高中物理竞赛第三阶段 第三讲 热力学综合(无答案)
高中物理竞赛热学篇

13、课程:液体表面现象
1、表面张力
2、球形液面内外压强差
3、任意弯曲液面内外压强差
4、液体、固体交界面现象
5、毛细现象
6、知识精炼(一)
7、知识精炼(二)
8、知识精炼(三)
14、课程:真题回顾
1、知识精炼(一)
2、知识精炼(二)
3、知识精炼(三)
4、奥托循环
5、狄塞尔循环
6、知识精炼
7、吸放热转换
8、振动自由度解锁
9、课程:热力学第二定律
1、热力学第二定律
2、克劳修斯表述
3、两种表述等价性
4、可逆与不可逆
5、卡诺定理
6、热力学温标
10、课程:熵
1、熵
2、克劳修斯等式
3、态函数熵
4、小结
5、知识精炼(一)
6、知识精炼(二)
7、温熵图
8、一些不可逆过程中熵计算
1、自由度
2、能量按自由度均分定理
3、知识精炼
4、理想气体内能及比热
7、课程:热力学第一定律
1、热力学过程
2、功与热量
3、热力学第一定律
4、等容、等压、等温过程
5、绝热过程
6、多方过程
7、知识精炼(一)
8、混合气体绝热过程
9、知识精炼(二)
8、课程:循环过程
1、循环过程及其效率
2、卡诺循环
3、卡诺循环效率
1、气体分子速率分布
2、最可几与平均速率
3、高斯微积分
4、平方速率平均值
5、气体速度分布函数
6、知识精炼(一)
7、知识精炼(二)
8、知识精炼(三)
5、课程:玻尔兹曼分布律
1、玻尔兹曼分布
高考物理计算题专题复习《热力学定律综合题》(解析版)

《热力学定律综合题》一、计算题1.如图所示图中,一定质量的理想气体由状态A经过ACB过程至状态B,气体对外做功280J,放出热量410J;气体又从状态B经BDA过程回到状态A,这一过程中气体对外界做功200J.求:过程中气体的内能是增加还是减少?变化量是多少?过程中气体是吸热还是放热?吸收或放出的热量是多少?2.图中A、B气缸的长度和截面积分别为30cm和,C是可在气缸内无摩擦滑动的、体积不计的活塞,D为阀门。
整个装置均由导热材料制成。
起初阀门关闭,A内有压强帕的氮气。
B内有压强帕的氧气。
阀门打开后,活塞C向右移动,最后达到平衡。
假定氧气和氮气均为理想气体,连接气缸的管道体积可忽略。
求:活塞C移动的距离及平衡后B中气体的压强;活塞C移动过程中A中气体是吸热还是放热简要说明理由。
3.薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一定温度下,某种气体通过薄膜渗透过的气体分子数,其中t为渗透持续时间,S为薄膜的面积,d为薄膜的厚度,为薄膜两侧气体的压强差.k称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好.图为测定薄膜材料对空气的透气系数的一种实验装置示意图.EFGI为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U形管内横截面积实验中,首先测得薄膜的厚度,再将薄膜固定于图中处,从而把渗透室分为上下两部分,上面部分的容积,下面部分连同U形管左管水面以上部分的总容积为,薄膜能够透气的面积打开开关、与大气相通,大气的压强,此时U形管右管中气柱长度,关闭、后,打开开关,对渗透室上部分迅速充气至气体压强,关闭并开始计时.两小时后,U形管左管中的水面高度下降了实验过程中,始终保持温度为求该薄膜材料在时对空气的透气系数.本实验中由于薄膜两侧的压强差在实验过程中不能保持恒定,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值来代替公式中的普适气体常量,.4.地面上放一开口向上的气缸,用一质量为的活塞封闭一定质量的气体,不计一切摩擦,外界大气压为活塞截面积为重力加速度g取,则活塞静止时,气体的压强为多少?若用力向下推活塞而压缩气体,对气体做功为,同时气体通过气缸向外传热,则气体内能变化为多少?5.一定质量的理想气体从状态A变化到状态B再变化到状态C,其图象如图所示。
高中物理竞赛试题卷子及答案

高中物理竞赛试题卷子及答案一、选择题(每题3分,共30分)1. 一个物体在水平面上以恒定速度运动,下列哪个因素不影响其运动状态?A. 物体的质量B. 物体所受的摩擦力C. 物体的初速度D. 物体的加速度2. 根据牛顿第二定律,下列哪个表述是错误的?A. 力是改变物体运动状态的原因B. 力的大小与物体的质量成正比C. 力的方向与加速度方向相同D. 力的作用效果与物体的质量无关3. 光在真空中的传播速度是多少?A. 2.99×10^8 m/sB. 3.00×10^8 m/sC. 3.01×10^8 m/sD. 2.98×10^8 m/s4. 以下哪个现象不属于电磁波的应用?A. 无线电广播B. 微波炉加热食物C. 光纤通信D. 声纳探测5. 根据能量守恒定律,下列哪个过程是不可能发生的?A. 完全非弹性碰撞B. 完全弹性碰撞C. 机械能转化为内能D. 内能完全转化为机械能6. 