有理数的加减混合运算(一)导学案

合集下载

有理数加减法的混合运算教案

有理数加减法的混合运算教案

有理数加减法的混合运算教案教案标题:有理数加减法的混合运算教案一、教学目标:1. 知识与技能目标:- 掌握有理数加减法的基本概念和运算规则;- 能够灵活运用有理数加减法进行混合运算;- 能够解决实际问题中涉及有理数加减法的计算。

2. 过程与方法目标:- 培养学生观察问题、分析问题和解决问题的能力;- 培养学生合作学习和交流的能力;- 培养学生运用计算工具进行有理数运算的能力。

3. 情感态度与价值观目标:- 培养学生对数学的兴趣和自信心;- 培养学生团队合作和分享的精神;- 培养学生对实际问题进行数学建模和解决的能力。

二、教学重点:- 掌握有理数加减法的基本概念和运算规则;- 能够灵活运用有理数加减法进行混合运算。

三、教学难点:- 解决实际问题中涉及有理数加减法的计算。

四、教学准备:- 教学课件、教学板书;- 教学实例和练习题;- 计算工具(如计算器)。

五、教学过程:Step 1: 导入新知1. 引入问题:假设有一个银行账户,初始存款为100元,之后每月存入50元,每月支出30元,那么经过5个月后,账户的余额是多少?2. 学生思考并交流解决问题的方法。

Step 2: 知识讲解1. 通过上述问题引入有理数的概念,解释有理数的定义和表示方法。

2. 讲解有理数加减法的基本规则,并通过示例进行讲解和演示。

Step 3: 学习实践1. 分组合作:将学生分组,每组3-4人,让他们自行设计一个有关有理数加减法的实际问题,并互相交换问题进行解答。

2. 教师巡回指导,引导学生观察问题、分析问题,并运用有理数加减法进行计算。

Step 4: 讲解归纳1. 教师引导学生总结有理数加减法的运算规则,并进行板书。

2. 教师讲解解决实际问题的思路和方法,引导学生理解并运用。

Step 5: 练习巩固1. 教师出示一些有理数加减法的练习题,让学生独立完成。

2. 学生互相交流答案,并进行讨论。

Step 6: 拓展应用1. 教师提供一些更复杂的实际问题,让学生运用所学知识进行解决。

实数教案--有理数的加减混合运算(1)

实数教案--有理数的加减混合运算(1)

一、课题§2.6有理数的加减混合运算(1)二、教学目标1.使学生理解有理数的加减法可以互相转化,并了解代数和概念;2.使学生熟练地进行有理数的加减混合运算;3.培养学生的运算能力.三、教学重点和难点重点:准确迅速地进行有理数的加减混合运算.难点:减法直接转化为加法及混合运算的准确性.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有认知结构提出问题1.叙述有理数加法法则.2.叙述有理数减法法则.3.叙述加法的运算律.4.符号“+”和“-”各表达哪些意义?5.化简:+(+3);+(-3);-(+3);-(-3).6.口算:(1)2-7; (2)(-2)-7; (3)(-2)-(-7); (4)2+(-7);(5)(-2)+(-7); (6)7-2; (7)(-2)+7; (8)2-(-7).(二)、讲授新课1.加减法统一成加法算式以上口算题中(1),(2),(3),(6),(8)都是减法,按减法法则可写成加上它们的相反数.同样,(-11)-7+(-9)-(-6)按减法法则应为(-11)+(-7)+(-9)+(+6),这样便把加减法统一成加法算式.几个正数或负数的和称为代数和.再看16-(-2)+(-4)-(-6)-7写成代数和是16+2+(-4)+6+(-7).既然都可以写成代数和,加号可以省略,每个括号都可以省略,如:(-11)-7+(-9)-(-6)=-11-7-9+6,读作“负11,负7,负9,正6的和”,运算上可读作“负11减7减9加6”;16+2+(-4)+6+(-7)=16+2-4+6-7,读作“正16,正2,负4,正6,负7的和”,运算上读作“16加2减4加6减7”.例1把(-20)+(+3)-(+5)-(-7)写成省略括号的和的形式,并把它读出来.课堂练习(1)把下面各式写成省略括号的和的形式:①10+(+4)+(-6)-(-5);②(-8)-(+4)+(-7)-(+9).(2)说出式子8-7+4-6两种读法.2.加法运算律的运用既然是代数和,当然可以运用有理数加法运算律:a+b=b+a,(a+b)+c=a+(b+c).例2计算-20+3-5+7.解:-20+3-5+7=-20-5+3+7=-25+10=-15.注意这里既交换又结合,交换时应连同数字前的符号一起交换.课堂练习(1)计算:①-1+2-3-4+5;②(-8)-(+4)+(-6)-(-1).(2)用较为简便的方法计算下列各题:(三)、小结1.有理数的加减法可统一成加法.2.因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.七、练习设计1.计算:(1)3-8; (2)-4+7; (3)-6-9; (4)8-12;(5)-15+7; (6)0-2; (7)-5-9+3; (8)10-17+8;(9)-3-4+19-11; (10)-8+ 12-16-23.2.计算:(1)-4.2+5.7-8.4+10; (2)6.1-3.7-4.9+1.8;3.计算:(1)-216-157+348+512-678; (2)81.26-293.8+8.74+111;4.计算:(1)12-(-18)+(-7)-15; (2)-40-28-(-19)+(-24)-(-32);5.计算:(1)(+12)-(-18)+(-7)-(+15);(2)(-40)-(+28)-(-19)+(-24)-(32);(3)(+4.7)-(-8.9)-(+7.5)+(-6);八、板书设计九、教学后记。

