矿井各地点瓦斯和二氧化碳浓度的检测方法

矿井各地点瓦斯和二氧化碳浓度的检测方法
矿井各地点瓦斯和二氧化碳浓度的检测方法

矿井各地点瓦斯和二氧化碳浓度的检测方法

一、矿井总回风或一翼回风巷风流范围划分及其瓦斯和二氧化碳浓度的测定:

1、巷道风流的划定:有支架的巷道,距支架和巷底各为50㎜的巷道空间内的风流;无支架或用锚喷、砌碹支护的巷道,距巷道顶帮底各为200㎜的巷道空间的风流。

梯形支架巷道拱形锚喷支护巷道

巷道风流范围示意图

2、测定巷道风流瓦斯浓度时要在巷道风流的上部进行,即将光学瓦斯检定器的二氧化碳吸收管进气口置于巷道风流的上部(风流断面全高的上部约1/3处)进行抽气,连续测定3次,取其平均值;测定二氧化碳时应在巷道分流的下部进行,即将光学瓦斯检定器的二氧化碳吸收管进气口置于巷道风流的下部(风流断面全高的下部约1/5处)进行抽气,首先测出该处瓦斯浓度,

然后去掉二氧化碳吸收管,测出该处瓦斯和二氧化碳混合气体浓度,后者减去前者再乘上校正系数即是二氧化碳的浓度,这样连续测定3次,取其平均值。

二、采区回风巷和采煤工作面回风巷风流范围划分及其瓦斯和二氧化碳浓度的测定:

1、采区回风巷、采煤工作面回风巷风流范围中瓦斯与二氧化碳浓度,在巷道内的测定部位和巷道风流范围的划定。

2、采区回风巷风流中的瓦斯或二氧化碳浓度,应在该采区全部回风流汇合后的风流中测定。

3、采煤工作面回风巷风流中的瓦斯浓度或二氧化碳浓度,应在距采煤工作面煤壁线10m以外的采煤工作面回风流中测定,并取其中最大值为测定结果和处理标准。

三、采煤工作面风流范围划分及其瓦斯和二氧化碳浓度的测定:

采煤工作面风流,是指距煤壁、顶(岩石、煤或假顶)、底(煤、岩石或充填材料)各为200mm(小于1m厚的薄煤层采煤工作面距顶、底各为100mm)和以采空区切顶线为界的采煤工作面空间内的风流。采用充填法管理基板时,采空区一侧应以挡矸、砂帘为界。采煤工作面回风上隅角以及未放顶的一段巷道空间至煤壁线的范围空间中的风流,都按采煤工作面风流处理。

采煤工作面风流中的瓦斯和二氧化碳的尝试检查方法,与在巷道风流进行测定的方法相同。但要注意以下三点:

阜康市广源煤矿 安全质量标准化及瓦斯治理示范矿井工作汇报尊敬的各位领导、专家: 你们好! 首先感谢各位领导在百忙之中莅临我矿检查指导安全质量标准化及瓦斯治理示范矿井创建工作,这既是对我们工作的鼓励和鞭策,同时也是对我矿安全质量标准化及瓦斯治理示范矿井创建工作最大的信任。在此,我代表广源煤矿全体干部员工向各位领导莅临我矿检查指导工作,表示热烈欢迎和衷心感谢! 下面,我把广源煤矿安全质量标准化及瓦斯治理示范矿井创建工作的一些情况向各位领导作一简要汇报: 一、广源煤矿基本情况 矿井原属兵团农六师煤矿,2004年改制为个体独资企业,矿井原设计生产能力3万吨/年,现技改扩能为9万吨/年。矿井为主副井开拓方式,矿井主要运输巷布置在+772水平,回风巷布置在+822水平。矿井井田东西走向2.4km,南北宽0.60 km,面积为1.3197 Km2,开采标高+822m—+772.91m水平,可采煤层为45﹟煤层,45﹟煤层可采厚度平均20.99m,煤层平均倾角68°-72°,地质储量1209万吨,矿井采用走向长壁悬移顶梁液压支架采煤法。 目前,主要采区有:+822水平南北巷综采工作面;掘进工作面有:+812水平南北巷。现矿井采掘接替关系正常,安全上杜绝了水、火、瓦斯、煤尘、顶板等各类事故的发生。 矿井安全管理机构健全完善,设有矿委会、工会等组织和行政机构,下设办公室有生产技术科、安通科、机电科、调度室、监测监控

室、保卫科等中层管理机构。全矿现有职工家属80多人,特殊工种人员40人,现组建8个作业班组,有安全技术管理人员20人,全部持安全资格证;矿井建立完善了各项规章制度和安全生产责任制及各工种操作规程。 二、安全质量标准化工作开展情况 (一)以人为本,广泛宣传,不断增强安全质量标准化意识。 一是结合实际,把解决好中层干部思想问题作为重点,引导他们牢固树立起“不进是退,慢进也是退”的思想认识,帮助他们理清思路,从而增强了全体干部员工搞好安全质量标准化工作的责任感和使命感。 二是从人性化教育入手,充分利用标语、板报等宣传工具,多层次、全方位的宣传标准化建设对矿井发展的重要意义,使全矿上下讲的最多的是标准化,叫的最响的是标准化,形成了学标准化、上标准岗、干标准活的浓厚氛围。 三是矿井每月对安全质量标准化活动进行全面检查评选,奖优罚劣。在全矿形成了“矿领导督导,职能部门监管,基层区队具体实施”,的管理办法,走出了一条“全面夯实,局部治理、整体推进”的安全质量标准化创新之路。 (二)强化奖惩机制、落实责任追究制度,保证安全质量标准化有序开展。 一是明确目标,加强组织管理。我矿制订了《广源煤矿安全质量标准化工作达标的决定》等文件,从标准、目标、责任、措施、考核等环节入手,逐步建立完善了安全质量标准化工作体系。成立了以