一个物体从静止开始自由下落,其下落的位移与时间的关系是?A. 位移与时间成正比B. 位移与时间的平方成正比C. 位移与时间的立方成正比D. 位移与时间的四次方成正比7. 电流通过导体时产生的热量与哪些因素有关?A. 电流的强度B. 导体的电阻C. 通电时间D. 所有上述因素8. 以下哪个是描述物体转动的物理量?A. 速度B. 加速度C. 角速度D. 位移9. 根据热力学第一定律,下列哪个表述是错误的?A. 能量不能被创造或消灭B. 能量可以从一种形式转化为另一种形式C. 能量的总量在封闭系统中保持不变D. 能量的转化和转移具有方向性10. 以下哪个现象是量子效应的体现?A. 光电效应B. 牛顿的万有引力定律C. 热力学第二定律D. 欧姆定律答案:1. D2. B3. B4. D5. D6. B7. D8. C9. D 10. A二、填空题(每题2分,共20分)11. 根据牛顿第三定律,作用力和反作用力_______、_______、_______。
【单元练】人教版高中物理选修3第三章【热力学定律】知识点总结(含答案解析)(1)

一、选择题1.关于热学现象和热学规律,下列说法中正确的是()A.布朗运动就是液体分子的热运动B.用油膜法测分子直径的实验中,应使用纯油酸滴到水面上C.第一类永动机不可能制成是因为它违背了能量守恒定律D.用活塞压缩汽缸里的空气,对空气做功3.0×105 J,同时空气的内能增加2.2×105 J,则空气从外界吸热5.2×105 J C解析:CA.布朗运动是小颗粒的运动,只是间接反映了液体分子的无规则运动,故A错误;B.用油膜法测分子直径的实验中,应使用油酸溶液滴到水面上,便于稀释后紧密排列在水面上,故B错误;C.第一类永动机违背了能量守恒定律,故C正确;D.由热力学第一定律△U=W+Q可知,空气向外界散出0.8×105J的热量,故D错误;故选C。
2.下列说法不正确的是()A.饱和气压与热力学温度成正比B.一定量的理想气体在等温膨胀过程中吸收的热量等于对外做的功,并不违反热力学第二定律C.当分子间的引力与斥力平衡时,分子力一定为零,分子势能一定最小D.在任何自然过程中,一个孤立系统中的总熵不会减少A解析:A【分析】正确A.饱和汽的气压随温度而变。
温度越高,饱和汽的气压越大,但与热力学温度不成正比,故A错误,符合题意;B.一定量的理想气体在等温膨胀过程中吸收的热量等于对外做的功,并不违反热力学第二定律,因为热力学第二定律的前提是不引起其他变化,B选项中并没有限制,故B正确;C.当分子间的引力与斥力平衡时,如下图中0r处此时分子势能一定最小,故C正确;D.用熵的概念表示热力学第二定律:在任何自然过程中,一个孤立系统的总熵不会减小,故D正确。
故选A。
3.为抗击新冠,防止病毒蔓延,每天都要用喷雾剂(装一定配比的84消毒液)对教室进行全面喷洒。
如图是某喷水壶示意图。
未喷水时阀门K闭合,压下压杆A可向瓶内储气室充气;多次充气后按下按柄B打开阀门K,水会自动经导管从喷嘴处喷出。
人教版高中物理选择性必修第三册第3章热力学定律2、3课时练习含答案

第三章2、3A组·基础达标1.在一个与外界没有热交换的房间内打开冰箱门,冰箱正常工作,过一段时间房间内的温度将()A.降低B.升高C.不变D.无法确定【答案】B【解析】取房间内气体及电冰箱(有散热装置)为系统,冰箱消耗电能,对系统做功,系统总内能增加,房间内温度升高,B正确.2.压力锅结构如图所示,盖好锅盖,将压力阀套在出气孔上,给压力锅加热,当锅内气体压强达到一定值时,气体就把压力阀顶起.假定在压力阀被顶起时,停止加热,锅内气体对压力阀及外界做功1.5 J,并向外界释放了2.5 J的热量,则下列说法中正确的是()A.锅内原有气体的内能没有发生变化B.锅内原有气体的内能增加了3 JC.锅内原有气体的内能减少了3 JD.锅内原有气体的内能减少了4 J【答案】D【解析】由于锅内气体对外界做功1.5 J,则W=-1.5 J,并向外界释放了2.5 J的热量,则Q=-2.5 J,根据热力学第一定律ΔU=W+Q,故内能ΔU=-1.5 J+(-2.5 J)=-4 J,故气体的内能减少4 J,D正确.3.(多选)下列过程可能发生的是()A.物体吸收热量,同时对外做功,内能增加B.物体吸收热量,同时对外做功,内能减少C.外界对物体做功,同时物体吸热,内能减少D.外界对物体做功,同时物体放热,内能增加【答案】ABD【解析】当物体吸收的热量多于物体对外做的功时,物体的内能就增加,A正确;当物体吸收的热量少于物体对外做的功时,物体的内能就减少,B正确;外界对物体做功,同时物体吸热,由热力学第一定律可知物体的内能必增加,C错误;当物体放出的热量少于外界对物体做的功时,物体的内能增加,D正确.4.如图所示,容器中A、B部分各有一个可自由移动的轻活塞,活塞下是水,上为空气,大气压恒定.A、B底部由带有阀门K的管道相连,整个装置与外界绝热.原先A中水面比B中高,打开阀门,使A中的水逐渐向B中流动,最后达到平衡.在这个过程中,下面说法正确的是()A.大气压力对水做功,水的内能增加B.