有理数的加减法教案

有理数的加减法教案

《有理数的加减法》教案一教学目标1.知识与技能 :在有理数加、减法混合运算的教学过程中,掌握计算方法,培养学生的运算能力.2.数学思考:通过观察,比较,归纳等得出有理数加减混合运算的方法。

3.解决问题 :能运用有理数加、减法法则解决混合运算和实际问题。

4.情感与态度 :认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

二教学重点:省略加号、括号,得到简单的书写方式,再进行加法运算三教学难点:培养学生良好的思维习惯(先准确判断加减法的类型后计算) 三教学模式:启发式四教学过程设计(一 ) 知识要点回顾1 有理数加法法则2 运算律(1) 加法交换律(2) 加法结合律3 有理数减法法则例1计算下列各式1 )-23+(-12) 2) -16+293)(-2008)+2008 4 ) 0+(-7)例2、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.•某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,•+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升? 课堂练习1抢答(1) 5+(-6)(2) -(-7)+(-2)(3) (-4)+(-5)(4)-4+(-6);(5)15+(-17)(6)-3+3(7) (+9)+(-7)+(+10)+(-3)+(-9)2 计算(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-532)+(452)+(-131) 例3 计算(1) 3-(-3)=_______; (2) (-11)-2=_______;(3) 0-(-6)=_______; (4) (-7)-(+8)=_______;(5) -12-(-5)=________;例4把下列两个式子写成省略括号的和的形式.把它读出来,并计算出结果.(1)(-5)-(+9.6)+(+7.3)+(-0.7)-(-3.07);(2)4 35-(+213)-(-4.8)+(-323)-(+4.6)课堂练习1.计算:(1)(3.1+4.2)-(4.2-1.9);(2)(-2.4)-0.6-1.8;(3)(-41)-83+169; (4)(-71)-(-72)-173; (5)(-1)-(+331)-(-132); (6)(-9)-(+9)-(-18)-9.三 综合应用1 .如果|a|=7,|b|=5,试求a-b 的值.思路解析:本题中对a 、b 分成四种取值情况进行讨论.解:∵|a|=7,|b|=5,∴a=±7,b=±5.因此,有四种可能:(1)当a=7,b=5时,a-b=2;(2)当a=7,b=-5时,a-b=12;(3)当a=-7,b=5时,a-b=-12;(4)当a=-7,b=-5时,a-b=-2.四作业1 .有一批小麦,标准质量为每袋90千克,现抽取10袋样品进行称重检测,结果如下(单位:千克):97,95,86,96,94,93,87,98,91.这10袋小麦的总质量是多少?总计超过标准质量多少千克或不足标准质量多少千克?3.计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).思路解析:本题是有理数的减法运算,根据有理数减法法则,把减法全部转化为加法再进行计算,同时也可运用加法运算律使计算简便.解:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.4.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下:(单位:千米)+15,-4,+13,―10,―12,+3,―13,―17.(1)将最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?思路解析:要求出小王距出车地点的距离,就是求所给的数据的代数和;要求出汽车耗油多少升,就要先求出汽车的行程,而汽车的行程是所给数据的绝对值的和解:(1)(+15)+(-4)+(+13)+(―10)+(―12)+(+3)+(―13)+(―17)=-25.所以最后一名老师送到目的地时,小王在出车地点的西方,距离是25千米.(2)|+15|+|-4|+|+13|+|―10|+|―12|+|+3|+|―13|+|―17|=87.0.4× 87 = 34.8.所以这天下午汽车共耗油34.8升.5 .已知a=-12,b=-14,c=13,求下列各式的值.(1)a-b+c;(2)a-b-c.思路解析:用数字去代替代数式中相应的字母时,必须用括号将数字和它前面的性质符号在一起,然后再进行运算.解:(1)a-b+c=(-12)-(-14)+13=-12+14+13=112;(2)a-b-c=(-12)-(-14)-13=-12+14-6 .如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?思路解析:求两点间的距离就是用表示这两点的数相减,由于求的是“距离”,所以结果应是正数,因此,将相减的式子求绝对值即可.解:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。

