.20°B.80°C.100°D.120°11.(2022•台湾)如图为两直线L、M与△ABC相交的情形,其中L、M分别与BC、AB平行.根据图中标示的角度,求∠B的度数为何?()A.55B.60C.65D.7012.(2022•山西)如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为()A.100°B.120°C.135°D.150°13.(2022•苏州)如图,直线AB与CD相交于点O,∠AOC=75°,∠1=25°,则∠2的度数是()A.25°B.30°C.40°D.50°14.(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°15.(2022•广元)如图,直线a∥b,将三角尺直角顶点放在直线b上,若∠1=50°,则∠2的度数是()A.20°B.30°C.40°D.50°16.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°17.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()A.20°B.30°C.40°D.50°18.(2022•杭州)如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°19.(2022•云南)如图,已知直线c与直线a、b都相交.若a∥b,∠1=85°,则∠2=()A.110°B.105°C.100°D.95°20.(2022•凉山州)如图,直线a∥b,c是截线,若∠1=50°,则∠2=()A.40°B.45°C.50°D.55°21.(2022•滨州)如图,在弯形管道ABCD中,若AB∥CD,拐角∠ABC=122°,则∠BCD的大小为()A.58°B.68°C.78°D.122°22.(2022•德阳)如图,直线m∥n,∠1=100°,∠2=30°,则∠3=()A.70°B.110°C.130°D.150°23.(2022•重庆)如图,直线a∥b,直线m与a,b相交,若∠1=115°,则∠2的度数为()A.115°B.105°C.75°D.65°24.(2022•自贡)如图,直线AB、CD相交于点O,若∠1=30°,则∠2的度数是()A.30°B.40°C.60°D.150°25.(2022•重庆)如图,直线AB,CD被直线CE所截,AB∥CD,∠C=50°,则∠1的度数为()A.40°B.50°C.130°D.150°26.(2022•十堰)下列几何体中,主视图与俯视图的形状不一样的几何体是()A.B.C.D.27.(2022•随州)如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同28.(2022•邵阳)下列四个图形中,圆柱体的俯视图是()A.B.C.D.29.(2022•武汉)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.30.(2022•台州)如图是由四个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.31.(2022•天津)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.CD.32.(2022•湘潭)下列几何体中,主视图是三角形的是()A.B.C.D.33.(2022•眉山)下列立体图形中,俯视图是三角形的是()A.B.C.D.34.(2022•孝感)某几何体的三视图如图所示,则该几何体是()A.圆锥B.三棱锥C.三棱柱D.四棱柱35.(2022•嘉兴)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.36.(2022•衡阳)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.37.(2022•宁波)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.38.(2022•湖州)如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.39.(2022•扬州)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥40.(2022•温州)某物体如图所示,它的主视图是()A.B.C.D.41.(2022•江西)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.42.(2022•安徽)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.二.填空题(共8小题)43.(2022•常德)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是.44.