水克服大气压力做功,水的内能减少C.大气压力对水不做功,水的内能不变D.大气压力对水不做功,水的内能增加【答案】D【解析】由W=p·S·Δh=p·ΔV可知大气压力对A、B两管中水做功的代数和为零,但由于水的重心下降,重力势能减小,由能量守恒定律可知水的内能增加,D正确.5.恒温的水池中,有一气泡缓慢上升,在此过程中,气泡的体积会逐渐增大,不考虑气泡内气体分子势能的变化,下列说法中正确的是()A.气泡内的气体对外界做功B.气泡内的气体内能增加C.气泡内的气体与外界没有热传递D.气泡内气体分子的平均动能减小【答案】A【解析】气泡体积增大,对外做功,由于温度不变,因此分子平均动能不变,气体的内能不变,根据ΔU=W+Q可知,气体吸收热量,A正确,B、C、D错误.6.如图为某种椅子与其升降部分的结构示意图,M、N两筒间密闭了一定质量的气体,M可沿N的内壁上下滑动,设筒内气体不与外界发生热交换,在M向下滑动的过程中()A.外界对气体做功,气体内能增大B .外界对气体做功,气体内能减小C .气体对外界做功,气体内能增大D .气体对外界做功,气体内能减小【答案】A【解析】本题考查了热力学第一定律,理解做功和热传递可以改变物体的内能.筒内气体不与外界发生热交换,M 向下滑动的过程中,外界对气体做功,由热力学第一定律可知气体内能增大,A 正确.7.(多选)如图,一开口向上的导热汽缸内,用活塞封闭了一定质量的理想气体,活塞与汽缸壁间无摩擦.现用外力作用在活塞上,使其缓慢上升.环境温度保持不变,大气压不变,系统始终处于平衡状态.在活塞上升过程中( )A .气体体积逐渐增大,内能增加B .气体压强逐渐减小,内能不变C .气体压强逐渐增大,放出热量D .气体对外界做功,吸收热量【答案】BD【解析】活塞上升,体积逐渐增大,理想气体的内能与温度相关联,温度保持不变,则内能不变,A 错误;根据理想气体状态方程pV T=C ,可知体积增大,温度不变,故压强减小;因为温度不变,内能不变,体积增大,气体对外界做功,根据热力学第一定律ΔU =W +Q ,可知系统吸热,B 、D 正确,C 错误.8.(多选)景颇族的祖先发明的点火器如图所示,用牛角做套筒,木制推杆前端粘着艾绒,猛推推杆,艾绒即可点燃.对于筒内封闭的气体,在此压缩过程中下列说法不正确的是( )A .气体温度升高,压强不变B .气体温度升高,压强变大C .气体对外界做正功,气体内能增加D .外界对气体做正功,气体内能减少【答案】ACD【解析】由于套筒内封闭着一定质量的气体,当猛推推杆时推杆迅速压缩气体,外界对气体做正功.由于这一过程进行得很快,可以看成是一个近似的绝热过程,即整个系统来不及向外界传递热量.根据热力学第一定律,这时外力做的功只能用来增加气体的内能,这就使气体分子的运动加剧,引起气体分子平均动能增加,气体温度升高.所以艾绒即刻被点燃.由于被封闭的气体质量不变,温度升高,而体积变小,则由气体状态方程知压强变大.故B 正确,A 、C 、D 错误.9.(多选)(2023年全国卷节选)在一汽缸中用活塞封闭着一定量的理想气体,发生下列缓慢变化过程,气体一定与外界有热量交换的过程是( )A .气体的体积不变,温度升高B .气体的体积减小,温度降低C .气体的体积减小,温度升高D .气体的体积增大,温度不变【答案】ABD【解析】气体的体积不变温度升高,则气体的内能升高,体积不变气体做功为零,因此气体吸收热量,A 正确;气体的体积减小温度降低,则气体的内能降低,体积减小外界对气体做功,由热力学第一定律ΔU =W +Q ,可知气体对外放热,B 正确;气体的体积减小温度升高,则气体的内能升高,体积减小外界对气体做功,由热力学第一定律ΔU =W +Q ,可知Q 可能等于零,即没有热量交换过程,C 错误;气体的体积增大温度不变则气体的内能不变,体积增大气体对外界做功,由热力学第一定律ΔU =W +Q ,可知Q >0即气体吸收热量,D 正确.10.(多选)如图所示,绝热的容器内密闭一定质量的气体(不考虑分子间的作用力),用电阻丝缓慢对其加热时,绝热活塞无摩擦地上升,下列说法正确的是( )A .单位时间内气体分子对活塞碰撞的次数减少B .电流对气体做功,气体对外做功,气体内能可能减少C .电流对气体做功,气体对外做功,其内能一定增加D .电流对气体做的功一定大于气体对外做的功【答案】ACD【解析】由题意知,气体压强不变,活塞上升,体积增大,由pV T=C 知,气体温度升高,内能一定增加,由能的转化和守恒知,电流对气体做功一定大于气体对外做功,B 错误,C 、D 正确.由气体压强的微观解释知温度升高,气体分子与活塞碰一次对活塞的冲击力增大;而压强不变,单位时间内对活塞的冲击力不变,因此单位时间内对活塞的碰撞次数减少,A 正确.B组·能力提升11.一定质量的理想气体由状态a沿abc变化到状态c,吸收了340 J的热量,并对外做功120 J.若该气体由状态a沿adc变化到状态c时,对外做功40 J,则这一过程中气体________(填“吸收”或“放出”)__________J热量.