12.北师大七年级数学上册2.6 有理数的加减混合运算 第1课时-教案

12.北师大七年级数学上册2.6 有理数的加减混合运算 第1课时-教案

2.6有理数的加减混合运算第1课时 有理数的加减混合运算及运算律教学目标【知识与技能】初步会用有理数的加、减运算法则进行混合运算.【过程与方法】由游戏引入有理数的加减混合运算,按照从左到右的顺序进行计算.【情感态度价值观】利用游戏来训练有理数的加减混合运算,以增加学习的趣味性.教学重难点【教学重点】准确迅速地进行有理数的加减混合运算.【教学难点】减法直接转化为加法及混合运算的准确性.课前准备课件教学过程第一环节 情境引入游戏一(1)每人每次抽取2张卡片.如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果大的为胜者.游戏升级(1)每人每次抽取4张卡片.如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果大的为胜者.第二环节 探索新知有理数的加减混合运算首先:根据运算顺序从左往右依次计算;其次:每两个数间的运算根据加法或减法的法则 进行计算.(不要忘了,小学的运算知识、方法同样可以运用哦!)例1 计算: (1) ; (2)第三环节 牛刀小试1.计算: (1) (2) (3) (4) 377)21()5(-+---5451)53(-+-214149-+-21)43(41--+)52()352(71---+-3)5.4(5.11----第四环节 巩固提升计算(1)(+10)+(-8)-(-12)+7 (2)-3-4+19-11(3)6.1-3.7+(-4.3)+0.9 (4)第五环节 课堂小结有理数的加减混合运算,可以根据运算顺序从左往右依次计算,其中每两个数间的运算根据加法或减法的法则进行.第六环节 课后作业1.计算:(1)4.7-3.4+(-8.3) (2)(3) (4) 2、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下:(单位:千克)2,3,-7.5,-3.5,-8,3.5,4.5,8,-1.510名学生的平均体重为多少?初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行)85()18(83)8(--+++-)51(21)5.2(-+--61)25.0(21---)21()65(31---+8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180 °18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20平行四边形判定定理1两组对角分别相等的四边形是平行四边形21平行四边形判定定理2两组对边分别相等的四边形是平行四边形22平行四边形判定定理3对角线互相平分的四边形是平行四边形23平行四边形判定定理4一组对边平行相等的四边形是平行四边形24矩形性质定理1矩形的四个角都是直角25矩形性质定理2矩形的对角线相等26矩形判定定理1有三个角是直角的四边形是矩形27矩形判定定理2对角线相等的平行四边形是矩形28菱形性质定理1菱形的四条边都相等29菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角30菱形面积= 对角线乘积的一半,即S= (a×b )÷231菱形判定定理1四边都相等的四边形是菱形32菱形判定定理2对角线互相垂直的平行四边形是菱形33正方形性质定理1正方形的四个角都是直角,四条边都相等34正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35定理1关于中心对称的两个图形是全等的36定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38等腰梯形性质定理等腰梯形在同一底上的两个角相等。

有理数加减及混合运算教案

有理数加减及混合运算教案

有理数的加法(1)20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答。

可是上述问题不能得到确定答案,因为问题中并未指出行走方向。

二、讲授新课:1.发现、总结:我们必须把问题说得明确些,并规定向东为正,向西为负。

(1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50, 即这位同学位于原来位置的东方50米处。

这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处, 写成算式就是: (―20)+(―30)=―50。

(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。

(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。

即这位同学位于原来位置的( )方( )米处。

后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不仿仍可看作运动的方向和路程):你能发现和与两个加数的符号和绝对值之间有什么关系吗?(+4)+(―3)=( ); (+3)+(―10)=( ); (―5)+(+7)=( ); (―6)+ 2 = ( )。

再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=( )。

(6)第一次向西走了30米,第二次没走.写成算式是:(―30)+ 0 =( )。

我们不难得出它们的结果。

2.概括:综合以上情形,我们得到有理数的加法法则: 1. 同号两数相加,取相同的符号,并把绝对值相加;2. 绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;3. 互为相反数的两个数相加得0;4. 一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。