管理制度编号:LX-FS-A11602 矿井瓦斯等级鉴定制度标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

矿井瓦斯等级鉴定制度标准范本 使用说明:本管理制度资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、各矿总工程师每年必须组织人员对矿井瓦斯等级和二氧化碳涌出量进行鉴定。 2、矿井瓦斯等级鉴定工作应分别在7月5日、15日、25日分三班进行,测定地点应在测风站或巷道断面规整,无杂物堆积的一段平直巷道内进行。 3、进行矿井瓦斯等级鉴定所用仪器、仪表必须经校正合格,测定方法和测定次数符合规程要求。 4、矿井瓦斯等级鉴定工作应在正常的条件下进行。按每一自然矿井、煤层、一翼、水平和采区分别测定计算相对瓦斯涌出量。 5、进行瓦斯抽放的矿井,测定时必须同时测定

1.简述矿井瓦斯与煤层瓦斯的区别 答:广义的矿井瓦斯是指井下有害气体的总称。一般包括四类来源:①煤层与围岩内赋存并涌入到矿井的其他。②矿井生产过程中生成的其他③井下空气与煤岩矿物、支架和其他材料之间的化学或生物化学反应生成的气体等④放射性物质蜕变过程生成或地下水放出的放射性惰性气体氡及惰性气体氦。煤层瓦斯是腐殖型有机物在成煤过程中的伴生产物。 2.矿井瓦斯与煤层瓦斯的主要成分 答:矿井瓦斯:甲烷及其同系物,H2、CO、H2S、SO2、NH3、NO2、NO、N2、CO2; 煤层瓦斯:甲烷及其同系物、CO2、N2及少量的重烃 3.风流中瓦斯存在状态与煤层中瓦斯存在状态有哪些?煤层中瓦斯存在状态与哪些因素有关?答:(1)风流中:①静止空气中的瓦斯:分布不均匀,随着扩散时间延长,趋向均匀分布②层流空气中的瓦斯:上层瓦斯随风流流向下层,趋向均匀分布;③紊流空气中的瓦斯:由于强烈的掺混作用,一般表现为均匀分布。(2)煤层中:游离状态和吸附状态两种,还可能以瓦斯水化物晶体形式存在;吸附状态的瓦斯又可以分为吸收状态和吸着状态。(3)因素:温度、压力、孔隙率、比表面积、瓦斯性质、煤化变质程度、煤中水分 4.煤层瓦斯成因:(1)生物化学成气时期:在这个阶段生成的瓦斯容易排放到大气中,一般不会保留在煤层内。随着泥炭层下沉,上覆盖层越来越厚,压力与温度随之升高,生物化学作用减弱,泥炭转化为褐煤。(2)煤化变质作用成气时期:褐煤层进一步沉降,压力与温度作用加剧,进入煤化变质作用造气阶段。一般在100℃及其相应的地层压力下,煤层就会产生剧烈的热力变质成气作用,煤化过程中生成的瓦斯以甲烷为主要成分,从褐煤到无烟煤,煤的变质程度越高,生成的瓦斯量也越多。各煤化阶段生成的气体组分不仅不同,而且数量上也有很大变化。 5.煤层瓦斯沿深度划分为几个带?各带的主要成分及其百分比,划分条件? 答:N2——CO2带:CO2 20%——80% N2 20%——80% CH4 0——10% N2带:CO20——20% N2 80%——100% CH4 0——20% N2——CH4带:CO20——20% N2 20%——80% CH4 20%——80% CH带:CO2 0——20% N2 0——20% CH4 80%——100% 条件:①煤层相对瓦斯涌出量2~3m3/t ②煤层内瓦斯成分中甲烷及重烃浓度总和达到80% ③煤层内瓦斯压力为0.1~0.15MPa 6.甲烷带瓦斯随深度如何变化?答:煤层内瓦斯压力,瓦斯含量随埋藏深度的增加呈有规律的增长,增长的梯度在不同的煤质(煤化程度),不同地质构造与赋存条件有所不同 7.简述孔隙结构与瓦斯间的关系。答:宏观孔隙:其直径>1000A°为渗透容积。显微孔隙:100A°~1000A°为扩散容积。分子孔隙:其直径<100A°为吸附容积 8.煤层瓦斯分布的一般规律:答:在甲烷带内,煤层的瓦斯压力随深度的增加而增加,多呈线性增加,瓦斯压力梯度也随条件而异,在地质条件相近的块段内,相同深度的同一煤层具有大体相同的瓦斯压力P=P0+m(H-H0),当覆盖层中含水多,瓦斯压力高,局部地点封闭构造附近压力大,有构造应力附近压力大。 9.瓦斯压力测定有几种方法,各有何优缺点?答:(1)直接法:通常由围岩巷道向煤壁打50——75mm钻孔,钻孔中放测压管、封孔、插表、读数。优点:测量准确;缺点:测量时间过长,费用高,失败率大。(2)间接法:①利用钻屑解吸指标法测压;②根据煤层瓦斯含量和吸附规律反算瓦斯压力。优点:方便快捷,成功率高。缺点:测量结果不够精确 10.孔隙率:煤的总孔隙体积占相应煤的体积的百分比 11.吸附等温线:在恒定温度下,煤的吸附瓦斯含量x随压力P的变化曲线 12.瓦斯含量:单位重量或体积的煤中所含有的瓦斯量 13.朗格缪尔系数等温方程:x=abP/(1+bP) a:极限吸附常数;b:吸附常数P:吸附平衡时的瓦斯压力 14.影响煤吸附性能的主要因素有哪些?答:(1)瓦斯压力的影响(2)温度的影响(3)瓦斯性质的影响(4)煤化变质程度的影响(5)水分的影响 15.瓦斯生产量:单位成煤过程中生成的瓦斯量 16.煤的瓦斯含量:单位重量或体积的煤中所含有的瓦斯量 17.煤的容储能力:单位重量或体积的煤表面所能吸附的饱和瓦斯量 18.影响煤层瓦斯含量的因素:(1)煤层埋藏深度(2)煤层和围岩透气性(3)煤层倾角(4)煤层露头(5)地质构造(6)煤化程度(7)地层地质史(8)水文地质条件(9)煤层的温度和压力 19.煤层瓦斯流动的形态有哪些?渗流与涌出的关系? 答:按空间内瓦斯流动方向来划分,基本上有三种:单向流动、径向流动和球向流动。 关系:煤壁瓦斯涌出是煤层内部渗流的继续,瓦斯渗流理论是瓦斯涌出理论的基础 20.扩散系数:反应瓦斯在孔隙——裂隙系统内扩散能力的大小 21.渗透率:压力梯度为1时,动力黏滞系数为1的液体在介质中的渗透速度 22.透气性系数;在1m3煤体两侧,压力差为1MPa2时通过1m长的煤体,在此1m2截面上,每日流过的煤层气体量 23.渗透率与透气性系数的关系:λ=k/(2μPn) 24.钻孔瓦斯涌出初速度:在煤层中按规定的技术要求施工钻孔,在预定深度,1min时,在规定长度钻孔内涌出的瓦斯量

