8年级数学(人教版)培优竞赛训练—8、分式的概念、分式的基本性质

合集下载

分式的基本概念及性质.

分式的基本概念及性质.

内容 基本要求略高要求较高要求分式的概念 了解分式的概念,能确定分式有意义的条件能确定使分式的值为零的条件分式的性质 理解分式的基本性质,并能进行简单的变型能用分式的性质进行通分和约分分式的运算 理解分式的加、减、乘、除运算法则会进行简单的分式加、减、乘、除运算,会运用适当的方法解决与分式有关的问题分式的概念:当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式. 一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式. 整式与分式统称为有理式.在理解分式的概念时,注意以下三点: ⑴分式的分母中必然含有字母; ⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开. 分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义. 如:分式1x,当0x ≠时,分式有意义;当0x =时,分式无意义. 分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”. 分式的基本性质:分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a am b bm =,a a mb b m÷=÷(0m ≠).知识点睛中考要求分式的基本概念及性质注意:①在运用分式的基本性质时,基于的前提是0m ≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式; ③分式的基本性质是约分和通分的理论依据.1.⑴x 为何值时,分式2141x x ++无意义? ⑵x 为何值时,分式2132x x -+有意义?⑶x 为何值时,分式211x x -+有意义?2. 若分241++x x 的值为零,则x 的值为________________________. 3. 若22032x xx x +=++,求21(1)x -的值。

分式的概念及基本性质

分式的概念及基本性质
4.分式的基本性质:分式的分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.
二、强化练习
1.在式子 、 、 、 、 、 中,分式的个数有( )
A.2个B.3个C.4个D.5个
2.(2012•钦州)如果把 的x与y都扩大10倍,那么这个代数式的值( )
A.不变B.扩大50倍C.扩大10倍D.缩小到原来的
分式的概念及基本性质
一、基础知识
1.从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;
(2)分式有意义⇔分母不为零;
(3)分式值为零⇔分子为零且分母不为零.
2.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
3.分式与整式的区别主要在于:分ቤተ መጻሕፍቲ ባይዱ中是否含有字母.
6.分式的值为4,则x,y都扩大到原来的两倍后,这个分式的值为4

7.不改变分式的值,把分式 中分子、分母各项系数化成整数为.
8.(2009•淄博)化简 的结果为( )
A.- B. C. D.-b
9.(2012•宜昌)若分式 有意义,则a的取值范围是( )
A.a=0B.a=1C.a≠-1D.a≠0
10.不改变分式的值,将分式 的分子和分母中各项系数都化成整数为。
1.B2.A3.C4.B5.B6.47. 8.B9.C
10.
3.(2007•金昌)若分式 中的x,y的值变为原来的100倍,则此分式的值( )
A.不变B.是原来的100倍
C.是原来的200倍D.是原来的
4.如果把分式 中的x和y都扩大2倍,即分式的值( )
A.扩大4倍B.扩大2倍C.不变D.缩小2倍
5.若把分式 中的x和y都扩大3倍,那么分式的值( )

分式(分式的概念、性质及计算)

分式(分式的概念、性质及计算)

学好分式三步走:1.分式的概念,分式何时有意义,何时值为零2.分式的基本性质,约分,通分3.分式的加、减、乘、除、乘方运算1.分式的概念,分式何时有意义,何时值为零①分式的定义:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式,其中A 叫分子,B 叫分母且B ≠0 。

②分式有意义(或分式存在)的条件:分式的分母不等于零即 B ≠0 。

③分式的值为零的条件:分式的值为零是指分式在有意义的前提下分式的分子为零。

即当A =0且B ≠0时,0AB =。

【例1】 ⑴若分式25x -有意义,则x 的取值范围是( )⑵分式211x x --的值为0,则x 的值为( )2.分式的基本性质,约分,通分①分式的基本性质:分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变。