加减法复习课

加减法复习课

永和学校 六年级数学 主 备 人 王海涛 王杨 审阅人 使用时间 班级 姓名1 有理数的加减法复习课导学案 学习目标:(1分钟)1、掌握有理数的加、减法法则;2、熟练进行有理数的加减法混合运算。

导入(1分钟):本节复习有理数的加减法混合运算 自主学习(知识点巩固)(7分钟) 1、有理数的加法法则①同号两数相加,取 的符号,并把 相加。

②绝对值不相等的异号两数相加,取 的符号,并用 减去 。

互为相反数的两数相加得 ③一个数同0相加仍得有理数的加法交换律是 ,用字母表示为:a+b= ,2、①有理数的加法交换律是 , 用字母表示为:a+b= ,②有理数的加法结合律是 用字母表示为:(a+b)+c= ,4、有理数减法法则:减去一个数,等于 上这个数的相反数。

反馈交流(教师提问每组2号)(3分钟) 合作探究:(训练提升)(10分钟)1、某市一天上午气温是10度,下午上升-2度,半夜下降5度,则半夜的气温市( )度 A:-15 B:3 C:-3 D:152、若︱m ︱=3,︱n ︱=2,︱m+n ︱=( ) A:5 B:1 C:3或1 D :-1,-5,1,53、把18-(—33)+(-21)-(-42)写成省略括号的和是( ) A:18+(-33)+(-21)+42 B:18-33-21+42 C:18-33-21-42 D:18+33-21-424、算式-3-5不能读作( )A:-3与5的差 B :-3与-5的和C :-3与-5的差D :-3减去5 5、若b ‹0,则a-b,a+b,a 中最的数是( ) A:a B:a-b C:a+b D:a-b 6、计算(1)(-5)-(-10)+(-32)-(-7) (2)-3221 -541-(-371)+3.25+276-(-2821) (3)1-2+3-4+5-6+…+99-100 (7) )()()()(813-414-215--874-++ 6.“中国联通”股票3月28日的开盘价是9.25元,最高价比开盘价高0.65元,最低 价比开盘价低0.2元,收盘价比开盘价低0.3元.(1)写出这一天的最高价、最低价、收盘价分别是 元;(2)最高价比最低价高 元,收盘价比最高价高 元. 7.若︱x-1︱+︱y+3︱=0,求y-x-21的值.8.已知a,b 是有理数,在数轴上的位置如图:化简:︱b ︱-︱a ︱+︱a-b ︱+︱a+b ︱.展示提升(选择题找学生口头讲解,计算题找各组1、6号板演) (10分钟)教师精讲点拨(5分钟)课堂小结,整理笔记(4分钟) 当堂测试(4分钟)1、计算(1)20-36 (2) -3+5-8 (3)-17+17-262、数轴上点A 表示-3,点B 表示1,则表示两点间的距离的算式是( ) A:-3+5 B:3-1 C:1-(-3) D:1-33.经过1998年的特大洪水的灾害,每年夏天水库管理员相当警觉,水库的警戒水位18.8米,值班人员记录了一周的水位变化情况,如下表,(单位:上周末刚好达到警戒水位,去警戒水位为0米) (1)本周哪一天水位最高?哪一天水位最低?他们与警戒水位的距离是多少? (2)是说明本周的水位变化的总体情况;(3)若超过警戒水位1.5米时就要开闸放水,以确保大坝安全,是问在哪一天需要开闸放水?星期 一 二 三 四 五 六 日 变化情况0.40.5-0.20.40.5-0.1-0.3ba。

人教版七年级上册有理数的加减混合运算学案无答案

C、a+(-b)+(-c) D、a+(-b)-(+c)
2、计算:(-7)-9-(-3)+(-5)
3、计算:[(-5)-(-8)]-(-4)
4、计算:-4.2+5.7-8.4+10
5、计算:0-
教后
反思:
郾城区第二实验中学导学案
七年级数学学科撰写人:师娟班级:______使用人:______
有理数的加减混合运算
学习目标:会将有理数的加减混合运算转化为有理数的加法运算。
学习重点:合理运用运算律简化运算。
学习难点:对有理数加减混合运算运算过程的理解。
教学过程:
【一】、创景引入激发兴趣
活动一:问题:小数减大数能减吗?
2、计算:-100+(20)+(+35)+(-25)
【四】、归纳小结,拓展延伸
1、本节课你学了哪些知识,你能说一说吗?
2、教师引导学生回忆本节课所学内容,在进行加减混合运算时,可以统一成加法计算。
【五】、课堂作业
1、下列各式可以写成a-b+c的是()
A、a-(+b)-(+c) B、a-(+b)-(-c)
例如1-2= -1-0= 3-8=
思考交流:转化成加法就可以了,结果是负值。
【二】、明确目标自主学习
活动二:1、北京某日早晨的气温是-100C,中午上升了30C,下午下降40C,晚上又下降了50C,你能求出晚上的气温是多少度吗?
2、某人在矿井下-100米处检修设备,1小时后他上升了20米,半小时后他又上升了35米,再过1小时他又下降了25米,求该工人现在的处的位置,有几种不同的列式?
【三】、学情反馈,当堂训练