收稿日期 :2014-05-19作者简价 :贺 莉 (1981- , 女 , 助理研究员 , 主要从事沼气产品及设备检测方法研发工作 , E-mail :heliscu@gmail.com 通 信作者 :陈子爱 , E-mail :nybzqzj@163.com 气相色谱法测定沼气中甲烷含量的不确定度计算 贺 莉 , 冉 毅 , 蒋鸿涛 , 张冀川 , 袁 丁 , 陈子爱 (1.农业部沼气科学研究所 , 成都 610041; 2.农业部沼气产品及设备质量监督检验中心 , 成都 610041 摘 要 :NY /T1700-2009《沼气中甲烷和二氧化碳的测定气相色谱法》是测定沼气中甲烷含量的标准方法。为找 出对该实验检测的主要影响因素 , 通过分析测试过程 , 量化不确定度分量 , 计算合成不确定度和扩展不确定度。实验测量不确定度为 5.88%, 置信区间为 95%的扩展不确定度为 11.76%, 可为样品检测提供参考。关键词 :不确定度 ; 沼气 ; 甲烷 ; 气相色谱法中图分类号 :S216.4 文献标志码 :A 文章编号 :1000-1166(2014 05-0050-02 Evaluation of the Uncertainty in Methane Content Determination with Gas Chromatography /HE Li , RANYi , JIANG Hong-tao , ZHANG Ji-chuan , YUAN Ding ,

CHEN Zi-ai /(1.Biogas Institute of Ministry of Agriculture , CHengdu 610041, China ; 2.The Quality Inspection Center of Biogas Appliance of Ministry of Agriculture (BIQIC-MOA , Chengdu 610041, China Abstract :Gas Chromatography system is the standard method for detection of methane in biogas according to NY /T1700-2009.For the sake of finding the main influencing factors , the uncertainties in the detection process were discussed , and source of uncertainty was analyzed.The results showed that the combined uncertainty of factors was 5.88%, while expand-ed uncertainty was 11.76%. Key words :uncertainty ; biogas ; methane ; gas chromatography 1实验部分 1.1实验仪器方法、设备及试剂 1.1.1实验方法 参照 《沼气中甲烷和二氧化碳的测定气相色谱法》 NY /T1700-2009, 具体试验流程如下 :分析前 , 使用峰面积外标法进行校准。取样器用样气清洗 3次 , 首次分析注入 30mL , 重复分析每次注入 30mL 吹洗。每次分析完毕 , 打印出组分百分含量 , 连续分析两次。 数据经 CH 4-CO 2标气校准后 , 可对气体中甲烷 和二氧化碳进行测定。 1.1.2仪器设备和实验试剂 气相色谱仪及工作站 :型号 SC-2000重庆川仪九厂生产 , 氢火焰检测器 ;

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 矿井瓦斯涌出量的影响因素(新 编版) Safety management is an important part of production management. Safety and production are in the implementation process