()0A A M A MM B B M B M ÷==÷×≠×②利用分式的基本性质,约去分子和分母的公因式,但不改变分式的值,这样的分式变形叫做分式的约分。

分子分母中没有公因式的分式叫做最简分式。

③通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个分式变成分母相同的分式。

为了通分,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母。

【例2】 ⑴化简222a b a ab -+的结果为( )分 式⑵化简2244xy y x x --+的结果为( )3.分式的加、减、乘、除、乘方运算分式的乘法 a c a c b d b d⋅⋅=⋅ 分式的除法 a c a d a d b d b c b c ⋅÷=⋅=⋅分式的乘方 nnn a a b b ⎛⎫= ⎪⎝⎭同分母分式相加减 a b a bc c c ±±=异分母分式相加减 acadbc ad bcb d bd bd bd ±±=±=0指数幂 01(0)a a =≠ 负整数指数幂 1p p a a -= (a ≠0,且p 为正整数)【例3】 化简22226211296x x x x x x x x -++++÷--+-思想方法吐血大总结:1.分式是否有意义、何时值为零以及基本性质都和分数相近。

八年级数学分式与分式方程

八年级数学分式与分式方程

八年级数学分式与分式方程分式与分式方程学习资料。

一、分式的概念。

1. 定义。

- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。

例如(1)/(x),(x + 1)/(x - 1)等都是分式,而(2)/(3)不是分式,因为分母是常数3,不含有字母。

2. 分式有意义的条件。

- 分式(A)/(B)有意义的条件是B≠0。

例如,对于分式(1)/(x - 2),当x - 2≠0,即x≠2时,这个分式有意义。

3. 分式值为零的条件。

- 分式(A)/(B)的值为零的条件是A = 0且B≠0。

例如,对于分式(x)/(x+1),当x = 0且x+1≠0(即x≠ - 1)时,分式的值为0。

二、分式的基本性质。

1. 性质内容。

- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。

2. 约分。

- 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

- 例如,对于分式(6x^2y)/(8xy^2),分子分母的公因式是2xy,约分后得到(3x)/(4y)。

3. 通分。

- 定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

- 例如,将(1)/(x)和(1)/(x + 1)通分,先找最简公分母为x(x + 1),则(1)/(x)=(x +1)/(x(x + 1)),(1)/(x+1)=(x)/(x(x + 1))。

三、分式的运算。

1. 分式的乘除法。

- 分式乘分式,用分子的积做积的分子,分母的积做积的分母,即(A)/(B)·(C)/(D)=(A· C)/(B· D)。

例如(2)/(3x)·(6x)/(4)=(2×6x)/(3x×4)= 1。

人教版8年级数学上册15章分式知识点

人教版8年级数学上册15章分式知识点

第十五章 分式一、知识概念:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A叫做分式,A 为分子,B为分母。

1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.6.分式有意义:分母不为0(0B ≠)7.分式无意义:分母为0(0B =)8.分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) 9.分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )10.分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) 11.分式值为1:分子分母值相等(A=B )12.分式值为-1:分子分母值互为相反数(A+B=0)二、分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 三、整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n na a -=(0a ≠,n 是正整数) 四、分式方程的意义:分母中含有未知数的方程叫做分式方程.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程); ②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。