七年级上册数学教案设计1.3.2第2课时有理数加减混合运算1(附模拟试卷含答案)

第2课时 有理数的加减混合运算1.会把有理数的加减混合运算统一成加法运算;2.熟练掌握有理数的加减混合运算及其运算顺序;(重点)3.能根据具体问题,适当运用运算律进行简化运算.(难点)一、情境导入一架飞机进行特技表演,雷达记录起飞后的高度变化如下表:此时飞机比起飞点高多少千米?小组探究此时飞机与起飞点的高度,得出以下两种计算方法:(1)4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米); (2)4.5-3.2+1.1-1.4=1.3+1.1-1.4=2.4-1.4=1(千米). 比较以上两种算法,你发现了什么? 二、合作探究探究点一:加减混合运算统一成加法运算将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(-13)-(-7)+(-21)-(+9)+(+32)解析:先把加减法统一成加法,再省略括号和加号;读有理式,式子中第一项的符号,要作为这一项的符号读出正负来,式子中的符号就读作加或减.解:(-13)-(-7)+(-21)-(+9)+(+32)=-13+7-21-9+32. 读法①:负13、正7、负21、负9、正32的和; 读法②:负13减去负7减去21减去9加上32.方法总结:注意掌握括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号.探究点二:有理数的加减混合运算计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|;(2)-1423+11215-(-1223)-14+(-11215);(3)23-18-(-13)+(-38). 解析:本题根据有理数加减互为逆运算的关系把减法统一成加法,省略加号后,运用加法运算律,简化运算,求出结果.其中互为相反数的两数先结合;能凑成整数的各数先结合.另外,同号各数先结合;同分母或易通分的各数先结合.解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2+0-14=-16;(3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12.方法总结:(1)为使运算简便,可适当运用加法的结合律与交换律.在交换加数的位置时,要连同前面的符号一起交换.(2)注意同分母分数相加,互为相反数相加,凑成整数的数相加,这样计算简便.(3)当一个算式中既有小数又有分数时,一般要统一,具体是统一成分数还是小数,要看哪一种计算简便.探究点三:利用有理数加减运算解决实际问题下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位.单位:米).(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)以警戒水位为基准,前两天的水位是上升的,星期一的水位是+0.20米;星期二的水位是+0.20+0.81=1.01米;星期三的水位是+1.01-0.35=+0.66米;星期四的水位是:+0.66+0.13=0.79米;星期五的水位是:0.79+0.28=1.07米;星期六的水位是:1.07-0.36=0.71米;星期日的水位是:0.71-0.01=0.7米;则水位最低的一天是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米;则本周末河流的水位是上升了0.7米.方法总结:解此题的关键是分析题意列出算式,采用的数学思想是转化思想,即把实际问题转化成数学问题.三、板书设计1.有理数的加减混合运算(1)将减法转化为加法,然后去掉括号和加号.(2)运用加法法则和运算律进行计算.2.加法运算律(1)结合律:(a+b)+c=a+(b+c).(2)交换律:a+b=b+a.本节课是学生在学习了有理数的加法和减法的基础上进行的.通过本节课的学习使学生知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式,并能熟练掌握有理数的加减混合运算及其运算顺序.本节课本着“扎实、有效”的原则,既关注课堂教学的本质,又注重学生能力的培养,且面向全体学生来设计教学.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图是某几何体的表面展开图,则该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱2.如图,点A、B在线段EF上,点M、N分别是线段EA、BF的中点,EA:AB:BF=1:2:3,若MN=8cm,则线段EF的长是()A.10 cmB.11 cmC.12 cmD.13 cm3.如图,OB是∠AOC的平分线,OD是∠COE的平分线.如果∠AOB=50°,∠COE=60°,则下列结论错误的是( )A.∠AOE=110°B.∠BOD=80°C.∠BOC=50°D.∠DOE=30°4.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了()A.10场B.11场C.12场D.13场5.有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干。

《有理数的加减混合运算》word教案 (公开课)2022年北师大版 (1)