矿井瓦斯涌出量的影响因素(新编版) 矿井瓦斯涌出量的大小,取决于自然因素和开采技术因素的综合影响。 (1)自然因素 1)煤层和邻近层的瓦斯含量 煤层和邻近层的瓦斯含量是瓦斯涌出量大小的决定因素。开采煤层的瓦斯含量高,瓦斯的涌出量就大。当开采煤层的上部或下部都有瓦斯含量大的煤层或岩层时,由于未受采动影响,这些邻近层内的瓦斯也要涌人开采层,从而增大了矿井瓦斯涌出量。 2)地面大气压及气温 地面大气压的变化与瓦斯涌出量的大小有密切关系。地面大气压力升高时,矿井瓦斯涌出量减少。地面大气压力下降,瓦斯涌出量增大。气温的影响体现在其变化导致大气压的变化,进而影响瓦斯涌出量的大小。

(2)开采技术因素 1)开采规模 开采规模是指开采深度、开拓、开采范围及矿井的产量而言。开采深度越深,随着瓦斯含量的增加,瓦斯涌出量就越大。在瓦斯赋存条件相同时,一般是开拓、开采范围越大,则瓦斯绝对涌出量越大,而瓦斯相对涌出量差异不大;产量增减,往往瓦斯绝对涌出量有明显的增减,而相对涌出量的变化不很明显。当矿井的开采深度与规模一定时,若矿井涌出的瓦斯主要来源于采落的煤,产量变化时,对绝对涌出量的影响比较明显,对相对涌出量的影响不大;若瓦斯主要来源于采空区,产量变化时,绝对瓦斯涌出量变化较小,相对瓦斯涌出量则有明显变化。 2)开采顺序与回采方法 首先开采的煤层(或上分层)排放了邻近层的瓦斯,因此,瓦斯涌出量大。后退式开采程序比前进式开采程序瓦斯涌出量要少,属于回采率低的采煤方法,采区瓦斯涌出量大。陷落法管理顶板比充填法瓦斯涌出量大。

煤矿瓦斯治理能力评估标准及评分办法表号:XMGF23-004 龙家山煤矿瓦斯治理能力评估标准及评分办法实际得分:序号评估内容评估标准评分办法检查情况标准分得分一、理念先进 100 93 1 瓦斯不治矿无宁日公司总工程师为党委委员、行政第一副职;公司及煤矿设置专职通风副总工程师;突出矿 设专职地质副总工;公司和煤矿设置瓦斯、地质管理机构,配齐专业技术管理人员(瓦斯 ≥15人,地质≥15人)。 总工不是第一副职扣2分;副总工缺一个扣2 分;非专职的扣1分;瓦斯、地质机构少一个扣 1分,人员不足扣2分 10 10 2 瓦斯事故是可以预 防和避免的 采面<8m3/t、掘进头<3m3/min下采掘;杜绝3%及以上瓦斯超限,否则公司总经理组织 分析、处理,找超限矿矿长、书记警示谈话;公司、矿每周剖析一个矿瓦斯治理工作,公 司每月专题会,会上被剖析单位述职。建立“三级地质保障制度”;建立专业化地质预测 预报专业队伍。 采面未实测或达标扣3分;超限未分析或未警示 谈话各扣3分;专题会未剖析或未述职均扣3 分。会议、剖析和谈话必须有记录 20 20 3 可保必保,应抽尽抽有条件的必须开采保护层,并做效果考察和有效范围确定;有可能的,必须做试验考察。 地点上:开采层、邻近层、被保护层、采空区、层间裂隙带都应抽采;范围上:高密度、 孔距小于抽采直径,钻孔控制设计的全部范围,无盲区;时间上:采前预抽、边采边抽、 采后抽;浓度上:高浓抽、低浓抽;高压预抽,二次封孔增压或增透预抽瓦斯;方式上: 穿层抽、顺层抽。 可保未保扣3分,开采了未考察,扣2分;应抽 地点未抽一处扣1分。 10 10 4 通风是基础,抽采是 重点,防突是关键, 监测监控是保障。 通风系统完善、可靠,抽采作为治理瓦斯主要措施,区域抽采先行、达标有效后采掘;防 突是关键目的,消突是目的;监控系统完善、运行正常,控制有效。 通风、抽采、防突、监控每项不完善扣2分;管 理不善每项扣1分。10 10 5 高投入、高素质、强 技术、严管理 安全投入≥35元/吨,其中瓦斯治理占50%,且满足需要,科技经费占公司销售收入的1~ 3%;防突、瓦检、安监员工资收入达到所在单位采掘员工平均水平,井下职工人均工资 不低于当地人均工资的3倍;井下职工以技术毕业生为主,公司组建打钻、岩巷施工专业 化队伍,煤矿组建防突、抽采、通风、揭煤、监控专业化队伍;班队长年轻化、专业化, “一通三防”班队长由职业高中、大学毕业生担任;公司和煤矿选拔“技术拔尖人才”、 “技术工人拔尖人才”,并发放津贴;规范管理者的管理行为和操作者的操作行为,关键 岗位“手指口述”;强技术、严管理。 安全投入、瓦斯治理投入、科技经费和专业人员 工资任一项达不到下限标准不得分。职工素质、 班组长达不到要求每项扣2分;选拔技术拔尖和 工人拔尖人才每项没做扣2分,“两规范”不合 格每项扣2分;未“手指口述”扣1分;强技术、 严管理问题适当扣分。 井下职工人均工 资未达到当地人 均工资的3倍扣 1分;未“手指口 述”扣1分 20 18 6 多打岩巷多打钻瓦斯巷单进≥85米/月,钻机单进≥2000米/月,且完成股份公司计划;巷道防误透、煤巷 掘进限掘措施。 未完成计划每项扣3分,单进未达到每项扣2 分;无防误透和限掘措施扣2分。 瓦斯单进达不到 85米,-2分 10 8 7 只有打不到位的钻 孔,没有卸不掉压的 瓦斯。 穿层钻孔保直钻进技术,测斜探索;增透技术及增透后抽采半径、效果考察;钻孔施工挂 牌留名制,不达设计问责。 钻孔测斜探索未搞扣1分;增透及其效果考察每 项2分;钻孔施工不达设计未挂牌留名扣2分, 施工不符合设计未问责扣3分。 钻孔测斜探索未 搞扣1分;增透及 其效果考察每项 2分 10 7 8 变抽采为抽采,煤与 瓦斯共采,治理与利 用并重。 纯流量在2m3/min以上应利用;以抽保用,以用促抽。有条件未用,不得分;无条件未用作缺项。无条件,未用10 缺项

