模糊控制作业
智能控制作业_模糊自适应PID控制

模糊自适应PID 控制的Matlab 仿真设计研究姓名:陈明学号:201208070103班级:智能1201一、 模糊控制思想、PID 控制理论简介:在工业生产过程中,许多被控对象受负荷变化或干扰因素很多基于模糊自适应控制理论, 设计了一种模糊自适应PID 控制器, 具体介绍了这种PID 控制器的控制特点及参数设计规则, 实现PID 控制器的在线自整定和自调整。
通过matlab 软件进行实例,仿真表明, , 提高控制系统实时性和抗干扰能力,易于实现.便于工程应用。
1.1 模糊控制的思想:应用模糊数学的基本理论和方法, 控制规则的条件、操作用模糊集来表示、并把这些模糊控制规则以及有关信息, 诸如PID 控制参数等作为知识存入计算机知识库, 然后计算机根据控制系统的实际情况(系统的输入, 输出) , 运用模糊推理。
1.2 PID 算法:u(t)=k p * e(t)+k i * ∫e(t)t 0dt +k d *de(t)dt= k p *e(t)+ k i *∑e i (t) + k d * e c (t)其中, u (t) 为控制器输出量, e(t) 为误差信号, e c (t)为误差变化率, k p , k i , k d 分别为比例系数、积分系数、微分数。
然而,课本中,为了简化实验难度,只是考虑了kp ,ki 参数的整定。
1.3 模糊PID 控制器的原理图:二、基于Matlab的模糊控制逻辑模块的设计关于模糊逻辑的设计,主要有隶属函数的编辑,参数的选型,模糊规则导入,生成三维图等观察。
2.1 模糊函数的编辑器的设定:打开matlab后,在命令窗口输入“fuzzy”,回车即可出现模糊函数编辑器,基本设置等。
基于课本的实验要求,我选的是二输入(e, e c)二输出(k p ,k i)。
需要注意的是,在命名输入输出函数的时候,下标字母需要借助下划线的编辑,即e_c 能够显示为e c。
2.2四个隶属函数的N, Z, P 函数设定:在隶属函数的设定中,N 选用的是基于trimf(三角形隶属函数) , Z是基于zmf(Z型隶属函数),P是基于smf(S型隶属函数)。
模糊控制3

模糊控制的基本思想
将人类专家对特定对象的控制经验,运用模糊集理论进行量化,转化为可 数学实现的控制器,从而实现对被控对象的控制。
人类专家的控制经验是如何转化为数字控制器的 ?
控制思想:
如果水温偏高,就把燃气阀关小; 如果水温偏低,就把燃气阀开大。
人类对热水器水温的调节
1
3.1 模糊控制的工作原理
x
清晰的隶属函数分布
14
3.2 模糊控制器的结构和设计
• 完备性 属函数的分布必须覆盖语言变量的整个论域,否则,将会出现“空档”, 从而导致失控。
NB NM NS ZO PS PM PB
1
0 -6 -4 -2 0 2 4 6 x
空档
不完备的隶属函数分布
15
3.2 模糊控制器的结构和设计
模糊化过程小结:
1)在隶属度最大的模糊值之间任取一个; 例如当E*=-5时,A*=NB或NM。
NB NM NS ZO PS PM PB 1
0
-6 -5 -4 -2 0
2
4
6x
2)重新定义一个模糊值,该模糊值对于当 前输入精确量的隶属度为1,对于其它精确 量的隶属度为0。
1
0
-6 -5 -4 -2 0
2
4
6x
A* 0 1 0 0 0 0 0 0 0 0 0 0 0 ~ 6 5 4 3 2 1 0 1 2 3 4 5 6
规则库也可以用矩阵表的形式进行描述。 例如在模糊控制直流电机调速系统中,模糊控制器的输入为E(转速误差)、EC (转速误差变化率),输出为U(电机的力矩电流值)。
在E、EC、U的论域上各定义
了7个语言子集:
U
EC
模糊控制原理与应用

模糊控制原理与应用
模糊控制是一种基于模糊逻辑的控制方法,它可以处理那些难以用传
统控制方法精确描述的系统。
模糊控制的基本思想是将输入和输出之
间的关系用模糊集合来描述,然后通过模糊推理来确定控制规则,最