第二章有理数及其运算 6 有理数的加减混合运算第1课时教学重点与难点教学重点:1.含有分数或小数的有理数加减运算.2.有的题目可以先写成省略括号的和的形式再计算.3.还有的题目可以先将加减运算统一成加法,再按照加法法那么计算.教学难点:1.感受算法的多样化,并选择好适合自己思维特点的某种方法.2.用加减法列出算式解决生活中的实际问题.学情分析认知根底:学生在前面几节课中已经学习过有理数的加法、减法的法那么,并利用它们解决了一些简单的实际问题,但前面的运算多为整数运算不含分数或小数的运算,且多为单纯的加法或减法运算,而很少有加法、减法的混合运算.同时在本章前面的数学学习中学生已经具备了一定的运算技能,这些为本节课的学习作了很好的知识准备.活动经验根底:前面所学的内容虽然比拟单一,但是即使是一道加法计算题,往往也有不同的算法,而且有的算法明显比拟简捷.例如学生们在计算同一道题时,有的同学算的特别快,而有的同学就要算很长时间.这种差异,使得算得快的同学有优越感,算得慢的同学有渴望互相交流方法的好奇心.这些体验都成为开展本节课学习的积极因素.教学目标1.使学生理解有理数的加减法可以转化为加法,并感受、体会“代数和〞的思想(不必出现名称).2.能熟练正确地进行包括小数或分数的加减混合运算.3.培养学生的数感,提高计算能力和步步有据的推理能力.教材处理本节重在让学生感受算法的多样化,是先写成省略括号的和的形式再计算好呢?还是先将加减运算统一成加法,再按照加法法那么计算好.至于如何选择要“因题因人〞而异,教师要给学生创造讨论的时机,多提供些有多种算法的题目.教师在处理时切不可做简单的硬性规定.这样不但扼杀了学生的创造性,还容易养成学生不爱思考,“只等着教师来告诉我〞的懒惰的思维方式,还会使学生学习数学的兴趣越来越小.教学方法本节宜采用“探究〞法.本节课的知识点是在学生已有解题经验并结合创设的问题情境,由学生自主讨论、分析出来的,是学生在前面学习过程中产生的一种自发的渴望交流的需求,然后由教师补充和纠正,最后再由学生归纳得出的.即使学生说错,教师也不包办、不代替,只是进行补充和纠正.教学过程一、巧妙设疑,复习引入设计说明教师通过设置问题串,层层设疑,引导学生全面观察、审视自己所学过的知识,自主发现学习的新领域,既复习旧知,作好新知学习的铺垫,同时也不断激发学生对新课的好奇心,从而自然引入新课.问题1:有理数的定义是什么?学生答复出“整数和分数统称有理数〞,在此根底上,教师再进一步针对已学过的题目特点提出问题2.问题2:请翻阅教材第4节和第5节的内容,这些题目中的数字是哪种数?这是他们第一次从这个角度进行观察,教师紧接着点出本节课的学习要点,不少学生会产生极大的新鲜感.今天我们就来学习包括小数和分数的有理数加减混合运算,先入为主直接点出本节课的重点.问题3:口答以下各题,并说明计算的依据:(1)12.5-(-0.3);(2)17-⎝⎛⎭⎫-27;(3)12-⎝⎛⎭⎫-13;(4)-2.25+14;(5)14+⎝⎛⎭⎫-34;(6)17-25;(7)-11.5+4.5.教学说明问题1从根本概念入手分析,使学生对“有理数的加减混合运算〞有一个全面的认识,而不是仅仅局限于整数范围.然而在答复这个问题时,很可能有一局部学生一时想不起有理数的定义了,那可以采用多提问几个同学,多出现几种答案,然后再查阅教材原文,甚至可以全班齐读定义等方法,通过屡次感知和重复加深理解、记忆.如果课堂上真出现这种情况,那就更说明学生对于根本概念的掌握是不扎实的,是需要强化的.另外,强调这个概念还因为初一的学生的数感本身就是不够完善的,很多学生存在着“数〞=“整数〞,甚至于“数〞=“正整数〞这样的错误认识,因此我们要多为学生创造一些正确理解有理数的教学情境或者时机.问题2是让学生在明确了有理数的概念之后,通过教材的实例感受所学过的题型是不全面的.学生需要认真地观察一会儿,就能发现之前教材上的所有题目中的数字都是整数,更能激发学生的好奇心.