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式 (1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中: q 1一开采层相对瓦斯涌出量,m 3/t ; K 1一围岩瓦斯涌出系数,取; K 2—工作面丢煤瓦斯涌出系数,取; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取;

m 一开采层厚度,6m ; M 一工作面采高,; W 0—煤层原始瓦斯含量,m 3 /t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。 b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为;对于厚煤层,D=2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min),如无实测值可参考式(1-2)计算。 q 0= [(Vr )2+]W 0 (1-2) 式中: q 0 — 巷道煤壁瓦斯涌出量初速度,m 3/(m 2min): V r — 煤中挥发分含量,%,古城煤矿3#煤层挥发份经煤炭工业厅综合测试中心鉴定为%。 W 0 — 煤层原始瓦斯含量,m 3/t 。 b. 掘进落煤的瓦斯涌出量 掘进巷道落煤的瓦斯涌出量采用式(1-3)计算。 q 4=S·v ·γ·(W 0-W c ) (1-3) 式中:q 4 —— 掘进巷道落煤的瓦斯涌出量,m 3/min; S —— 掘进巷道断面积,m 2;

平煤三矿十采区瓦斯涌出量预测 摘要: 通过对平煤三矿的实际考察,收集了该矿大量的瓦斯资料和地质资料,经过整理分析得到各种地质条件、各种开采条件下的实际瓦斯涌出量。同时结合已学的瓦斯基本理论,根据瓦斯原始含量、矿井开拓方式、煤层赋存及煤质、煤层瓦斯含量分布规律等条件,运用分源法对该矿十采区瓦斯涌出量进行预测;通过对本采区的瓦斯涌出量预测对该采区的通风设计,瓦斯抽放设计与瓦斯管理提供技术支持,对该矿瓦斯防治工作具有一定的指导意义。 关键词: 瓦斯含量平煤三矿分源预测法瓦斯涌出量

THE NO.3 MINE OF PINGMEI GROUP THE NO.10 PICK AREA GAS TO WELL UP Abstract: Through to the even coal three ores actual inspections, has collected this ore massive gas material and the geological data, obtains under each geological condition, each kind of mining condition actual gas after the reorganization analysis wells up the out put. Simultaneously unifies already study the gas elementary theory, according to the gas primitive content, the mine pit development way, the coal bed tax saves and the anthrax, condition and so on coal bed gas content distribution rule, the utilization device source law ten picks the area gas to this ore to well up the output to carry on the forecast; Through to this picks the area the gas to well up the output to forecast to should pick the area to ventilate the design, the gas pulls out puts the design and the gas management provides the technical support, has the certain instruction significance to this ore gas preventing and controlling work. Key word: The gas content even;the NO.3 mine of pingmei group ; device sources pre-measurement; gas wells up the output

煤矿瓦斯抽采基本指标 AQ1026-2006 前言 本标准全部内容为强制性条文。 本标准由国家煤矿安全监察局提出。 本标准由全国安全生产标准化技术委员会煤矿安全分技术委员会归口。 本标准起草单位:煤炭科学研究总院重庆分院、中国矿业大学、煤炭科学研究总院抚顺分院、阳泉矿业(集团)有限责任公司、淮南矿业(集团)有限责任公司、芙蓉(集团)实业有限责任公司。 本标准主要起草人:胡千庭、文光才、俞启香、王魁军、李宝玉、周德昶、高正强、龙伍见。 1 范围 本标准规定了煤矿瓦斯抽采应达到的指标及其测算方法。 本标准适用于井工煤矿。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 MT/T638 煤矿井下煤层瓦斯压力的直接测定法 MT/T77 煤层气测定方法(解吸法) AQ1025 煤井瓦斯等级鉴定规范