(2022•连云港)已知∠A的补角为60°,则∠A=°.45.(2022•湘潭)如图,一束光沿CD方向,先后经过平面镜OB、OA反射后,沿EF方向射出,已知∠AOB =120°,∠CDB=20°,则∠AEF=.46.(2022•宜昌)如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西35°方向,则∠ACB的大小是.47.(2022•眉山)如图,已知a∥b,∠1=110°,则∠2的度数为.48.(2022•孝感)如图,直线a∥b,直线x与直线a,b相交,若∠1=54°,则∠3=度.49.(2022•乐山)如图,已知直线a∥b,∠BAC=90°,∠1=50°.则∠2=.50.(2022•扬州)将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND=°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,是某个几何体的展开图,该几何体是( )A .三棱柱B .三棱锥C .球D .圆锥 2.如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A .30°B .45°C .60°D .75°3.如图是每个面上都标有一个汉字的正方体的表面展开图,在此正方体上与“爱”字相对的面上的汉字是( )A .保B .定C .古D .城 4.如图,已知AC BC ⊥,190A ∠+∠=︒,则2∠与A ∠的关系是( )A.2∠大C.相等D.无法确定∠大B.A5.若一个锐角的余角比这个角大30°,则这个锐角的度数是()A.30︒B.150︒C.60︒D.155︒6.图中的立方体展开后,应是下图中的()A.B.C.D.7.如图,直线与相交于点,,则与()A.是对顶角B.相等C.互余D.互补8.如图由四个相同的小立方体组成的立体图像,它的主视图是().A .B .C .D . 9.如图,钟表上10点整时,时针与分针所成的角是( )A .30︒B .60︒C .90︒D .120︒ 10.如图,将直角三角形绕其一条直角边所在直线l 旋转一周,得到的几何体是( )A .B .C .D . 11.如图,在长方形ABCD 中,点E ,点F 分别为BC 和AB 上任意一点,点B 和点M 关于EF 对称,EN 是MEC ∠的平分线,若60BFE ∠=︒,则MEN ∠的度数是( )A .30︒B .60︒C .45︒D .50︒12.如图是正方形纸盒展开图,那么在原正方体中,与“沉”字所在面相对面的汉字是()A.冷B.静C.应D.考13.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体14.如图,用平面去截一个正方体,所得截面的形状应是()A.A B.B C.C D.D15.如图,点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD=()A.110°B.115°C.120°D.135°16.下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是3cmC.直线,AB CD相交于点P D.两点确定一条直线17.如图,一个底面直径为30cm,高为20cm的糖罐子,一只蚂蚁从A处沿着糖罐的表面爬行到B处,则蚂蚁爬行的最短距离是()A .24cmB .C .25cmD .30cm 18.如图,等边ABC 的边长为1,过点B 的直线l AB ⊥,且ABC 与A BC ''△关于直线l 对称,D 为线段BC '上的一个动点,则AD CD +的最小值为( )A .1B .2C .3D .419.如图,在ABC 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上 D .:1:3DAC ABD S S =△△20.如图,在Rt 直角△ABC 中,45B ∠=︒,AB =AC ,点D 为BC 中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:△△DEF 是等腰直角三角形;△ AE =CF ;△△BDE △△ADF ;△ BE +CF =EF ,其中正确结论是( )A .△△△B .△△△C .△△△D .△△△△二、填空题21.在_______内填上适当的分数:135等于________平角.22.如图,AB △CD ,CB 平分△ABD ,若△ABC =40°,则△D 的度数为_______.23.如果△α=26°,那么△α的余角等于__________.24.如图,点A在点O北偏东32︒方向上,点B在点O南偏东43︒方向上,则AOB∠= ______.25.如图,是一副三角板拼成的图案,则AED=∠____.26.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是___________.27.如图是一个长方体的表面展开图,每个面上都标注了字母和数据,请根据要求回答(1)如果A面在长方体的底部,那么_________面会在上面;(2)这个长方体的体积为_________米3.28.