【答案】吸收260【解析】对该理想气体由状态a沿abc变化到状态c,由热力学第一定律可得ΔU=Q+W=340 J-120 J=220 J,即从a状态到c状态,理想气体的内能增加了220 J;若该气体由状态a沿adc变化到状态c时,对外做功40 J,此过程理想气体的内能增加还是220 J,所以可以判定此过程吸收热量,再根据热力学第一定律可得ΔU=Q+W,得Q=ΔU-W=220 J +40 J=260 J.12.在一个标准大气压下,水在沸腾时,1 g的水由液态变成同温度的水汽,其体积由1.043 cm3变为1 676 cm3.已知水的汽化热为2 263.8 J/g.求:(1)体积膨胀时气体对外界做的功W;(2)气体吸收的热量Q;(3)气体增加的内能ΔU.解:取1 g水为研究系统,1 g沸腾的水变成同温度的水汽需要吸收热量,同时由于体积膨胀,系统要对外做功,所以有ΔU<Q吸.(1)气体在等压(大气压)下膨胀做功W=p(V2-V1)=1.013×105×(1 676-1.043)×10-6 J=169.7 J.(2)气体吸热Q=1×2 263.8 J=2 263.8 J.(3)根据热力学第一定律ΔU=Q+W=2 263.8 J+(-169.7) J=2 094.1 J.。
高中物理竞赛第三阶段 第二讲 理想气体的内能(无答案)

1. 理想气体的压强,温度的微观解释2. 理想气体的内能3. 热力学第一定律知识点拨一.理想气体的微观模型先来作个估算:在标准状态下,1mol 气体体积1330104.22--⨯=moI m V ,分子数1231002.6-⨯=moI N A ,若分子直径m d 10100.2-⨯=,则分子间的平均间距m N V L A 93/101034.3)/(-⨯==,相邻分子间的平均间距与分子直径相比17/≈d L 。
由此可知:气体分子间的距离比较大,在处理某些问题时,可以把气体分子视为没有大小的质点;同时可以认为气体分子除了相互碰撞或者跟器壁碰撞之外,分子力也忽略不计,分子在空间自由移动,也没有分子势能。
因此理想气体是指分子间没有相互作用和分子可以看作质点的气体。
这一微观模型与气体愈稀薄愈接近于理想气体的宏观概念是一致的。
1.理想气体的压强宏观上测量的气体施给容器壁的压强,是大量气体分子对器壁不断碰撞的结果。
在通常情况下,气体每秒碰撞21cm 的器壁的分子数可达2310。
在数值上,气体的压强等于单位时间内大量分子施给单位面积器壁的平均冲量。
可以用动量定理推导,其表达式为K n P ε32=设气体分子都以平均速率运动,因沿上下、左右、前后各向运动的机会均等,所以各占总数的.若分子的数密度(即单位体积内气体的分子数)为,则单位时间内碰撞单位面积器壁的分子数应为.每个分子每次与器壁碰撞时将施于器壁的冲量,所以压强,假设每个分子的速率相同.每个分子的平均平动动v 16n 1(1)6n v ×2mv 211(1)263p n v mv nmv ==××知识体系介绍第二讲 理想气体的内能能,所以.,式中n 是单位体积内分子个数,221υεm K=是分子的平均平动动能,n 和K ε增大,意味着单位时间内碰撞单位面积器壁的分子数增多,分子碰撞器壁一次给予器壁的平均冲量增大,因而气体的压强增加。
高中 物理 必修第三册 第三章 热力学定律 第4节 分层演练 素养达标
1.(多选)电冰箱的工作原理示意图如图所示;压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环,在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液化,放出热量到箱体外。
下列说法正确的是()A.热量可以自发地从冰箱内传到冰箱外B.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是因为其消耗了电能C.电冰箱的工作原理不违背热力学第一定律D.电冰箱的工作原理违背热力学第一定律解析:选BC。
热力学第一定律是热现象中内能与其他形式能的转化规律,是能的转化和守恒定律的具体表现,适用于所有的热学过程,故C正确,D错误;再根据热力学第二定律,热量不能自发地从低温物体传到高温物体,必须借助于其他系统做功,A错误,B正确。
2.热力学第二定律表明()A.不可能从单一热源吸收热量使之全部变为功B.在一个可逆过程中,工作物质净吸热等于对外做的功C.热不能全部转变为功D.热量不可能从温度低的物体传到温度高的物体答案:B3.(多选)下列说法正确的是()A.一切与热现象有关的宏观自然过程都是不可逆的B.热量不能从低温物体传到高温物体C.气体放出热量,其分子的平均动能可能增大D.为了增加物体的内能,必须对物体做功或对它传递热量解析:选ACD。
根据热力学第二定律可知,一切与热现象有关的宏观自然过程都是不可逆的,A正确;热量也能从低温物体传到高温物体,但会引起其他的变化,B错误;若外界对气体做功大于气体放出的热量,则气体内能增加,其分子的平均动能增大,C正确;为了增加物体的内能,必须对物体做功或对它传递热量,D正确。