问题3这组题是为了让学生的思维在减法与加法之间屡次反复,对某些思想懒惰易形成思维定势的学生来说,减去一个数等于加上它的相反数用的多了,看见加法就会创造出“加上一个数就等于减去它的相反数〞这样的算法,而且这样的学生并不少见.这组题是将教材中计算重新编排而成,学生在口答过程中说对答案的不在少数,能说清算理的人就不多了,可见有时学生能算对数可能只是初步的感性认识,是模糊的.通过这样交替进行的说与算的思维训练,为后面多步复杂的综合计算夯实根底.二、初步感知1.问题引入 阅读教材中的游戏题.学生经过交流,分组展示小丽和小彬所抽到的卡片并计算.2.稳固新知计算以下各题,说明最后一步的算理:(1)(-3.5)+15+⎝⎛⎭⎫-45;(2)⎝⎛⎭⎫-13+15.5+⎝⎛⎭⎫-23; (3)4.7-3.4-(-8.5);(4)0-12-⎝⎛⎭⎫-14+⎝⎛⎭⎫-34. 教学说明本环节设计的问题引导学生经历了两个过程.第一个环节,问题引入局部的两个设问可以设计为让学生分小组进行讨论.这是本节课上学生第一次分组讨论的问题,也是难点问题.第二个环节,先由三位同学板书,其他同学写在练习本上.无论采用哪种方法学生都有出错的可能,学生易错点的原因是由于算理模糊、不够熟练,为了防止这些错误,运算结果是否正确都要求讲明最后一步的算理,再由同组的另一位同学更正,加深全班同学的认识.这就完成了“模仿熟练〞的过程,为下一步的“提炼方法〞奠定根底.学生在本节课的探究过程中,说清算理是学法中的重要措施,也是突破难点(2)的重要手段.而且第(2)题还可以用来渗透结合律简化运算的技巧,为第二课时的内容作好铺垫.至此,本节课由复习引入到初步感知两个教学局部,充分展示了学生从“发现新知〞到“模仿熟练〞再到“提炼方法〞的思维过程,同时辅以“说理训练〞夯实了根底,确保学生能明明白白地做对题目,突破本节课的难点.三、延伸拓展设计说明运用数学知识处理带有实际背景的问题,需要有较强的抽象思维能力和建模的数学思想,所以这类问题一直属于难点题型.通过以下两个练习训练学生以上能力.练习1:教材中 习题2.7问题解决2.练习2:北京某出租车司机小李某天营运全是在长安大街上进行的,如果规定向东为正,向西为负,他这天的行车里程(单位:千米)如下:15,-2,5,-1,10,-3,-2,12,4,-5,6.(1)将最后一名乘客送到目的地时,小李距离出车时的出发点有多远?(2)假设汽车耗油量为a 千克/千米,这天小李的车共耗油多少千克?解:(1)由题意可得:15-2+5-1+10-3-2+12+4-5+6=39(千米).(2)将以上各数的绝对值相加得65千米,耗油量为65a 千克.教学说明本环节的处理不能仅仅停留在就题论题的层面上,教师应该有意识地向学生渗透建模的数学思想以及处理这类问题的思维方法,这样才能逐渐的培养学生的逻辑思维.大体方法是这样的:1.审题,具体的就是弄懂题目中有关的数字所代表的实际意义.2.根据题目要求,将有关的数字运用数学知识进行重新组合(列算式或列方程或列函数关系式等等),这就是建模的过程.3.解决这个数学问题.练习2的难度就比拟大,它很好地表达了“代数和〞与“绝对值的和〞在实际意义上的不同,有利于学生更生动形象地理解数学定义.具体处理时方法和前面一样,要注意思维的条理性,培养逻辑思维能力和建模的数学思想.四、总结反思,提炼方法有理数加法的计算可以通过省略加号和括号的方法以及转化成加法直接计算,要让学生知道如何选择解题方法,在考虑自己解题特点的同时也要受题目客观条件的影响.表达因题因人而异的优选法.问题1:你认为自己做计算题时,比拟适合用哪种方法?问题2:你认为什么样的题目适合用省略加号和括号的方法计算?问题3:解决实际问题时,应该怎样做?评价与反思1.深挖教材,尽可能的为学生体会算法多样化创造适宜的问题情境,为此进行了教材原题的变式处理.2.“说理训练〞夯实了根底,确保学生能明明白白地做对题目,突破本节课的难点.字母表示数【学习目标】课标要求:1.能用字母和代数式表示以前学过的运算律和计算公式。