若α∠的补角是它的3倍,则α∠的度数为________________.29.两根长度分别为8cm 和10cm 的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为________.30.已知,如图4090COD AOC BOD ∠∠∠=︒==︒,,则AOB ∠=_______度.31.若一个直棱柱共有10个面,所有侧棱长的和等于64,则每条侧棱的长为______.32.小红从O 点出发向北偏西32°17'方向走到A 点,小明从O 点出发向南偏西54°28'方向走到B 点,则∠AOB 的度数是_____.33.如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是_____.34.5400秒化成度数是____________度35.如图,OA 的方向是北偏东20°,OC 的方向是北偏西40°,若AOC AOB ∠=∠,则OB 的方向是______.36.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.37.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.38.如图,在△O 中,AB 是△O 的直径,10,AB AC CD DB ===,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:△60BOE ︒∠=;△12CED DOB ∠=∠;△DM CE ⊥;△CM DM +的最小值是10.上述结论中正确的个数是_________.39.如图,在Rt ABC △中,90ABC ∠=︒,以AC 为边,作ACD ,满足AD AC =,点E 为BC 上一点,连接AE ,12BAE CAD ∠=∠,连接DE .下列结论中正确的是__________.(填序号)△AC DE ⊥;△ADE ACB ∠=∠;△若//CD AB ,则AE AD ⊥;△2DE CE BE =+.40.如图,在△ABC 中,AB = AC = 8,S △ABC = 16,点P 为角平分线AD 上任意一点,PE △AB ,连接PB ,则PB+PE 的最小值为_____.三、解答题41.线段4AB =cm ,延长线段AB 到C ,使BC =14AB ,再反向延长AB 到D ,使AD=3cm ,E 是AD 中点,F 是CD 的中点,求EF 的长度.42.已知图为一几何体从不同方向看的图形.(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积. 43.如图△,点O 为直线MN 上一点,过点O 作直线OC ,使60NOC ︒∠=.将一把直角三角尺的直角顶点放在点O 处,一边 OA 在射线OM 上,另一边OB 在直线AB 的下方,其中30OBA ︒∠=()1将图△中的三角尺沿直线OC 翻折至''A B O ∆, 求'A ON ∠的度数;()2将图△中的三角尺绕点O 按每秒10︒的速度沿顺时针方向旋转,旋转角为()0360αα︒︒<<, 在旋转的过程中,在第几秒时,直线OA 恰好平分锐角NOC ∠. ()3将图△中的三角尺绕点O 顺时针旋转;当点A 点B 均在直线MN 上方时(如图△所示),请探究MOB ∠与AOC ∠之间的数量关系,请直接写出结论,不必写出理由.44.如图,在直线AB 上,线段20AB =,动点P 从A 出发,以每秒2个单位长度的速度在直线AB 上运动,M 为AP 的中点,N 为BP 的中点,设点P 的运动吋间为t 秒.(1)若点P 在线段AB 上运动,当7MP =时,NP = ;(2)若点P 在射线AB 上运动,当2MP NP =时,求点P 的运动时间t 的值;(3)当点P 在线段AB 的反向延长线上运动时,线段AB 、MP 、NP 有怎样的数量关系?请写出你的结论,并说明你的理由.45.已知:点M ,N ,P 在同一条直线上,线段MN a =,线段()PN b a b =>,点A 是MP 的中点.求线段MP 与线段AN 的长.(用含a ,b 的代数式表示) 46.如图所示,l 为河岸,B 处为草地,牧马人要将A 处的马牵到河边喝水,再牵到B 地吃草,问怎样走路程最短?47.如图,在ABC 中,CD 、CE 分别是ABC 的高和角平分线,,()BAC B ∠α∠βαβ==>.(1)若70,40αβ=︒=︒,求DCE ∠的度数;(2)试用α、β的代数式表示DCE ∠的度数_________.48.某产品的形状是长方体,长为8cm ,它的展开图如图所示,求长方体的体积.49.如图,已知线段AB 上有两点C ,D ,且AC△CD△DB =2△3△4,E ,F 分别为AC ,DB 的中点,EF =2.4 cm ,求线段AB 的长.50.