4.下列说法正确的是()A.根据热力学第二定律可知,热量不可能从低温物体传到高温物体B.效率为100%的热机不可能制成,是因为违反了能量守恒定律C.不可能从单一热源吸收热量使之完全变成功,而不产生其他影响D.第二类永动机不可能成功的原因是违反了能量守恒定律答案:C5.(多选)我国航天员漫步太空已成为现实。
飞船在航天员出舱前先要“减压”,在航天员从太空返回进入航天器后要“升压”,因此将此设施专门做成了飞船的一个舱,叫“气闸舱”,其原理如图所示。
2021年高中物理选修三第三章《热力学定律》知识点(答案解析)
一、选择题1.关于热学现象和热学规律,下列说法中正确的是()A.布朗运动就是液体分子的热运动B.用油膜法测分子直径的实验中,应使用纯油酸滴到水面上C.第一类永动机不可能制成是因为它违背了能量守恒定律D.用活塞压缩汽缸里的空气,对空气做功3.0×105 J,同时空气的内能增加2.2×105 J,则空气从外界吸热5.2×105 J2.“绿色、环保、低碳”是当今世界的关键词,“低碳”要求我们节约及高效利用能源。
关于能源与能量,下列说法正确的是()A.因为能量守恒,所以不要节约能源B.自然界中石油、煤炭等能源可供人类长久使用C.人类应多开发与利用风能、太阳能等新型能源D.人类不断地开发和利用新的能源,所以能量可以被创造3.一定质量的理想气体在某一过程中,气体对外界做功1.6×104J,从外界吸收热量3.8×104J,则该理想气体的()A.温度降低,密度减小B.温度降低,密度增大C.温度升高,密度减小D.温度升高,密度增大4.如图所示,一定质量的理想气体从状态a开始,经历ab、bc、cd、de四个过程到达状态e,其中ba的延长线经过原点,bc连线与横轴平行,de连线与纵轴平行。
下列说法正确的是()A.ab过程中气体分子热运动平均动能增加B.bc过程中气体分子单位时间内击容器壁次数不变C.cd过程中气体从外界吸热小于气体内能增量D.de过程中气体对外放出热量,内能不变5.一定质量的理想气体的状态变化过程如图所示,MN为一条直线,则气体从状态M到状态N的过程中A.温度保持不变B.温度先升高,后又减小到初始温度C.整个过程中气体对外不做功,气体要吸热D.气体的密度在不断增大6.下列说法正确的是A.自然界中涉及热现象的宏观过程都具有方向性B.气体压强越大,气体分子的平均动能就越大C.气体从外界吸收了热量,内能必定增加D.在绝热过程中,外界对气体做功,气体的内能减少7.如图所示,一定质量理想气体的体积V与温度T关系图像,它由状态A经等温过程到状态B,再经等容过程到状态C。
2021年高中物理选修三第三章《热力学定律》复习题(答案解析)(1)
一、选择题1.一定质量的理想气体经历一系列变化过程,如图所示,下列说法正确的是()→过程中,气体体积增大,从外界吸热A.a b→过程中,气体体积增大,从外界吸热B.b c→过程中,气体体积不变,向外界放热C.c a→过程中,气体内能增大,向外界放热D.c a2.“绿色、环保、低碳”是当今世界的关键词,“低碳”要求我们节约及高效利用能源。
关于能源与能量,下列说法正确的是()A.因为能量守恒,所以不要节约能源B.自然界中石油、煤炭等能源可供人类长久使用C.人类应多开发与利用风能、太阳能等新型能源D.人类不断地开发和利用新的能源,所以能量可以被创造3.一定质量的理想气体在某一过程中,气体对外界做功1.6×104J,从外界吸收热量3.8×104J,则该理想气体的()A.温度降低,密度减小B.温度降低,密度增大C.温度升高,密度减小D.温度升高,密度增大4.下列说法正确的是()A.物体放出热量,其内能一定减小B.物体对外做功,其内能一定减小C.物体吸收热量,同时对外做功,其内能可能增加D.物体放出热量,同时对外做功,其内能可能不变5.如图所示,一定质量理想气体的体积V与温度T关系图像,它由状态A经等温过程到状态B,再经等容过程到状态C。
则下列说法中正确的是()A.在A、B、C三个状态中B对应的压强最大B.在A、B、C三个状态中C对应的压强最大C.过程AB中外界对气体做功,内能增加D.过程BC中气体吸收热量,内能不变6.如图所示,一定质量的理想气体从状态A依次经过状态B、C和D后再回到状态A。
其中,A→B和C→D为等温过程,B→C为等压过程,D→A为等容过程。
关于该循环过程中,下列说法正确的是()A.A→B过程中,气体吸收热量B.B→C过程中,气体分子的平均动能减小C.C→D过程中,单位时间内碰撞单位面积器壁的分子数减少D.D→A过程中,气体分子的速率分布曲线不发生变化7.一定质量的理想气体从状态A开始,经状态B和状态C回到状态A,其状态变化的p—T图象如图所示,其中线AB与OT轴平行,线段BC与Op轴平行。
2021年高中物理选修三第三章《热力学定律》经典测试题(答案解析)