终实现对系统的控制。
模糊控制的优点在于它可以处理那些难以用传统控制方法精确描述的
系统,例如非线性系统、模糊系统、多变量系统等。
此外,模糊控制
还具有较好的鲁棒性和适应性,能够在一定程度上克服系统参数变化
和外部干扰的影响。
模糊控制的应用非常广泛,例如在工业控制、交通控制、机器人控制、医疗诊断等领域都有着广泛的应用。
在工业控制中,模糊控制可以用
于控制温度、湿度、压力等参数,以及控制机器人的运动轨迹和速度。
在交通控制中,模糊控制可以用于控制交通信号灯的时序和周期,以
及优化交通流量。
在医疗诊断中,模糊控制可以用于对患者的病情进
行评估和诊断。
在模糊控制的实现过程中,需要进行模糊化、模糊推理和去模糊化等
步骤。
其中,模糊化是将输入和输出之间的关系用模糊集合来描述,
模糊推理是根据模糊规则进行推理,得出控制结果,去模糊化是将模
糊结果转化为具体的控制量。
总之,模糊控制是一种基于模糊逻辑的控制方法,它可以处理那些难以用传统控制方法精确描述的系统。
模糊控制具有广泛的应用前景,在工业控制、交通控制、机器人控制、医疗诊断等领域都有着广泛的应用。
在模糊控制的实现过程中,需要进行模糊化、模糊推理和去模糊化等步骤。
模糊控制应用示例讲解

0.4
0.2
0
-3
-2
NS
ZR
PS
-1
0
1
PB
2
u3
e de NB NS ZR PS PB
模糊推理规则
NB NS ZR PS PB
PB PB PS PS ZR PB PS PS ZR ZR PS PS ZR ZR NS PS ZR ZR NS NS ZR ZR NS NS NB
模糊控制系统设计
% Example 3.8 % 典型二阶系统的模糊控制 % %被控系统建模 num=20; den=[1.6,4.4,1]; [a1,b,c,d]=tf2ss(num,den); x=[0;0];
第5次课
例1:工业工程控制
例2:典型二阶环节 的模糊控 制
例1: 工业过程
例1: 某一工业过程要根据测量的温度 (t)和压力(p)来确定阀门开启的角
度: f (t, P) 这种关系很难用数
学模型精确描述。实际中由有经验的操 作员完成,因此通常可设计模糊控制器 取而代之。
输入输出变量的论域
0
0
0.5
1
1.5
2
2.5 压力 3
阀门开启角度的模糊隶属度 函数
“负” “零” “正”
1 0.8 0.6 0.4 0.2
0 -10 -8 -6 -4 -2 0 2 4 6 8 10
角度增量
隶属度函数
模糊推理规则库
模糊推理规则有3条:
If 温度“冷” and 压力“高”,则阀门角 度增量为“正”
If 温度“热” and 压力“高”,则阀门角 度增量为“负”
If 压力“正常”,则阀门角度增量为“零 ”
模糊控制算法实例解析(含代码)

模糊控制算法实例解析(含代码)
首先来看一个实例,控制进水阀S1和出水阀S2,使水箱水位保持在目标水位O处。
按照日常操作经验,有以下规则:
1、若当前水位高于目标水位,则向外排水,差值越大,排水越快;
2、若当前水位低于目标水位,则向内注水,差值越大,注水越快;
3、若当前水位和目标水位相差很小,则保持排水速度和注水速度相等。
下面来设计一个模糊控制器
1、选择观测量和控制量
一般选择偏差e,即目标水位和当前水位的差值作为观察量,选取阀门开度u为控制量。
2、输入量和输出量的模糊化
将偏差e划分为5个模糊集,负大(NB)、负小(NS)、零(ZO)、正小(PS)、正大(PB),e为负表示当前水位低于目标水位,e 为正表示当前水位高于目标水位。
设定e的取值范围为[-3,3],隶属度函数如下。
偏差e对应的模糊表如下:隶属度
变化等级-3 -2
-1
1
2
3模糊集
PB 0 0 0 0 0 0.5
1PS 0
0 0.5 1 0.5 0ZO
0 0.5 1 0.5 0
0NS
0 0.5 1 0.5 0
0NB
0.5 0 0 0 0 0。
模糊控制基本实验