综合与探究已知△AOB 、△BOC ,△AOB =90°,(1)若△BOC 为锐角,OE 、OD 分别平分△AOB 和△BOC ,△如图1,当射线OC 在△AOB 外部,△BOC =40°时,求△EOD 的度数;△当△BOC =α(090α︒<<︒)时,则△EOD 的度数是_____;(2)若△AOC 和△BOC 均为小于平角的角,OE 、OD 分别平分△AOC 和△BOC ,△当△BOC =40°,OC 位置如图2所示时,求△EOD 的度数.△当△BOC =α时(0°<α<180°),则△EOD 的度数是_____.参考答案:1.A【分析】侧面为三个长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱,故A 正确.故选:A .【点睛】本题考查的是三棱柱的展开图,熟练掌握三棱柱的展开图,是解题的关键. 2.C【分析】根据三角板的角度,可得60A ∠=︒,根据平行线的性质即可求解. 【详解】解:30C ∠=︒,9060A C ∴∠=︒-∠=︒AC ∥EF ,160A ∴∠=∠=︒故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.3.A【分析】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.【详解】正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以在此正方体上与“爱”字相对的面上的汉字是“保”,故选A .【点睛】本题考查正方体的展开图,解题的关键是掌握正方体相对两个面上的文字的知识.4.C【分析】由190A ∠+∠=︒,1290∠+∠=︒,可知2A ∠=∠,进而可得答案.【详解】解:△190A ∠+∠=︒,1290∠+∠=︒△2A ∠=∠故选C .【点睛】本题考查了余角.解题的关键在于明确同角的余角相等.5.A【分析】根据余角的定义解决此题.【详解】解:设这个角的度数为x .由题意得,9030x x -=+︒︒.△30x =︒.△这个角的度数为30︒.故选:A .【点睛】本题主要考查余角,熟练掌握余角的定义是解决本题的关键.6.D【详解】由正方体的展开图可知,D 项符合题意,故选D .7.C【详解】试题分析:因为CD 是一条直线,又,所以△AOE=90°所以△1+△2=180°-90°=90°,所以他们的关系是互余考点:角的互余关系点评:难度小,理解角与角的各种的关系是关键.8.A【分析】从正面看作出相应图象即可得.【详解】解:从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选A.【点睛】题目主要考查小正方体的主视图的作法,理解题意,掌握视图的作法是解题关键. 9.B【分析】根据钟面分成12个大格,每格的度数为30°即可解答.【详解】解:△钟面分成12个大格,每格的度数为30°,△钟表上10点整时,时针与分针所成的角是60°故选B .【点睛】考核知识点:钟面角.了解钟面特点是关键.10.B【分析】根据直角三角形绕直角边旋转是圆锥,即可解得.【详解】将直角三角形绕其一条直角边所在直线l 旋转一周,得到的几何体是圆锥;故答案为:B.【点睛】本题考查了点、线、面、体,熟记各种平面图形旋转得到的立体图形是解题的关键.11.B∠的平分线,可算出△MEN 【分析】根据对称的性质可得△MEF的度数,再由EN是MEC的度数.【详解】解:由题意可得:△B=90°,△△BFE=60°,△△BEF=30°,△点B和点M关于EF对称,△△BEF=△MEF=30°,△△MEC=180-30°×2=120°,∠的平分线,又△EN是MEC△△MEN=120÷2=60°.故选B.【点睛】本题考查了轴对称的性质和角平分线的性质,根据已知角利用三角形内角和、角平分线的性质计算相关角度即可,难度不大.12.B【分析】根据正方体的展开图的特点,确定出相对的面即可.【详解】解:根据正方体表面展开图可知,与“沉”字所在面相对面的汉字是“静”.故答案为B.【点睛】本题考查正方体的表面展开图的特征,掌握正方体展开图的对面的判定方法是解答本题的关键.13.D【分析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.14.B【详解】试题解析:正方体的截面,经过正方体的四个侧面,正方体中,对边平行,故可确定为平行四边形,交点垂直于底边,故为矩形.故选B.点睛:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.15.B【分析】先根据△COE=90°,△COD=25°,由角的和差关系求得△DOE=90°﹣25°=65°,再根据OD平分△AOE,由角平分线的定义得出△AOD=△DOE=65°,最后根据邻补角的定义得出△BOD=180°﹣△AOD=115°.【详解】△△COE=90°,△COD=25°,△△DOE=90°﹣25°=65°.△OD平分△AOE,△△AOD=△DOE=65°,△△BOD=180°﹣△AOD=115°.故选B.