分式概念及性质

分式概念及性质

分式概念及性质分式的概念:当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.整式与分式统称为有理式.在理解分式的概念时,注意以下三点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.如:分式1x,当0x≠时,分式有意义;当0x=时,分式无意义.分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质:分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a amb bm=,a a mb b m÷=÷(0m≠).注意:①在运用分式的基本性质时,基于的前提是0m≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】在下列代数式中,哪些是分式?哪些是整式?1t,(2)3xx+,2211x xx-+-,24xx+,52a,2m,21321xx x+--,3πx-,323a aa+例题精讲知识点睛【例2】 代数式22221131321223xx x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( )A.1个B.1个C.1个D.1个二、分式有意义的条件【例3】 求下列分式有意义的条件:⑴1x⑵33x + ⑶2a b a b+-- ⑷21n m + ⑸22x y x y++ ⑹2128x x -- ⑺293x x -+【例4】 要使分式23x x -有意义,则x 须满足的条件为 .【例5】 ⑴x 为何值时,分式1111x++有意义?⑵要使分式241312a a a-++没有意义,求a 的值.【例6】 x 为何值时,分式1122x++有意义?【例7】 x 为何值时,分式1122x x+-+有意义?【例8】 若分式25011250x x -++有意义,则x ;若分式25011250x x-++无意义,则x ;【例9】 若33a a-有意义,则33a a-( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对【例10】 x 为何值时,分式29113x x-++有意义?【例11】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ; ⑵ 若分式216(3)(4)x x x --+无意义,则x ;三、分式值为零的条件【例12】 当x 为何值时,下列分式的值为0?⑴1x x+ ⑵211x x -+ ⑶33x x -- ⑷237x x ++ ⑸2231x x x +-- ⑹2242x x x-+【巩固】当x 为何值时,下列分式的值为0?⑴213x x -+ ⑵223(1)(2)x x x x --++ ⑶2656x x x --- ⑷221634x x x -+-⑸288x x +⑹2225(5)x x --⑺(8)(1)1x x x -+-【例13】 若分式41x x +-的值为0,则x 的值为 .【巩固】若22x x a-+的值为0,则x = .【巩固】若分式242x x --的值为0,则x 的值为 .【巩固】若分式221x x x +-的值为0,则x 的值为 .【例14】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【巩固】若分式()()321x x x +-+的值不为零,求x 的取值范围.【例15】 x 为何值时,分式29113x x-++分式值为零?【巩固】x 为何值时,分式23455x x x x ++-+值为零?【巩固】若分式233x x x--的值为0,则x = .【巩固】 若分式250011250x x-=++,则x .四、分式的基本性质【例16】 填空:(1)()2ab ba=(2)()32xx xy x y=++(3)()2x y x xyxy++=(4)()222x y x yx xy y+=--+【例17】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴x y x y+- ⑵xy x y- ⑶22x y x y-+【巩固】把下列分式中的字母x 和y 都扩大为原来的5倍,分式的值有什么变化?(1)2x y x y++ (2)22923x x y+【例18】 不改变分式的值,把下列各式的分子与分母的各项系数都化为整数.⑴1.030.023.20.5x y x y+-⑵32431532x yx y-+【巩固】不改变分式的值,把下列各式分子与分母的各项系数都化为整数。

八年级数学下册---分式知识点总结

第十六章 分式1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。

2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

(0≠C )3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=- ()0≠a6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:m n m n a a a+∙=; (2)幂的乘方:()m n mn a a=;(3)积的乘方:()n n n ab a b =; (4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);(5)商的乘方:()nn n a a b b=;(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式的概念和性质