3 必须进行瓦斯抽采的矿井 有下列情况之一的矿井,必须建立地面永久抽采瓦斯系统或井下临时抽采瓦斯系统: a) 一个采煤工作面的瓦斯涌出量大于5m3/min或一个掘进工作面瓦斯涌出量大于3m3/min,用通风方法解决瓦斯问题不合理时; b) 矿井绝对涌出量达到以下条件的: ——大于或等于40m3/min; ——年产量1.0—1.5Mt的矿井,大于30m3/min; ——年产量0.6—1.0Mt的矿井,大于25m3/min; ——年产量0.4—0.6Mt的矿井,大于20m3/min; ——年产量等于或小于0.4Mt,大于15m3/min。 c) 开采有煤与瓦斯突出危险煤层。 4 瓦斯抽采应达到的指标 4.1突出煤层工作面采掘作业前必须将控制范围内煤层的瓦斯含量降到煤层始突深度的瓦斯含量以下或将瓦斯压力降到煤层始突深度的煤层瓦斯压力以下。若没能考察出煤层始突深度的煤层瓦斯含量或压力,则必须将煤层瓦斯含量降到8m3/t以下,或将煤层瓦斯压力降到0.74MPa(表压)以下。控制范围如下: a)石门(井筒)揭煤工作面控制范围应根据煤层的实际突出危险程度确定,但必须控制到巷道轮廓线外8m以上(煤层倾角>8°时,底部或下帮5m)。钻孔必须穿透煤层的顶(底)板0.5m以上。若不能穿透煤层全厚,必须控制到工作面前方15m以上。 b)煤巷掘进工作面控制范围为:巷道轮廓线外8m以上(煤层倾角>8°时,底部或下帮5m)及工作面前方10m以上。 c)采煤工作面控制范围为:工作面前方20m以上。

甲烷CH4浓度分析仪 甲烷CH4浓度分析仪(SK-600-CH4)是一款采用模块化设计、具有智能化传感器检测技术、整体隔爆(d)结构、固定安装方式的有毒气体检测仪。标准配置为带点阵LCD液晶显示、三线制4~20mA模拟和RS485数字信号输出,可选配置为可编程开关量输出等模块,根据用户需求提供定制化产品,还支持输出信号微调等功能,方便系统组网及维护。可检测CH4、CH4S、CH4、CH4、CH4、SCH4、CH4、CH4、NCH4、CH4、ClCH4、ETO等多种有毒有害气体,详情可咨询东日瀛能。同时我司甲烷CH4传感器销往:河北省、山东省、辽宁省、黑龙江省、吉林省、甘肃省、青海省、河南省、江苏省、湖北省、湖南省、江西省、浙江省、广东省等全国各地。 (注意:甲烷CH4传感器(SK-600-CH4)在不同的应用环境或行业有不同的别名,如甲烷CH4检测仪甲烷CH4变送器甲烷CH4探测器甲烷CH4探头便携式甲烷CH4探头甲烷CH4检测装置) 特点 ■智能化EC传感器,采用本质安全技术,可支持多气体、多量程检测,并可根据用户需求提供定制化产品,无需工具可实现传感器互换、离线标定和零点自校准 ■智能的温度和零点补偿算法,使仪器具有更加优良的性能具有很好的选择性,避免了其他气体对被检测气体的干扰 ■多种信号输出,既可方便接入PLC/DCS等工控系统,也可以作为单机控制使用

■超大点阵LCD液晶显示,支持中英文界面 ■免开盖,红外遥控器操作,单人可维护 ■本地报警指示,一体化声光报警器(选配) ■仪器具有超量程、反极性保护,能避免人为操作不当引起的危险 ■丰富的电气接口,可供用户选择 ■通过ATCH4、UL、CSA等认证,具有国际化高端品质 (同时对于不同行业的针对性应用有:甲烷CH4报警装置高精度甲烷CH4浓度分析仪甲烷CH4检测模块甲烷CH4传感器RS485信号输出甲烷CH4报警器4-20mA信号输出甲烷CH4报警器固定式带液晶显示型甲烷CH4检测仪带显示带声光报警器固定式甲烷CH4检测仪等产品模式) 东日瀛能科技甲烷CH4探头厂家甲烷CH4探头价格详情可咨询东日瀛能SK-600-CH4 技术参数: ■产品名称:甲烷CH4报警器SK-600-CH4 ■检测气体:甲烷CH4 ■检测原理:电化学原理、催化燃烧原理 ■检测范围:0-10ppm、0-20ppm、0-50ppm、0-200ppm、0-5000pp等任意可选 ■分辨率:0.1ppm、0.1ppm、0.2ppm、1ppm、25ppm等可选 ■检测方式:扩散式、泵吸式可选 ■显示方式:液晶显示 ■输出信号:用户可根据实际要求而定,最远可传输2000米(单芯1mm2屏蔽电缆) ①两线制4-20mA电流信号输出(三线制可选) ②RS-485数字信号输出,配合RS232转接卡可在电脑上存储数据(选配) ③2组继电器输出:无源触电容量220VAC3A,24VDC3A(选配) ④报警信号输出:现场声光报警,报警声音:<90分贝(选配) ■检测精度:≤±2%(F.S) ■重复性:≤±1% ■零点漂移:≤±1%(F.S/年) ■报警方式:声、光报警