【点睛】本题考查了角的计算以及角平分线的定义的综合应用,解决问题的关键是运用角平分线以及直角的定义,求得△AOD的度数,再根据邻补角进行计算.16.D【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】解:A、射线PA和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线AB、CD可能平行,没有交点,故本选项错误;D、两点确定一条直线是正确的.故选:D.【点睛】本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.17.C【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:△有一圆柱,它的高等于20cm ,底面直径等于30πcm , △底面周长=3030ππ⋅=cm ,△BC =20cm ,AC =12×30=15(cm ),△AB 25=(cm ).答:它需要爬行的最短路程为25cm .故选:C .【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.18.B【分析】连接CA '交BC '于点E ,C ,A '关于直线BC '对称,推出当点D 与B 重合时,AD CD +的值最小,最小值为线段AA '的长2=.【详解】解:连接CA '交BC '于点E ,直线l AB ⊥,且ABC ∆与△A BC ''关于直线l 对称,A ∴,B ,A '共线,60ABC A BC ∠=∠''=︒,60CBC ∴∠'=︒,C BA C BC ∴∠''=∠',BA BC '=,'BE CA ∴⊥,CD DA =',C ∴,A '关于直线BC '对称,∴当点D与B重合时,AD CD+的值最小,最小值为线段AA'的长2=,故选B.【点睛】本题考查轴对称-最短问题,等边三角形的性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.19.D【分析】根据作图的过程可以判定AD是△BAC的角平分线;利用角平分线的定义可以推知△CAD=30°,则由直角三角形的性质来求△ADC的度数;利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A、根据作图方法可得AD是△BAC的平分线,正确;B、△△C=90°,△B=30°,△△CAB=60°,△AD是△BAC的平分线,△△DAC=△DAB=30°,△△ADC=60°,正确;C、△△B=30°,△DAB=30°,△AD=DB,△点D在AB的中垂线上,正确;D、△△CAD=30°,△CD=12AD,△AD=DB,△CD=12DB,△CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,△S△ACD:S△ACB=1:3,△S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.20.C【分析】根据等腰直角三角形的性质可得△CAD=△B=45°,根据同角的余角相等求出△ADF=△BDE,然后利用“角边角”证明△BDE和△ADF全等,判断出△正确;根据全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,判断出△正确;再求出AE=CF,判断出△正确;根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出△错误.【详解】△△B=45°,AB=AC,△△ABC是等腰直角三角形,△点D为BC中点,△AD=CD=BD,AD△BC,△CAD=45°,△△CAD=△B,△△MDN是直角,△△ADF+△ADE=90°,△△BDE+△ADE=△ADB=90°,△△ADF=△BDE,在△BDE和△ADF中,CAD BAD BDADF BDE∠=∠⎧⎪=⎨⎪∠=∠⎩,△△BDE△△ADF(ASA),故△正确;△DE=DF、BE=AF,又△△MDN是直角,△△DEF是等腰直角三角形,故△正确;△AE=AB-BE,CF=AC-AF,△AE=CF,故△正确;△BE+CF=AF+AE>EF,△BE+CF>EF,故△错误;综上所述,正确的结论有△△△;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、同角的余角相等的性质、三角形三边的关系;熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.21.3 4【分析】根据一平角等于180°解答即可.【详解】△135÷180=34,△135等于34平角.故答案为3 4 .【点睛】本题考查了平角的定义,熟练掌握一平角等于180°是解答本题的关键. 22.100°【分析】根据角平分线定义和平行线的性质即可求出△D的度数.【详解】解:△CB平分△ABD,△ABC=40°,△△ABD=2△ABC=80°,△AB△CD,△△ABD+△D=180°,△△D=180°﹣80°=100°,则△D的度数为100°.故答案为:100°.