分式的概念和性质分式是初中数学的重点之一,它的概念和性质在数学学习中都非常重要。

在学习分式前,我们需要先了解一下什么是分数。

分数是用以表示整体中一部分的数,通常用两个数之间的横线表示。

其中,分数的上面的数叫做分子,下面的数叫做分母。

分数的基本性质是不变性,即分数的分子和分母乘或除以一个数,得到的新分数仍与原来的分数相等。

分数中分数线上下有约定,使分数具有良好的可读性和利于计算。

分式是一种特殊的分数,其中分数线上下分别由两个代数式代替。

其中,分式的分子和分母都可以是整式、分式和带有根式的式子。

分式的性质如下:1.分式的基本性质:两分式整理后可以加减乘除,其中,加减分式的条件是分式的分母相同,乘除分式则相对灵活。

2.分式的转化:①分式的拆分:可以通过因式分解,把分式化为几个分式的和差形式,然后再进行化简。

②通分:通分是把不同分式的分母化为相同的分母,再进行分式的加减运算。

3.分式的简化:①约分:约分是将分式的分子和分母都除以它们的公因数,使分子和分母的最大公约数为1。

②化简:化简是将分式中的分子和分母都除以一个代数式,使它们互质或分子和分母的最大公约数为1。

4.分式的值域:值域是指对于一个分式来说,分母不能为0,分子也不能使式子无解。

因此,我们需要注意分式的值域问题,在分式的运算时,要避免出现分母为0、分式无解等情况。

5.分式的定义域:定义域是指分式中所有的实数值,使得分式的值存在,也就是说,它不存在0为分母的情况。

定义域可以通过化简分式、判断根式、不等式等方法进行确定。

以上就是关于分式的概念和性质的详细解释。

在数学学习中,分式是一个重要的知识点,它不仅广泛应用于代数、数学中,也是日常生活中普遍使用的数学概念之一。

在学习分式时,我们需要搞清楚分式的概念和性质,掌握它们的相关计算方法,这样才能够在数学学习中做好分式的运算和推导。

八年级下册数学的分式知识点整理

八年级下册数学的分式知识点整理八年级下册数学的分式知识点整理在平时的学习中,大家最不陌生的就是知识点吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

为了帮助大家掌握重要知识点,下面是店铺精心整理的八年级下册数学的分式知识点整理,欢迎大家分享。

1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。

3.分式值为零的`条件:分式AB =0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。

)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为 (其中A、B、C是整式 ),5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。

6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。

约分的关键是找出分式中分子和分母的公因式。

(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。

最新人教版八年级上册数学同步培优课件第15章 第2课时 分式的基本性质


(1)213aa-+12bb=
2a+6b 12a-3b ;
a-3b
(2)00..0015aa-+00..0034bb= 5a+4b .
返回
数学
知识点二:分式的约分、最简分式 (1)根据分式的基本性质,把一个分式的分子与分母的 公因式 约去,叫做分式的约分. (2)分子与分母没有公因式的式子,叫做 最简分式 .
返回
数学
变式练习
8.(1)通分:12,23,14.
12=
6 12
,32=
8 12
,41=
3 12

返回
数学
(2)填空:
①2yx=
3xy 6x2
,35xy2=Leabharlann 10y 6x2;②a+1 3=a+3a- a3-3 ,a-1 3=a-a3+a3+3.
返回
数学
5.【例 2】约分:
(1)8xx52=xx22··x83=
返回
数学
(2)-a+1 b=ba2--ba2. 解:错误.理由是:分子、分母同乘的是 a-b,但是不能保
证 a-b≠0,所以变形不一定正确.
返回
x3 8

(2)-73m5m2nn2=7m7nm·n-·m5n= -5mn ;
(3)a2+a26-a+9 9= a+3a+·3a-2 3=
a+3 a-3
.
小结:分式的分子、分母是多项式时,
一般地对分子、分母先进行因式分解.
返回
数学
9.约分:
(1)-2106xxy24y3=
4xy3 ·-4x= 4xy3·5y
返回
数学
精典范例
4.【例 1】(1)约分:
①182=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7年级数学上册(人教版)试题、练习及答案 1 8、分式的概念、分式的基本性质 【知识精读】 分式的概念要注意以下几点: (1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用; (2)分式的分子可以含字母,也可以不含字母,但分母必须含有字母; (3)分式有意义的条件是分母不能为0。 分式的基本性质类似于分数的基本性质,是分式的符号变换法则、约分和通分的理论基础。在运用分式的基本性质时,要抓住对性质中的“都”与“同”两个字的理解,并注意法则中M“不为零”的条件。 下面我们通过习题进一步理解分式的有关概念。 【分类解析】

例1. 已知ab,为有理数,要使分式ab的值为非负数,ab,应满足的条件是( ) A. ab00, B. ab00, C. ab00, D. ab00,,或ab00, 分析:首先考虑分母b0,但a可以等于0,由ab0,得ab00,,或ab00,,故选择D。

例2. 当x为何值时,分式||xx55的值为零? 分析:分式的值为零必须满足两个条件:(1)分子为零;(2)分母不为零。 解:由题意得,得||xx505,,而当x5时,分母x5的值为零。

当x5时,分式55||xx的值为零。

例3. 已知113ab,求2322aabbaabb的值( ) A. 12 B. 23 C. 95 D. 4 分析:113113abba,,将分式的分母和分子都除以ab,得

23222231122333295aabbaabbbaba(),故选择C。 7年级数学上册(人教版)试题、练习及答案 2 例4. 已知xy20,求xxyyxxyy2222323的值。 分析:根据已知条件,先消元,再化简求值。 解:xyxy202