重庆南桐矿业有限责任公司 关于南桐煤矿二O—二年煤矿瓦斯治理 示范矿井建设的请示 重庆市发展和改革委员会: 按照发改办能源【2011】764号《国家发展改革委办公厅关于开展2012年煤矿安全改造和瓦斯治理示范矿井建设项目前期工作的通知》精神,重庆南桐矿业有限责任公司委托中煤科工集团重庆研究院编制了《重庆南桐矿业有限责任公司南桐煤矿2012年煤矿瓦斯治理示范矿井建设方案》。贵委于2011年8月4日会同重庆煤矿安全监察局、市煤炭工业管理局、市能源投资集团公司并组织有关专家对实施方案进行了审查。根据审查意见,我公司及时进行了修改完善,现呈报贵委,并将有关情况请示如下: 一、示范矿井基本情况重庆南桐矿业有限责任公司南桐煤矿,位于重庆市万盛区南桐镇,核定生产能力120 万t/a ,2010 年实际生产原煤81.5 万t 。截止2010 年末,矿井尚有地质储量为8373.2 万t ,可采储量5163.8 万t 。 南桐煤矿地质条件复杂,瓦斯、水、火、煤尘、顶板等灾害严重,特别是瓦斯灾害尤其突出,长期威胁着矿井的安全生产。矿井煤层瓦斯含量16?23m i/t , 2010年瓦斯等级鉴定,相对瓦斯涌出量33.42m3/t ,绝对瓦斯涌出量47.i9m i/min 。属煤与瓦斯突出矿井,曾发生煤与瓦斯突出 425 次。矿井各煤层均具有煤尘爆炸性,煤尘爆炸指数为

20%-24%矿井属口类自燃煤层,发火期为6?9个月。 南桐煤矿通过严格瓦斯治理,不断加大投入,取得明显效果,自2006 年10 月1 日至今消灭了煤与瓦斯突出及各类瓦斯死亡事故。 二、示范矿井建设的必要性 首先,南桐煤矿煤层倾角大、煤层薄、煤层透气性极低、且煤层瓦斯含量高、开采煤层突出危险性大,在全国类似条件下具有典型的代表性。 第二,矿井井田瓦斯压力高,施工穿层钻孔存在岩石硬度大、工程量大、钻进效率低等问题;施工本层钻孔上向孔由于煤层倾角大存在突出危险不能实施,下向孔存在瓦斯涌出量大、排粉困难、煤尘大、卡钻、掉钻等技术难题亟待研究解决;加之煤层透气性极低,瓦斯极难抽放,至今对提高煤层的透气性没有大的突破。这些问题严重制约了煤矿瓦斯治理技术的发展。为此,在南桐煤矿建设瓦斯治理示范矿井非常必要和迫切。 第三,矿井已通过对中风压顺层深钻孔钻进技术、穿层水力割缝增透技术、水力压裂增透技术等瓦斯治理新技术、新工艺技术攻关及实施,来提高煤层透气性及施钻速度, 现已取得一定的效果。力争在现有基础上缩短瓦斯抽采达标时间三分之一,降低瓦斯抽采成本三分之一,提高采掘工作面单产单进水平三分之一,充分发挥大倾角极难抽煤层综合机械化开采能力,逐步建成“采掘机械化、运输连续化、管理信息化、控制智能化、安全高效化”的矿井,这对大倾角极难抽煤层矿井的瓦斯治理具有广泛的示范性。 三、示范矿井建设的主要内容按照“统筹规划、分步实施,典

附录A 名词解释 矿井瓦斯等级根据矿井的瓦斯涌出量和涌出形式所划分的矿井等级。 突出煤层在矿井井田范围内发生过煤与瓦斯突出的煤层或者经过鉴定有突出危险的煤层。 煤与瓦斯突出矿井在矿井开拓、生产范围内有突出煤层的矿井。 正常生产条件测定区域(矿井、煤层、翼、水平或采区)的实际产量(包括回采和掘进煤产量)达到该区域设计产量(或正常产量)的60%以上的条件。 瓦斯喷出从煤体或岩体裂隙、孔洞、钻孔或炮眼中大量涌出瓦斯(二氧化碳)的异常涌出现象。在20 m巷道范围内,涌出瓦斯(二氧化碳)量大于或等于1.0 m3/min且持续8 h以上时的区域定为瓦斯(二氧化碳)喷出危险区域。 地质单元指地质特征相近、未受大的地质构造阻隔的整片煤层区域。在同一地质单元内,该有基本相同的煤质相近的地质构造复杂程度、煤层破坏程度、软分层厚度等,区内煤层基本连续,瓦斯能够沿煤层在区内顺利流动。

附录B 矿井瓦斯等级鉴定中瓦斯涌出量计算方法 B1 绝对瓦斯涌出量计算方法 矿井、采区或工作面等测定区域绝对瓦斯涌出量是指单位时间内该区域涌出的瓦斯总量,取鉴定月3个测定日中数值最大一天的数值。绝对瓦斯涌出量为井巷瓦斯涌出量与井下抽放瓦斯量之和。风排瓦斯涌出量为所有进、回风测点瓦斯流量之差,当测定区域有多个进、回风巷道时,绝对瓦斯瓦斯涌出量包括所有通风系统瓦斯涌出量之和;井下抽放瓦斯量取当月井下抽放瓦斯量的平均值(不包括排放到测定区域回风巷的局部瓦斯抽放量)。测定日每个通风系统的绝对涌出量可按照公式(1)计算: 抽排绝q q q += (1) 式中: q 绝——测定区域绝对瓦斯(或二氧化碳)涌出总量,m 3/min ; q 抽——测定区域抽放瓦斯(或二氧化碳)纯量,m 3/min ,取鉴定月的 平均值; q 排——测定区域日平均风排瓦斯(或二氧化碳)量,m 3/min ,按式(2) 计算。 ∑∑==?-??==n i i i i i n i i C Q C Q n q n q 1 1)(10011进进回回排排 (2) 式中: n ——班制,矿井采用三班制时n =3,矿井采用四班制时n =4; i ——测定班序号,采用三班制的矿井i =1,2,3;采用四班制的矿井i =1,2,3,4; q 排i ——第i 班的风排瓦斯(或二氧化碳)量,m 3/min ; Q 回i ——第i 班回风巷风流中的风量,取当班测定3次的平均值,m 3/min ; C 回i ——第i 班回风巷风流中的瓦斯(或二氧化碳)浓度,取当班测定