一、选择题1.关于热学现象和热学规律,下列说法中正确的是( )A .布朗运动就是液体分子的热运动B .用油膜法测分子直径的实验中,应使用纯油酸滴到水面上C .第一类永动机不可能制成是因为它违背了能量守恒定律D .用活塞压缩汽缸里的空气,对空气做功3.0×105 J ,同时空气的内能增加2.2×105 J ,则空气从外界吸热5.2×105 J2.如图所示为一定质量的氦气(可视为理想气体)状态变化的V T -图像。
已知该氦气所含的氦分子总数为N ,氦气的摩尔质量为M ,在状态A 时的压强为0p 。
已知阿伏加德罗常数为A N ,下列说法正确的是( )A .氦气分子的质量为M NB .B 状态时氦气的压强为02pC .B→C 过程中氦气向外界放热D .C 状态时氦气分子间的平均距离03AV d N =3.下列说法正确的是( )A .布朗运动是悬浮在液体中固体颗粒的分子无规则运动的反映B .内能不同的物体,它们分子热运动的平均动能可能相同C .知道某物质的摩尔质量和密度可求出阿伏加德罗常数D .没有摩擦的理想热机可以把吸收的能量全部转化为机械能4.下列说法中正确的是( )A .压缩气体也需要用力,这表明气体分子间存在着斥力B .若分子势能增大,则分子间距离减小C .分子间的距离增大时,分子间相互作用的引力和斥力都减小D .自然界中热现象的自发过程不一定沿分子热运动无序性增大的方向进行5.如图所示,一定质量的理想气体从状态a 开始,经历ab 、bc 、cd 、de 四个过程到达状态e ,其中ba 的延长线经过原点,bc 连线与横轴平行,de 连线与纵轴平行。
下列说法正确的是( )A.ab过程中气体分子热运动平均动能增加B.bc过程中气体分子单位时间内击容器壁次数不变C.cd过程中气体从外界吸热小于气体内能增量D.de过程中气体对外放出热量,内能不变6.下列说法正确的是A.自然界中涉及热现象的宏观过程都具有方向性B.气体压强越大,气体分子的平均动能就越大C.气体从外界吸收了热量,内能必定增加D.在绝热过程中,外界对气体做功,气体的内能减少7.下列说法不正确...的是A.中国第一位进入太空的宇航员是杨利伟B.中国的卫星导航系统叫北斗导航系统C.能量是守恒的,我们不需要节约能源D.能量的耗散从能量转换的角度反映出自然界中宏观过程的方向性.能源的利用受这种方向性的制约,所以能源的利用是有条件的,也是有代价的.8.如图所示,A、B为两相同的绝热气缸,用绝热活塞封闭了压强、体积、温度、质量均相同的同种气体,活塞和杠杆质量不计,活塞和杠杆接触,忽略一切摩擦.O为固定轴,且MO=NO,将A中气体温度升高(变化不大)到杠杆MN重新平衡,下列说法正确的是()A.B中气体温度不变B.B中气体温度降低C.A中气体克服外力做功,外界对B气体做功D.A中气体内能增加,B中气体内能减少9.将装有一定质量氧气的薄铝筒开口向下浸入20℃的水中,如图所示,缓慢推动铝筒,使其下降2m,铝筒内氧气无泄漏,则铝筒在缓慢下降过程中,氧气()A.从外界吸热B.对外界做正功C.分子势能不变D.内能减小10.如图描述了一定质量的理想气体压强p随体积V变化的图像,O、a、b在同一直线上,ac与横轴平行,下列说法正确的是()A.a到b过程,外界对气体做功B.c到a过程,气体向外界放出热量大于气体内能的减少量C.b到c过程,气体释放的热量大于气体内能的减少D.a点时气体的内能等于b点时气体的内能11.一定质量的理想气体,从状态a开始,经历ab、bc、ca三个过程回到原状态,其V−T 图像如图所示,其中图线ab的反向延长线过坐标原点O,图线bc平行于V轴,图线ca平行于T轴,则()A.ab过程中气体压强不变,气体放热B.bc过程中气体温度不变,气体吸热C.ca过程中气体体积不变,气体放热D.整个变化过程中气体的内能先减少后增加12.根据热力学第二定律判断,下列说法正确的是()A.功可以全部转化为热,但热不能全部转化为功B.热可以从高温物体传到低温物体,但不能从低温物体传到高温物体C.气体向真空的自由膨胀是不可逆的D.随着技术的进步,热机的效率可以达到100%13.夏天,小明同学把自行车轮胎上的气门芯拔出的时候,会觉得从轮胎里喷出的气体凉,如果把轮胎里的气体视为理想气体,则关于气体喷出的过程,下列说法不正确的是()A.气体的内能减少B.气体的内能增大C.气体来不及与外界发生热交换,对外做功,温度降低D.气体分子的平均动能减小14.下列说法正确的是()A.物体吸收热量,其内能一定增加B.物体对外做功,其内能一定减少C.物体吸收热量同时对外做功,其内能一定增加D.物体放出热量同时对外做功,其内能一定减少15.如图所示,p-V图中,一定质量的理想气体由状态A经过程Ⅰ变至状态B时,从外界吸收热量420J,同时做功300J。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 熟练结合气态方程与热力学第一定律解题2. 对典型热力学过程重点计算知识点睛一.热力学第一定律对于理想气体等值过程的应用等容过程 等容过程的特征是气体体积保持不变,V ∆=0在等容过程中,气体与外界交换的热量等于气体内能的增量:Q V m C T M =∆.V C 称做定容摩尔比热容,V i C R =2,i 为分子的自由度,对于单原子分子气体,i =3;对于双原子分子气体,i =5;而对于多原子分子气体i =6.R 为摩尔气体常数,8.31J/(mol K)R =g .