原式()()2322223222222yyyyyy

yy22717

例5. 已知:xx210,求xx441的值。 解一:由xx210得x0,等式两边同除以x得: xx110,即xx11 xxxx44441122 ()[()()]()()()[()]xxxxxxxxxxxxxx22222222121121122

1142

527 解二:由已知得:xx11,两边平方得:xx2213 两边平方得:xx4417

中考点拨: 1.若代数式()()||xxx211的值为零,则x的取值范围应为( ) A. x2或x1 B. x1 C. x2 D. x2 解:由已知得:()()||xxx21010 解得:x2 故选D 简析:在求解分式值为零的题目时,考虑到分子为零,但不要忽略了分母不为零这一条7年级数学上册(人教版)试题、练习及答案 3 件。 2. 已知:xyz3460,求xyzxyz的值。

解:设xyzk3460,则xkykzk346,, xyzxyzkkkkkk34634615

题型展示: 1. x为何值时,||xxxx123132成立?

解:||||()()xxxxxx1231312 当x1且x3时,分式xxx1232与13x都有意义。 当||xx11时,由分式的基本性质知: ||()()()()xxxxxxx13113113

解不等式组:xxx1013 得:x1 当x1时,xxxx123132

说明:利用分式的基本性质解决恒等变形问题是基本性质的灵活运用,注意分式的基本性质所适用的条件是分式有意义,做题时应考虑分母不为零的条件。

2. 把分式1882483222ababab化为一个整式和一个分子为常数的分式的和,并且求出这个整式与分式的乘积等于多少? 解:原式2912483222()aabbab 7年级数学上册(人教版)试题、练习及答案

4 2328322328322()()abab

abab

23283216()abab

说明:利用因式分解、分式的基本性质可以化简分式。

【实战模拟】 1. 在下列有理式221121axxmnxyxyyab,,,,()()中,分式的个数是( ) A. 1 B. 2 C. 3 D. 4 2. 如果分式aaa22426的值为零,则a的值为( ) A. 2 B. -2 C. a2且a2 D. 0 3. 填空题:

(1)xyxyxyxyxy()()()()

(2)当a_______时,分式aaa132的值等于零; 当a_______时,分式aaa132无意义。

4. 化简分式:xxxxxx32325396512 5. 已知:xyyy22402,,求yxy的值。 6. 已知:abc0, 求abcbcacab()()()1111113的值。 7年级数学上册(人教版)试题、练习及答案

5 【试题答案】 1. 简析:判断一个有理式是否为分式,关键在于看分母中是含有字母,故选D。 2. B

说明:分式值为0的条件:分子为分母不为00

3. (1)xyxyyxxyyxxyxyxy()()()() (2)当a1时,aaa132的值为0。 当a0或a1时,aaa132无意义。

4. 解:原式()()()()()()xxxxxxxxxx3223226699771212 ()()()()()()()()()xxxxxxxxxxxxx1691712

1313434

22

2

说明:利用因式分解把分子、分母恒等变形,再约分。 5. 解:xyxy22,

24022022yyyy,

yxyyxyyyyyyy22222()