【点睛】本题主要考查了角平分线的定义,平行线的性质,熟练掌握角平分线的定义,平行线的性质是解题的关键.23.64°【详解】△△α=26°,△△α的余角=90°-26°=64°.故答案为:64°【点睛】本题考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.24.105°【分析】直接利用方向角结合互补的性质得出答案.【详解】解:如图所示:由题意可得,△1=32°,△2=43°,则△AOB=180°-△1-△2=105°.故答案为:105°.【点睛】此题主要考查了方向角,正确把握方向角的定义是解题关键.25.135°【详解】本题主要考查了三角板的知识及平角的定义根据三角板的知识可知△DEC的度数,再根据平角的定义即可求得结果.由题意得△DEC=45°,则△AED=180°-△DEC=135°.思路拓展:解答本题的关键是掌握好三角板的知识及平角的定义.26.明【分析】这种展开图是属于“1,4,1”的类型,其中,上面的1和下面的1是相对的2个面.【详解】由正方体的展开图特点可得:“建”和“明”相对;“设”和“丽”相对;“美”和“三”相对;故答案为:明.【点睛】此题考查正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.27.F6【分析】(1)根据展开图,可得几何体,、、A B C 是邻面,D F E 、、是邻面,根据A 面在底面,F 会在上面,可得答案;(2)由体积计算公式解答.【详解】解:(1)如图所示,A 与F 是对面,所以如果A 面在长方体的底部,那么 F 面会在上面;故答案是:F ;(2)这个长方体的体积是:1236⨯⨯=(米3).故答案是:6【点睛】本题考查了几何体的展开图,利用了几何体展开图组成几何体时面与面之间的关系.28.45︒##45度【分析】设α∠为x ,根据互为补角的两个角的和等于180︒表示出这个角的补角,然后列出方程求解即可.【详解】解:设α∠为x ,则α∠的补角为180x ︒-,根据题意得1803x x ︒-=,解得45x =︒,故答案为:45︒.【点睛】本题考查了互为补角的定义,根据题意表示出这个角的补角,然后列出方程是解题的关键.29.1cm 或9cm##9cm 或1cm【分析】设较长的木条为AB ,较短的木条为BC ,根据中点定义求出BM 、BN 的长度,然后分两种情况:BC 不在AB 上和BC 在AB 上时,分别代入数据进行计算即可得解.【详解】解:设较长的木条为AB =10cm ,较短的木条为BC =8cm ,△M 、N 分别为AB 、BC 的中点,△BM =5cm ,BN =4cm ,△如图1,BC 不在AB 上时,MN =BM +BN =5+4=9(cm),△如图2,BC 在AB 上时,MN =BM −BN =5−4=1(cm),综上所述,两根木条的中点间的距离是1cm 或9cm ,故答案为:1cm 或9cm .如图,【点睛】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.30.140【分析】利用角的和差关系先求出50COB ∠=︒,,再利用角的和差关系求出AOB ∠的度数.【详解】解:△4090COD AOC BOD ∠∠∠=︒==︒,,△ 50COB BOD COD ∠∠∠=-=︒,△ 140AOB AOC COB ∠∠∠=+=︒.故答案为:140.【点睛】本题主要考查了角的和差,关键是熟练掌握角的运算中的和差关系.31.8【分析】先根据这个棱柱有10个面,求出这个棱柱是8棱柱,有8条侧棱,再根据所有侧棱的和为64cm ,即可得出答案.【详解】解:△这个棱柱有10个面,△这个棱柱是8棱柱,有8条侧棱,△所有侧棱的和为64cm ,△每条侧棱长为64÷8=8(cm );故答案为:8【点睛】本题主要利用了棱柱面的个数比侧棱的条数多2的关系求解,是一道基础题. 32.93°15'【分析】利用平角的定义计算即可.【详解】△从O 点出发向北偏西32°17'方向走到A 点,小明从O 点出发向南偏西54°28'方向走到B 点,△∠AOB =180°-54°28'-32°17'=93°15'.【点睛】本题考查了方位角,平角,角的和与差,熟练掌握方位角和平角的定义是解题的关键.33.和.【分析】本题考查了正方体的展开图,一般从相对面入手进行分析与解答;【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,所以“建”与“谐”是相对面,“社”与“和”是相对面,“会”与“构”是相对面,由此可知与“社”相对的面上的字是“和”.【点睛】本题主要考查学生对正方体展开图形的理解和掌握,解答本题的关键是根据相对的面相隔一个面得到相对的两个面.34.1.5【详解】试题解析:△5400÷60=90,90÷60=1.5,△5400″=1.5°.35.北偏东80°【分析】先根据角的和差得到△AOC 的度数,根据△AOC =△AOB 得到△AOB 的度数,再根据角的和差得到OB 的方向.【详解】解:△OA 的方向是北偏东20°,OC 的方向是北偏西40°,△△AOC =20°+40°=60°,△△AOC =△AOB ,△△AOB =60°,20°+60°=80°,故OB 的方向是北偏东80°.