等压过程 等压过程的特征是气体压强保持不变,0p ∆=,m W p V R T M ∆=∆=∆g ,,在等压变化过程中气体与外界交换的热量为222p m i m m i m Q E p V R T R T R T C T M M M M +=∆+∆=∆+∆=∆=∆g g g .p C 称做定压摩尔比热容,p V C C R =+,而2pV C i C iγ+==称为比热容比.对于单原子分子气体,53γ=;而双原子分子气体,75γ=;多原子分子气体则有86γ=.V C 、p C 及γ均只与气体分子的自由度有关而与气体温度无关.等温过程 等温过程的特征是气体温度保持不变,0T ∆=,由于理想气体的内能取决于温度,故0E ∆=,由热力学第一定律可知在等温变化过程中气体与外界交换的热量为W Q ∆=∆绝热过程 气体在不与外界发生热交换的条件下所发生的状态变化称做绝热过程,其特点是0Q =,由热力学第一定律可得V m W E C T M =∆=∆.绝热过程特征PV γ=C (不变量),此称泊松方程本讲提示第3讲 热力学综合自由扩散 气体向真空区域扩散的过程叫自由扩散,此过程由于没有受力者,所以虽然气体体积膨胀但没有对外做功,如果没有吸放热,则内能也不变,扩散后满足等温方程。
热机及其效率 设一系统做正循环,那么,系统在膨胀阶段所吸收的热量1Q 大于在压缩阶段放出热量2Q ,其差值12Q Q -转变为一循环中系统对外所做的功W ,能完成这种转变的机械称为热机,热机的物理本质就是系统做正循环.热机的主要部分是:一个高温热源(发热器),用来供给1Q 的热量;一个低温热源(冷却器),用来吸取2Q 的热量;一种工作物质(如水、空气或水蒸气等),以及盛工作物质的气缸、活塞等.对于热机,最重要的问题在于由高温热源吸取的热量1Q 中,究竟有多少可以转变为功W ,至于低温热源所吸收的热量2Q 的多少,并不重要.因此定义了热机的效率η为:一循环中系统对外所做的功W 与由高温热源吸取的热量1Q 的比值,即1221111Q Q QW Q Q Q η-===-.热机效率的大小,由循环的具体结构、性质而定.制冷机及其效率 设一系统做负循环,则1W 为负,2W 为正,且1W >2W ,12W W W =+为负,即一循环中系统对外做了W 的负功;又系统从低温热源吸收了较少的热量2Q ,而在高温热源放出了较多的热量1Q ,因而一循环中放出的净热量为1Q -2Q =W .所以系统在一负循环中,外界对系统做了W 功的结果为:系统在低温热源吸人热量2Q 连同转变而成的热量,一并成为1Q 的热量放入高温热源,结果将热量2Q 由低温热源输送到高温热源,这就是制冷机(也叫热泵)的原理.对制冷机,要关心的问题是:一循环中系统做了W 功后,有多少热量2Q 由低温热源输送到高温热源去了,因此把2Q W 定义为制冷机的制冷系数.有时也把1211Q Q W Q Q η-== 211Q Q =-叫做制冷机的效率,可以看出,制冷机的效率越高,制冷系数越小,经济效能越低. 在技术上使用热机的种类很多,有蒸汽机、内燃机和制冷机等,下图分别表示蒸汽机和制冷机的工作过程框图.例题精讲【例1】一定量的理想气体分别由初态a经①过程ab和由初态a′经②过程a′cb到达相同的终态b,如p-T图所示,则两个过程中气体从外界吸收的热量Q1,Q2的关系为( )A. Q1<0,Q1> Q2. B . Q1>0,Q1> Q2.C .Q1<0,Q1< Q2.D .Q1>0,Q1< Q2.【例2】压强为1.0×105Pa,体积为0.0082m3的氮气,从初始温度300K加热到400K,如加热时(1)体积不变(2)压强不变,问各需热量多少?哪一个过程所需热量大?为什么?【例3】一气缸内盛有一定量的刚性双原子分子理想气体,气缸活塞的面积S =0.05 m2,活塞与气缸壁之间不漏气,摩擦忽略不计.活塞右侧通大气,大气压强p0 =1.0×105 Pa.劲度系数k=5×104N/m的一根弹簧的两端分别固定于活塞和一固定板上(如图).开始时气缸内气体处于压强、体积分别为p1 = p0 =1.0×105 Pa,V1 = 0.015 m3的初态.今缓慢加热气缸,缸内气体缓慢地膨胀到V2 =0.02 m3.求:在此过程中气体从外界吸收的热量.【例4】如图所示,两个截面相同的圆柱形容器,右边容器高为H ,上端封闭,左边容器上端是一个可以在容器内无摩擦滑动的活塞。
两容器由装有阀门的极细管道相连通,容器、活塞和细管都是绝热的。
开始时,阀门关闭,左边容器中装有热力学温度为T O 的单原子理想气体,平衡时活塞到容器底的距离为H ,右边容器内为真空。
现将阀门缓慢打开,活塞便缓慢下降,直至系统达到平衡。
求此时左边容器中活塞的高度和缸内气体的温度。
(一摩尔单原子理想气体的内能为23RT ,其中R 为摩尔气体常量,T 为气体的热力学温度。