1假设一个双输入/单输出系统,输入X∈[-5,5]和Y ∈[-10,10]模糊化成三级:负、零、正,输出Z ∈[-5,5]模糊化成五级:负大、负小、零、正小、正大。
模糊规则表如下所示。
适当选择隶属度函数后,设计一个基于Mamdani模型的模糊推理系统,绘制出输入/输出曲线,并计算当X和Y分别为-3和5以及-2和-7时输出Z的大小。
图1:输入变量X范围及隶属度函数曲线
图2:输入变量Y范围及隶属度函数曲线
图3:输出变量Z范围及隶属度函数曲线
图4:输入输出变量三维曲面图
图5:输入变量X=-3,Y=5时输出变量Z值
图6:输入变量X=-5,Y=-9时输出变量Z 值
2.查找相关文献,设计能跟踪给定输入的模糊控制器,假设系统模型如下:
其中K=30, T1=10, T2=40, Td=2。
(用simulink 搭建系统,对系统进行仿真,给
出系统的阶跃响应曲线)
图7:模糊控制经验规则
)
1)(1()(21s T s T Ke s G s
T d ++=
-
图8:E和EC的范围及隶属度函数曲线
图9:输出变量u的范围及隶属度函数
图10:模糊控制规则
图10:模糊控制规则观察表
图11:输入输出变量三维曲面图
图12:simulink仿真电路图
其中,经过多次试探,当K1=2.4,K2=0.65,K3=1.15时,仿真效果较好。
图13:系统单位阶跃响应输出曲线图。
模糊pid控制实例
模糊pid控制实例
(原创版)
目录
一、模糊 PID 控制的概述
二、模糊 PID 控制的优势
三、模糊 PID 控制的实例分析
四、模糊 PID 控制的应用前景
正文
一、模糊 PID 控制的概述
模糊 PID 控制是一种基于模糊逻辑理论和 PID 控制理论的控制方法,它将 PID 控制器的精度和模糊控制器的智能化相结合,提高了控制的准确性和灵活性。
模糊 PID 控制主要应用于工业控制领域,如电机控制、温度控制等。
二、模糊 PID 控制的优势
相较于传统 PID 控制,模糊 PID 控制具有以下优势:
1.适应性强:模糊 PID 控制可以根据被控对象的特性进行自适应调整,提高了控制的适应性。
2.智能化程度高:模糊 PID 控制利用模糊逻辑理论,可以对控制对象进行智能化识别和控制,提高了控制的准确性。
3.稳定性好:模糊 PID 控制结合了 PID 控制器的稳定性和模糊控制器的智能化,使得控制系统具有较好的稳定性。
三、模糊 PID 控制的实例分析
以电机控制为例,模糊 PID 控制可以根据电机的负载情况和转速变化,自动调整电机的输出功率,实现精确控制。
在实际应用中,模糊 PID
控制可以根据不同的控制需求进行调整,实现对电机的精确控制。
四、模糊 PID 控制的应用前景
随着工业自动化技术的发展,对控制精度和控制速度的要求越来越高。
模糊 PID 控制作为一款具有高精度、高智能化的控制方法,在工业控制
领域具有广泛的应用前景。
机器人模糊控制策略研究共3篇
机器人模糊控制策略研究共3篇机器人模糊控制策略研究1机器人模糊控制策略研究机器人模糊控制是一种基于模糊逻辑理论的控制方法,该方法将传统的精确控制方法转化为一种基于经验规则的模糊控制方法。
该方法具有非线性、鲁棒性强、适应性好等优点,已经在机器人控制、工业自动化等领域得到广泛应用。
本文将对机器人模糊控制策略进行研究探讨。
一、机器人模糊控制基本原理机器人模糊控制的基本原理是将输入与输出之间的映射关系定义为一组规则,这些规则是由人类专家基于经验和知识构建的。
这些规则将输入映射到具有特定控制输出的隶属函数上,根据这些隶属函数进行模糊推理,进而产生输出控制信号。
该方法的主要特点是处理模糊不确定性、模糊不精确性和模糊模糊性。
二、机器人模糊控制系统建模机器人模糊控制系统的设计要求提高控制准确性并降低差错率,因此需要建立准确的机器人模型,如图1所示。
图1:机器人模型按照该模型设计模糊控制系统,可以将系统分为输入、输出和模糊控制三部分。
其中输入部分主要包括传感器采集的控制变量,如机器人的位置、速度和角度等;输出部分主要包括执行器实现的控制行为,如机器人的转向、前进、加速和减速等;模糊控制部分则负责连接输入和输出,根据设定的模糊规则生成模糊控制信号。