故答案为:北偏东80°.【点睛】考查了方位角,方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.利用角的和差得出OB 与正北方的夹角是解题关键.36. AOC ∠ COB ∠ 3∠和4∠ DOF ∠ 1∠和2∠ EOA ∠【分析】由角平分线的定义,补角、余角的定义,分别进行计算,即可得到答案.【详解】解:根据题意,(1)△12∠=∠△射线OD 是AOC ∠的角平分线;(2)△180AOC BOC ∠+∠=︒,△AOC ∠的补角是COB ∠;(3)△OF 平分AOB ∠,180AOB ∠=︒,△90AOF BOF ∠=∠=︒,△390AOC ∠+∠=︒,△3=4∠∠,△490AOC ∠+∠=︒;△AOC ∠的余角是3∠和4∠;(4)△12∠=∠,190DOF ∠+∠=︒,△290DOF ∠+∠=︒,△DOF ∠是2∠的余角;(5)△1180DOB ∠+∠=︒,12∠=∠△2180DOB ∠+∠=︒,△DOB ∠的补角是1∠和2∠;(6)△4180AOE ∠+∠=︒,4COF ∠=∠,△180COF EOA ∠+∠=︒,△EOA ∠是COF ∠的补角.故答案为:AOC ∠;COB ∠;3∠和4∠;DOF ∠;1∠和2∠;EOA ∠.【点睛】本题考查了角平分线的定义,补角、余角的定义,解题的关键是熟练掌握几何图形中角的运算.37.7.5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,△点C 在AB 上,且AC=13BC , △AC=14AB=3cm ,△BC=9cm ,又M 为BC 的中点, △CM=12BC=4.5cm ,△AM=AC+CM=7.5cm .故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.38.3【分析】△根据点E 是点D 关于AB 的对称点可知BD BE ,进而可得1180603DOB BOE COD ︒︒∠=∠=∠=⨯=; △根据一条弧所对的圆周角等于圆心角的一半即可得结论;△根据等弧对等角,可知只有当M 和A 重合时,60,30MDE CED ︒︒∠=∠=,DM CE ⊥; △作点C 关于AB 的对称点F ,连接CF ,DF ,此时CM DM +的值最短,等于DF 的长,然后证明DF 是O 的直径即可得到结论.【详解】解:AC CD DB ==,点E 是点D 关于AB 的对称点,BD BE ∴=, 1180603DOB BOE COD ︒︒∴∠=∠=∠=⨯=,△正确;1116030222CED COD DOB ︒︒∠=∠=⨯==∠,△△正确; BE 的度数是60°,AE ∴的度数是120°,△只有当M 和A 重合时,60,︒∠=MDE ,30︒∠=CED△只有M 和A 重合时,DM CE ⊥,△错误;作C 关于AB 的对称点F ,连接CF ,交AB 于点N ,连接DF 交AB 于点M ,此时CM DM +的值最短,等于DF 的长.连接,CD AC CD DB AF ===,并且弧的度数都是60°,1112060,6030,22︒︒︒︒∴∠=⨯=∠=⨯=D CFD 180603090,︒︒︒︒∴∠=--=FCDDF ∴是O 的直径,即10DF AB ==,△当点M 与点O 重合时,CM DM +的值最小,最小值是10,△△正确.故答案为:3.【点睛】本题考查了圆的综合知识,涉及圆周角、圆心角、弧、弦的关系、最短距离的确定等,掌握圆的基本性质并灵活运用是解题关键.39.△△△【分析】因为12BAE DAC ∠=∠,且90ABC ∠=︒,所以需要构造2倍的BAC ∠,故延长EB 至G ,使BE BG =,从而得到GAE CAD ∠=∠,进一步证明GAC EAD ∠=∠,且AE AG =,接着证明GAC EAD ≌,则ADE ACG ∠=∠,DE CG =,所以△是正确的,也可以通过线段的等量代换运算推导出△是正确的,设BAE x ∠=,则2DAC x ∠=,因为//CD AB ,所以90BAC ACD x ∠=∠=︒-,接着用x 表示出EAC ∠,再计算出=90DAE ∠︒,故△是正确的,当CAE BAE ∠=∠时,可以推导出AC DE ⊥,否则AC 不垂直于DE ,故△是错误的.