)【例5】绝热容器A 经一阀门与另一容积比A 的容积大得很多的绝热容器B 相连。
开始时阀门关闭,两容器中盛有同种理想气体,温度均为30ºC ,B 中气体的压强为A 中的两倍。
现将阀门缓慢打开,直至压强相等时关闭。
问此时容器A 中气体的温度为多少?假设在打开到关闭阀门的过程中处在A 中的气体与处在B 中的气体之间无热交换.已知每摩尔该气体的内能为U =25RT ,式中R 为普适气体恒量,T 是绝对温度.【例6】如图,器壁与活塞均绝热的容器中间被一隔板等分为两部分,其中左边贮有1摩尔处于标准状态的氦气(可视为理想气体),另一边为真空.现先把隔板拉开,待气体平衡后,再缓慢向左推动活塞,把气体压缩到原来的体积.求氦气的温度改变多少?【例7】如图所示,有两个底面积为1dm2的圆筒,左方筒装有一种气体,质量为4g,体积为20L,压强1atm,温度27℃,左方圆筒筒壁绝热,右方圆筒靠一大热库维持温度为27℃,右方中装有同种气体,质量12g,体积也是20L,整个系统在真空中。
放开活塞,通过连杆,移动了0.5m后达到平衡并静止。
试问右方圆筒中的气体吸收了多少热量?气体的定容比热为4J/(g·K)。
(说明:此题数据编的不符合绝热方程,仅为计算方便)【例8】一定量的理想气体经历如图所示的循环过程,A→B和C→D是等压过程,B→C和D →A是绝热过程.已知:T C=300 K,T B=400 K.试求:此循环的效率.(提示:循环效率的定义式 =1-Q2 /Q1,Q1为循环中气体吸收的热量,Q2为循环中气体放出的热量)【例9】定容摩尔热容量VC为常量的某理想气体,经历如图所示的pV平面上的两个循环过程1111A B C A和2222A B C A,相应的效率分别为1η和2η,试比较1η和2η的大小.卡诺循环与热力学第二定律:物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程为循环过程,简称循环。
在P-V图上,物质系统的循环过程用一个闭合的曲线表示。
经历一个循环,回到初始状态时,内能不变。
利用物质系统(称为工作物)持续不断地把热转换为功的装置叫做热机。
在循环过程中,使工作物从膨胀作功以后的状态,再回到初始状态,周而复始进行下去,并且必而使工作物在返回初始自修材料p1p2p3p4pV V V2 V3VT1T2abd状态的过程中,外界压缩工作物所作的功少于工作物在膨胀时对外所做的功,这样才能使工作物对外做功。
获得低温装置的致冷机也是利用工作物的循环过程来工作的,不过它的运行方向与热机中工作物的循环过程相反。
卡诺循环是在两个温度恒定的热源之间工作的循环过程。
我们来讨论由平衡过程组成的卡诺循环,工作物与温度为1T 的高温热源接触是等温膨胀过程。
同样,与温度为2T 的低温热源接触而放热是等温压缩过程。
因为工作物只与两个热源交换能量,所以当工作物脱离两热源时所进行的过程,必然是绝热的平衡过程。
如图所示,在理想气体卡诺循环的P-V 图上,曲线ab 和cd 表示温度为1T 和2T 的两条等温线,曲线bc 和da 是两条绝热线。
我们先讨论以状态a 为始点,沿闭合曲线abcda 所作的循环过程。
在abc 的膨胀过程中,气体对外做功1W 是曲线abc 下面的面积,在cda 的压缩过程中,外界对气体做功2W 是曲线cda 下面的面积。
气体对外所做的净功)(21W W W -=就是闭合曲线abcda 所围面积,气体在等温膨胀过程ab 中,从高温热源吸热121V V nRTInQ =,气体在等温压缩过程cd 中,向低温热源放热4322V V InnRT Q =。
应用绝热方程 132121--=r r V T V T 和142111--=r r V T V T 得4312V V V V =所以1224322V V In nRT V V InnRT Q ==2211T Q T Q =卡诺热机的效率1212111T T Q Q Q Q W -=-==η我们再讨论理想气体以状态a 为始点,沿闭合曲线adcba 所分的循环过程。
显然,气体将从低温热源吸取热量2Q ,又接受外界对气体所作的功W ,向高温热源传热21Q W Q +=。
由于循环从低温热源吸热,可导致低热源的温度降得更快,这就是致冷机可以致冷的原理。
致冷机的功效常用从低温热源中吸热2Q 和所消耗的外功W 的比值来量度,称为致冷系数,即2122Q Q Q W Q -==ω,对卡诺致冷机而言,212T T T -=ω。
热力学第二定律表述1:不可能制成一种循环动作的热机,只从一个热源吸取热量,使之全部变为有用的功,而其他物体不发生任何变化。
表述2:热量不可能自动地从低温物体转向高温物体。
在表述1中,我们要特别注意“循环动作”几个字,如果工作物进行的不是循环过程,如气体作等温膨胀,那么气体只使一个热源冷却作功而不放出热量便是可能的。
该叙述反映了热功转换的一种特殊规律,并且表述1与表述2具有等价性。
我们用反证法来证明两者的等价性。
假设表述1不成立,亦即允许有一循环E 可以从高温热源取得热量1Q ,并全部转化为功W 。