秋七年级数学上册 1.3 有理数的加减法导学案(无答案)(新版)新人教版 学案

1.3有理数的加减法(1)学习目标:1、探索有理数加法法则,理解有理数的加法法则;2、能运用有理数加法法则,正确进行有理数加法运算;3、经历探索有理数加法法则的过程,体验数学来源于实践并为实践服务的思想,同时培养学生探究性学习的能力.学习难点:师生共同合作探索有理数加法法则的过程及和的符号的确定.课堂活动:一、有理数加法的探索1.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?(1)向东行驶5千米后,又向东行驶2千米,(2)向西行驶5千米后,又向西行驶2千米,(3)向东行驶5千米后,又向西行驶2千米,(4)向西行驶5千米后,又向东行驶2千米,(5)向东行驶5千米后,又向西行驶5千米,(6)向西行驶5千米后,静止不动,2. 足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:3负乙队,输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗?议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考.二、有理数加法的归纳探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?说一说:两个有理数相加有多少种不同的情形?议一议:在各种情形下,如何进行有理数的加法运算?归纳:有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. ③一个数与0相加,仍得这个数. 三、实践应用 问题1.计算(1)(+8)+(+5) (2)(-8)+(-5)(3)(+8)+(-5) (4)(-8)+(+5)(5)(-8)+(+8) (6)(+8)+0;问题2.(单位:万元)(1) 该公司前两年盈利了多少万元?(2)该公司三年共盈利多少万元? 问题3.判断(1)两个有理数相加,和一定比加数大. ( )(2)绝对值相等的两个数的和为0.( )(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( ) 四、课堂反馈:1.一个正数与一个负数的和是( )A 、正数B 、负数C 、零D 、以上三种情况都有可能2.两个有理数的和( ) A 、一定大于其中的一个加数 B 、一定小于其中的一个加数 C 、大小由两个加数符号决定 D 、大小由两个加数的符号及绝对值而决定3.计算 (1)(+10)+(-4) (2)(-15)+(-32) (3)(-9)+ 0 (4)43+(-34) (5)(-10.5)+(+1.3) (6)(-21)+31知识巩固 一、选择题1.若两数的和为负数,则这两个数一定( )A .两数同负B .两数一正一负C .两数中一个为0D .以上情况都有可能2.两个有理数相加,若它们的和小于每一个加数,则这两个数( )3.如果两个有理数的和是正数,那么这两个数( )x x +=+66成立的有理数x 是 ( )5.对于任意的两个有理数,下列结论中成立的是 ( ),0=+b a 则b a -=,0>+b a 则0,0>>b a ,0<+b a 则0<<b a ,0<+b a 则0<a6.下列说法正确的是 ( ) 二、判断1.若某数比-5大3,则这个数的绝对值为3.( )2.若a>0,b<0,则a+b>0.( )3.若a+b<0,则a ,b 两数可能有一个正数.( )4.若x+y=0,则︱x ︱=︱y ︱.( )5.有理数中所有的奇数之和大于0.( ) 三、填空1.(+5)+(+7)=_______; (-3)+(-8)=________; (+3)+(-8)=________; (-3)+(-15)=________; 0+(-5)=________; (-7)+(+7)=________.2.一个数为-5,另一个数比它的相反数大4,这两数的和为________. 3.(-5)+______=-8; ______+(+4)=-9. _______+(+2)=+11;______+(+2)=-11;5. 如果,5,2-=-=b a 则=+b a ,=+b a 四、计算(1)(+21)+(-31) (2)(-3.125)+(+318) (3)(-13)+(+12) (4)(-313)+0.3 (5)(-22 914)+0 (6)│-7│+│-9715│五、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?六、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 有理数及其运算
6.有理数的加减混合运算(一)
一、教学目标如下:
1.让学生熟练地按照运算顺序进行有理数加减混合运算.
2.熟练运用有理数加法、减法运算法则进行加减混合运算.掌握有理数的加减混合运算及其运算顺序.
二、教学过程
第一环节 问题引入
活动内容:通过游戏来引入有理数的加减混合运算(课前每人准备红色卡片和白色卡片共20张,在每张卡片上写上任意数字).
游戏规则如下:
四人一组,每组选一学生当代表,在同组的80张卡片中,抽取4张,如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.
第二环节:讲授新课
活动内容:
利用各小组写出的算式引导学生分析有理数的混合运算应该怎么算. 第三环节:巩固练习
活动内容:
例1、计算:
5451)53(-+-
3
77)21()5-+--- 随堂练习:
1.计算:
(1)21)43(41--+; (2)2
14149-+-; (3)3)5.4(5.11----;(4))5
2()352(71---+-。

第四环节:合作学习
活动内容: 通过游戏来进一步熟练有理数的加减混合运算).
55)5(-+-
游戏规则如下:
(1)四人一组,每组选一学生当代表,在同组的80张卡片中,抽取4张,如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.
(2)每组四人都计算,然后看结果的正确与否,再看一看谁用的计算方法最简便。

交流经验.
第五环节:课堂小结
活动内容:师生共同完成。

1.有理数的加减混合运算可以利用运算顺序进行计算.
2.熟练进行含有整数、小数、分数的加减混合运算.
第六环节:布置作业
习题 2.7。

相关文档
最新文档