yyyy2223232

说明:变形已知条件,先消元,再化简求值。 6. 解:abc0

abcbcacab,,

原式abacbabccacb3 7年级数学上册(人教版)试题、练习及答案

6 bcaacbabcaabbcc3311130

试题使用说明 各位使用者: 本试题均是经过精心收集整理,目标是为广大中小学教师或家长在教学或孩子教育上提供方便! 附:如何养成良好的数学学习习惯 “习惯是所有伟人的奴仆,也是所有失败者的帮凶.伟人之所以伟大,得益于习惯的鼎力相助,失败者之所以失败,习惯的罪责同样不可推卸.”由此可知,良好的数学学习习惯是提高数学成绩的制胜法宝.良好的数学学习习惯有哪些呢?初中数学应该从课堂学习、课外作业和测试检查等方面养成良好的学习习惯. 一、课堂学习的习惯 课堂学习是学习活动的主要阵地.课堂学习习惯主要表现为:会笔记、会比较、会质疑、会分析、会合作. 1.会笔记 上课做笔记并不是简单地将老师的板书进行抄写,而是将学到的知识点、一些类型题的解题一般规律和技巧、常见的错误等进行整理.做笔记实际是对数学内容的浓缩提炼.要经常翻阅笔记,加强理解,巩固记忆.另外,做笔记还能使你的注意力集中,学习效率更高. 2.会比较 在学习基础知识(如概念、定义、法则、定理等)时,要运用对比、类比、举反例等思维方式,理解它们的内涵和外延,将类似的、易混淆的基础知识加以区分.如找出“同类项”和“同类二次根式”,“正比例函数”和“一次函数”,“轴对称图形”和“中心对称图形”,“平方根”和“立方根”,“半径”和“直径”,等概念的异同点,达到合理运用的目的. 3.会质疑 “学者要会疑”,要善于发现和寻找自己的思维误区,向老师或同学提问.积极提问是课堂学习中获得知识的重要途径,同时也要敢于向老师同学的观点、做法质疑,锻炼自己的批判性思维.学习中哪怕有一点点的问题,也要大胆提问,不能留下知识上的“死角”,否则问题就会积少成多,为后续学习设置障碍. 7年级数学上册(人教版)试题、练习及答案 7 4.会分析 一是要认真审题:先弄清楚题目给出的条件和要解答的问题,把一些已知条件填在图形上,并将一些关键词做好标记,达到显露已知条件,同时又挖掘隐含条件的目的.如做几何体时,将已知的相等的角、线段、面积及已知的角、线段、位置关系等在图形中做好标记,避免忘记.再如做应用题时,象“不超过”“不足”等字眼,就暗示着存在不等量关系.只有弄清楚已知条件和所要解答的问题才能有目的、有方向地解题;二是要认真思索:依据题目中题设和结论,寻找它们的内在联系,由题设探求结论,即“由因求果”,或从结论入手,根据问题的条件找到解决问题的方法,即“由果索因”,或将两种方法结合起来,需找解题方法.要注意“一题多解”、“一题多变”、“一图多用”、“一法多题”等,拓展思路,训练自己的求异思维. 5.会合作 英国著名剧作家萧伯纳曾经说过“你给我一个苹果,我给你一个苹果,我们每人只有一个苹果;你给我一个思想,我给你一个思想,我们每人就有两个思想了”,这足以说明合作、交流的学习方式的重要性.我们主要的学习方式是自主学习,在独立思考的基础上,要适时地和同桌交流意见.在小组学习期间,要积极发表自己的观点和见解,倾听他人的发言,并作出合理的评判,以锻炼自己的表达能力和鉴别能力. 二、课外作业的习惯 课外作业是数学学习活动的一个组成部分,它包括:复习、作业等. 1.复习 及时复习当天学过的数学知识,弄清新学的内容、重点内容及难于理解和掌握的内容.首先凭大脑的追忆,想不起来再阅读课本及笔记.在最短的时间内进行复习,对知识的理解和运用的效果才能最好,相隔时间长了去复习,其效果不明显,“学而时习之”就是这个道理.同时,要坚持每天、每周、每单元、每学期进行复习,使复习层层递进、环环紧扣,这样才能在正确理解知识的基础上,熟练地运用知识. 2.作业 会学习的同学都是当天作业当天完成,先复习,后做作业.一定要独立完成,决不能依赖别人.书写一定要整洁,逻辑一定要条理.对作业要自我检查,及时改正存在的错误, 三、测试、检查的习惯 1.认真总结 测试、检查前,可以借助于笔记,把某一阶段的知识加以系统化、深化,弥补知识的缺陷,进一步掌握所学知识. 2.认真反思 测试、检查后,通过回顾反思,查清知识缺陷和薄弱环节,寻找失误的原因,改进学习方法,明确努力方向,使以后的测试、检查取得成功. 良好的学习习惯是提高我们学习成绩的决定因素,但必须持之以恒.

相关文档
最新文档