【详解】解:如图,延长EB 至G ,使BE BG =,设AC 与DE 交于点M ,90ABC ∠=︒,AB GE ∴⊥,AB ∴垂直平分GE ,AG AE ∴=,12GAB BAE DAC ∠=∠=∠, 12BAE GAE ∠=∠, GAE CAD ∴∠=∠,GAE EAC CAD EAC ∴∠+∠=∠+∠,GAC EAD ∴∠=∠,在GAC 与EAD 中,AG AE GAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,GAC EAD ∴≌(SAS ),G AED ∴∠=∠,ACB ADE ∠=∠,故△是正确的;AG AE =,G AEG AED ∴∠=∠=∠,AE ∴平分BED ∠,当BAE EAC ∠=∠时,90AME ABE ∠=∠=︒,则AC DE ⊥,当BAE EAC ∠≠∠时,AME ABE ∠≠∠,则无法说明AC DE ⊥,故△是不正确的; 设BAE x ∠=,则2CAD x ∠=,1802902x ACD ADC x ︒-∴∠=∠==︒-, //AB CD ,90BAC ACD x ∴∠=∠=︒-,90902CAE BAC EAB x x x ∴∠=∠-∠=︒--=︒-,902290DAE CAE DAC x x ∴∠=∠+∠=︒-+=︒,AE AD ∴⊥,故△是正确的;GAC EAD ≌,CG DE ∴=,2CG CE GE CE BE =+=+,2DE CE BE ∴=+,DE BE BE CE ∴-=+,2DE CE BE ∴=+,故△是正确的.故答案为:△△△.【点睛】本题考查了全等三角形的判定与性质,角平分线的定义,角度的计算,构造两倍的BAE ∠,是本题解题的关键.40.4【分析】利用角平分线定理确定当BF△AC 时,PB+PE 的值最小,再利用三角形面积公式,即可求得.【详解】如图,△AB = AC = 8,AD 平分CAB ∠△'''P E P F =△当BF△AC 时,PB+PE 的值最小=BF1162ABC S AC BF ∆== △BF=4 △PB+PE 的最小值为4.【点睛】本题考查了轴对称-最短路径问题,也可以用角平分线定理考虑,找到PE+PB 最小值的情况并画出图形,是解题的关键.41.2.5cm .【分析】结合图形和题意,利用线段的和差知CD =AD +AB +BC ,即可求CD 的长度;再利用中点的定义,求得DF 和DE 的长度,又EF =DF−DE ,即可求得EF 的长度.【详解】△4AB =cm ,BC =14AB , △BC=1cm ,△CD =AD +AB +BC =3+4+1=8cm ;△E 是AD 中点,F 是CD 的中点,△DF =12CD =8×12=4cm ,DE =12AD =12×3=1.5cm .△EF =DF−DE =4−1.5=2.5cm .【点睛】本题主要考查了两点间的距离和中点的定义,解题的关键是运用数形结合思想. 42.(1)直三棱柱(2)见解析(3)这个几何体的侧面积为120cm 2【分析】(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为直三棱柱;(2)画出三个长方形,两个三角形;(3)侧面积为长方形,计算出3个长方形的面积求和即可.【详解】(1)解:由主视图和左视图都是长方形,且俯视图是三角形,故该立体图形是直三棱柱;(2)解:展开图如图所示:;(3)解:这个几何体的侧面积23104120cm ⨯⨯=.【点睛】本题主要考查了由三视图判断几何体、几何体的展开图、棱柱的侧面积等知识点,根据题意得到该几何体是直三棱柱是解答本题的关键.43.(1) '60A ON ︒∠=;(2)15秒或33秒;(3)30MOB AOC ︒∠-∠=或30MOB AOC ︒∠+∠=【分析】(1)如图△中,延长CO 到C′.利用翻折不变性求出△A′O′C′即可解决问题; (2)设t 秒时,直线OA 恰好平分锐角△NOC .构建方程即可解决问题;(3)分两种情形分别求解即可解决问题,△当OB ,OA 在OC 的两旁时,△当OB ,OA 在OC 的同侧时,求出MOB ∠与AOC ∠之间的数量关系即可.【详解】解:(1)如图△中,延长CO 到C′,△三角尺沿直线OC 翻折至△A′B′O ,△△A′OC′=△AOC′=△CON=60°,△△A′ON=180°-60°-60°=60°;(2)设t 秒时,直线OA 恰好平分锐角△NOC ,由题意10t=150或10t=330,解得t=15或33s ,则第15或33秒时,直线OA 恰好平分锐角△NOC ;(3)△当OB ,OA 在OC 的两旁时,△△AOB=90°,△120°-△MOB+△AOC=90°,△△MOB-△AOC=30°;△当OB ,OA 在OC 的同侧时,△MOB+△AOC=120°-90°=30°.综上,30MOB AOC ︒∠-∠=或30MOB AOC ︒∠+∠=.【点睛】本题考查翻折变换,旋转变换,三角形的内角和定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.44.(1)3; (2)203或20; (3)12NP MP AB -=,理由见解析. 【分析】(1)由中点的含义先求解7AM MP ==,证明12PN BN BP ==,再求解6PB AB AB =-=,从而可得答案;(2)△当点P 在线段AB 上,2MP NP =, △当点P 在线段AB 的延长线上,2MP NP =,再建立方程求解即可;(3)先证明12MP AP t ==,()1102NP AB AP t =+=+,可得()1010NP MP t t -=+-=,从而可得结论.【详解】(1)解:△M 为AP 的中点,N 为BP 的中点,7MP =,△7AM MP ==,12PN BN BP ==, △14AP =,。