具体步骤可以参照图2进行。
图2:机器人模糊控制系统建模三、机器人模糊控制规则设计机器人模糊控制规则是机器人模糊控制系统的核心部分,直接影响机器人控制性能。
其设计目标是使系统在控制机器人运动过程中能够及时、准确、稳定地响应各种变化因素,把握复杂的动态控制环境。
因此机器人模糊控制规则的设计需要考虑系统的动态响应、误差特性、非线性特性等因素。
机器人模糊控制规则的建立方法有多种,比较流行的方法包括知识表达、经验推理、约简方法、层次分析、聚类分析等。
设计规则时需要根据输入、隶属函数以及输出等要素的规律性,建立输入变量与输出变量之间的映射模型,并对模型的适应性、实用性以及复杂性进行评估。
模糊pid控制实例
模糊pid控制实例以下是一个模糊PID控制的简单实例:假设我们要控制一台电机的转速,目标是使电机转速尽可能稳定在设定值附近。
根据模糊PID控制器的工作原理,我们可以进行以下步骤:1. 设定目标值和初始设定值:设定电机转速的目标值,例如1000转/分钟。
同时设置初始的PID参数。
- 设定值(SP,Set Point)= 1000 RPM- 比例增益 (Kp) = 1- 积分时间(Ti) = 1- 微分时间(Td) = 0.12. 测量电机转速:使用传感器或编码器来测量电机当前的转速,得到当前的反馈值。
3. 模糊控制规则建立:基于当前误差(设定值减去反馈值)和误差的变化率,建立一组模糊逻辑规则,例如: - 如果误差为"NB"并且误差变化率为"PB",则输出为"NB"。
- 如果误差为"NB"并且误差变化率为"NM",则输出为"NM"。
- ...4. 模糊推理和模糊输出:根据模糊逻辑规则,进行模糊推理,即将当前的误差和误差变化率映射到模糊输出的隶属度值上。
5. 解模糊:将模糊输出映射回具体的控制量,例如根据模糊输出计算PID控制器的输出量。
6. 更新PID参数:根据误差的变化和模糊输出的结果来更新PID控制器的参数,例如根据误差的大小和变化率来调整PID参数,以使控制更加精确。
7. 反馈控制:将PID控制器的输出量应用于电机,调整电机的转速。
8. 循环控制:循环执行上述步骤,不断更新PID参数和反馈控制,使得电机转速尽可能稳定在设定值附近。
需要注意的是,以上是一个简单的示例,实际的模糊PID控制根据具体的应用情况和系统特点会有所差异。
参数的选择和模糊规则的建立都需要根据具体的控制对象进行优化和调整。
此外,在实际应用中,还需要考虑到系统的鲁棒性、性能指标等因素。
模糊控制方法
模糊控制方法
模糊控制方法主要由模糊化、模糊推理和清晰化三个部分组成。
首先,模糊化是将所有监测出的精确量转换成为适应模糊计算的模糊量。
这个过程需要遵循一定的规则,首先建立隶属度函数,然后根据所建立的隶属度函数将精确的输入量转换成为模糊量。
接着,模糊推理是通过模糊控制器对模糊量进行计算。
在模糊控制算法中,模糊控制规则所使用的是不确定的语言形式,而不是具体的、精确的数字量。
最后,清晰化是将经过模糊控制器计算得到的模糊量再次转换为精确量。
这个过程被称为输出量的反模糊化处理。
然后等待下一次采样,再进行上述过程,如此循环,实现对被控对象的模糊控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业1
停车示意
上图表示了车与停车位置关系。
建立一坐标体系,如下图所示
车的位置由三个变量φ,x,y决定。
任务:设计一个控制系统,其输入为φ∈[-45,45] x、y∈[x0,y0]
输出为θ∈[-40,40]
目标:使货车的最终位置为 xf=x* φ=00
控制小车的前轮角度θ和小车的x,y
假设:车与前后车之间由适当的空地,y方向有较大空地
作业2
试识别图像中的惊讶人或识别视频图像中的惊讶人并给出仿真程序。
作业3
试识别图像中的慌张人或识别视频图像中的慌张并给出仿真程序。
(x,y)
θ
φ