工作室课题设计报告 基于物联网的矿井瓦斯灾害预警系统网络节点设计 班级:电子111 姓名:黄兴海 学号:2011131110 指导教师:刘忠富

目录: 一:设计任务及内容----------------------------------------------------------3 二:系统硬件设计-------------------------------------------------------------5 三:系统软件设计-------------------------------------------------------------6 四:系统调试-------------------------------------------------------------------8 五:课程设计总结-------------------------------------------------------------8 六:参考文献-------------------------------------------------------------------9 七:附录-------------------------------------------------------------------------10

一:设计任务及内容 统计分析表明,全国煤矿瓦斯事故占煤矿事故总数的70%。目前,大多数煤矿瓦斯监测系统采用有线和固定传感器组成的网络,需要在矿井内铺设通信线路来传递监测信息。但在生产过程中,矿井结构不断变化,加之有些坑道空间狭小,对通信线路的延伸和维护提出了很高要求。因此,设计无线矿井瓦斯实时监控、预警系统已成为当务之急,是预防煤矿安全事故的有效手段。 随着物联网技术的发展,无线传感网络也随之出现,并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革。把无线网络技术、单片机控制技术和瓦斯传感器技术结合起来,可以克服目前矿井瓦斯监测系统存在的缺点,实现高可靠性的矿井瓦斯预警系统。 本系统基于物联网技术,把无线传感网络应用到矿井瓦斯灾害预警系统中,采用Zigbee技术,设计完成瓦斯预警系统中无线传感网络节点的硬件电路设计及软件程序设计,并完成实验样机的调试。 系统的结构框图如下图所示: 瓦斯传感器 Zigbee网络数据处理模块报警与显示模块 图1 系统框图 瓦斯灾害预警系统由传感器、无线射频模块、监控中心上位机等组成。系统构建方法是沿矿井坑道每隔一定距离在坑道顶部设置一个Zigbee网络汇聚节点,在汇聚节点附近放置一些固定的流量传感器节点或动态的流量传感器节点。整个系统由地面监控中心、固定及移动传感器节点组成。如图2所示。

瓦斯治理示范矿井建设基本要求 一、采掘部署合理 1.优化生产布局。矿井、采区和工作面设计要依据瓦斯地质资料详细分析和预测矿井瓦斯灾害情况,充分考虑瓦斯治理的需要,优化巷道布置,简化生产系统,明确开采顺序,合理确定工作面参数,实现安全高效、合理集中生产。 (矿井、采区建立设计说明书档案。一年内准备设计几个工作面,要有设计及作业规程。需要瓦斯地质资料、在设计说明书里要附件。) 2.合理组织生产。按照核定的生产能力编制生产计划和组织生产,高瓦斯和煤与瓦斯突出矿井各采区的同一煤层只能有1个采煤工作面进行生产,严禁超能力、超定员组织生产,坚持正规循环作业,工作面进度要与支护、通风等工序相协调,保证各辅助环节及时跟进到位。 (1、煤矿每三年要有生产能力核定,每个矿要有批准的生产能力核定2、年度和月度的生产报表要在煤管局建立档案) 3.坚持正规开采。矿井要加强生产准备,保持水平、采区和采掘工作面的正常接替与衔接。采煤工作面必须保持至少2个安全出口,形成全风压通风系统,煤与瓦斯突出矿

井、高瓦斯矿井和低瓦斯矿井高瓦斯区域的采煤工作面,不得采用前进式采煤方法;按规定淘汰落后和非正规采煤方法、工艺。 (不能有老式的生产方法和方式、比如巷采) 二、通风可靠 4.矿井有完整的独立通风系统。改变全矿井通风系统时,编制通风设计及安全措施,并履行报批手续。巷道贯通前,按《煤矿安全规程》(以下简称《规程》)规定,制定安全措施。采掘部署合理。 (各矿提供报批手续要县煤管局批、通风系统图、贯通要存档措施) 5.矿井生产水平和采区实行分区通风。通风系统中没有不符合《规程》规定的串联通风、扩散通风、采空区通风和采煤工作面利用局部通风机通风现象。 (看现场) 6.矿井、采区通风能力满足生产要求。每年安排采掘作业计划时核定矿井生产和通风能力,按月、季、年度对矿井及采区进行通风能力核定,按实际供风量核定矿井产量,无超通风能力生产现象。 (要有采掘接替、每月产量计划和每月产量报表。)

矿井瓦斯涌出量预测计算公式精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式(1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中:

q 1一开采层相对瓦斯涌出量,m 3 /t ; K 1一围岩瓦斯涌出系数,取1.2; K 2—工作面丢煤瓦斯涌出系数,取1.18; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取0.83; m 一开采层厚度,6m ; M 一工作面采高,3.5m ; W 0—煤层原始瓦斯含量,m 3/t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。 b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为6.27m ;对于厚煤层,D=2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min),如无实测值可参考式(1-2)计算。

相关文档
最新文档