导数的概念和运算
导数的概念及运算

第一节导数的概念及运算[最新考纲] 1.了解导数概念的实际背景,理解导数的几何意义.2.能根据导数定义求函数y=C(C为常数),y=x,y=x2,y=x3,y=1x,y=x的导数.3.能利用基本初等函数的导数公式和导数的运算法则求简单函数的导数.能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.1.导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线斜率.相应地,切线方程为y-f(x0)=f′(x0)(x-x0).2.基本初等函数的导数公式原函数导函数f(x)=x n(n∈Q*)f′(x)=nx n-1f(x)=sin x f′(x)=cos xf(x)=cos x f′(x)=-sin xf(x)=a x f′(x)=a x ln a(a>0)f(x)=e x f′(x)=e xf(x)=log a x f′(x)=1 x ln af(x)=ln x f′(x)=1 x(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[常用结论]1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af (x )±bg (x )]′=af ′(x )±bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.一、思考辨析(正确的打“√”,错误的打“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( )(3)与曲线只有一个公共点的直线一定是曲线的切线.( ) (4)函数f (x )=sin (-x )的导数是f ′(x )=cos x .( ) 二、教材改编1.函数y =x cos x -sin x 的导数为( ) A.x sin x B.-x sin x C.x cos xD.-x cos x2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9 B.-3 C.9D.153.函数y =f (x )的图象如图,则导函数f ′(x )的大致图象为( )A B C D4.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m )是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =m/s ,加速度a = m/s 2.考点1 导数的计算(1)求函数的导数要准确地把函数分解为基本初等函数的和、差、积、商,再利用运算法则求导数.(2)在求导过程中,要仔细分析函数解析式的结构特征,紧扣法则,记准公式,避免运算错误.已知函数解析式求函数的导数 求下列各函数的导数: (1)y =x 2x ;(2)y =tan x ; (3)y =2sin 2x2-1.[解] (1)先变形:y =2x 32, 再求导:y ′=(2x 32)′=322x 12. (2)先变形:y =sin xcos x ,再求导:y ′=⎝ ⎛⎭⎪⎫sin x cos x ′=(sin x )′·cos x -sin x ·(cos x )′cos 2x =1cos 2x . (3)先变形:y =-cos x ,再求导:y ′=-(cos x )′=-(-sin x )=sin x .[逆向问题] 已知f (x )=x (2 017+ln x ),若f ′(x 0)=2 018,则x 0= . 1 [因为f (x )=x (2 017+ln x ), 所以f ′(x )=2 017+ln x +1=2 018+ln x , 又f ′(x 0)=2 018,所以2 018+ln x 0=2 018,所以x 0=1.]求导之前先对函数进行化简减少运算量.如本例(1)(3). 抽象函数求导已知f (x )=x 2+2xf ′(1),则f ′(0)= . -4 [∵f ′(x )=2x +2f ′(1), ∴f ′(1)=2+2f ′(1), ∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4.]赋值法是求解此类问题的关键,求解时先视f ′(1)为常数,然后借助导数运算法则计算f ′(x ),最后分别令x =1,x =0代入f ′(x )求解即可.1.已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 .2.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)= .3.求下列函数的导数 (1)y =3x e x -2x +e ; (2)y =ln x x 2+1;(3)y =ln2x -12x +1. 考点2 导数的几何意义导数几何意义的应用类型及求解思路(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎨⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可. (3)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.求切线方程(1)(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为 .(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 .(1)3x -y =0 (2)x -y -1=0 [(1)∵y ′=3(x 2+3x +1)e x ,∴曲线在点(0,0)处的切线斜率k =y ′|x =0=3,∴曲线在点(0,0)处的切线方程为y =3x .(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x , ∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.](1)求解曲线切线问题的关键是求切点的横坐标,在使用切点横坐标求切线方程时应注意其取值范围;(2)注意曲线过某点的切线和曲线在某点处的切线的区别.如本例(1)是“在点(0,0)”,本例(2)是“过点(0,-1)”,要注意二者的区别.求切点坐标(2019·江苏高考)在平面直角坐标系xOy 中,点A 在曲线y =ln x上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是_________(e,1) [设A (x 0,y 0),由y ′=1x ,得k =1x 0,所以在点A 处的切线方程为y -ln x 0=1x 0(x -x 0).因为切线经过点(-e ,-1),所以-1-ln x 0=1x 0(-e -x 0).所以ln x 0=e x 0,令g (x )=ln x -ex (x >0), 则g ′(x )=1x +ex 2,则g ′(x )>0, ∴g (x )在(0,+∞)上为增函数.又g(e)=0,∴ln x=ex有唯一解x=e.∴x0=e.∴点A的坐标为(e,1).]f′(x)=k(k为切线斜率)的解即为切点的横坐标,抓住切点既在曲线上也在切线上,是求解此类问题的关键.求参数的值(1)(2019·全国卷Ⅲ)已知曲线y=a e x+x ln x在点(1,a e)处的切线方程为y=2x+b,则()A.a=e,b=-1B.a=e,b=1C.a=e-1,b=1D.a=e-1,b=-1(2)已知f(x)=ln x,g(x)=12x2+mx+72(m<0),直线l与函数f(x),g(x)的图象都相切,与f(x)图象的切点为(1,f(1)),则m=.(1)D(2)-2[(1)∵y′=a e x+ln x+1,∴y′|x=1=a e+1,∴2=a e+1,∴a=e-1.∴切点为(1,1),将(1,1)代入y=2x+b,得1=2+b,∴b=-1,故选D.(2)∵f′(x)=1x,∴直线l的斜率k=f′(1)=1.又f(1)=0,∴切线l的方程为y=x-1. g′(x)=x+m,设直线l与g(x)的图象的切点为(x0,y0),则有x0+m=1,y0=x0-1,y0=12x2+mx0+72,m<0,∴m=-2.]已知切线方程(或斜率)求参数值的关键就是列出函数的导数等于切线斜率的方程,同时注意曲线上点的横坐标的取值范围.导数与函数图象(1)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y =f′(x)的图象如图所示,则该函数的图象是()A BC D(2)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)= .(1)B (2)0 [(1)由y =f ′(x )的图象是先上升后下降可知,函数y =f (x )图象的切线的斜率先增大后减小,故选 B.(2)由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.] 函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出图象升降的快慢.1.曲线f (x )=e xx -1在x =0处的切线方程为 .2.(2019·大同模拟)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是 .3.直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b = .。
导数的概念、几何意义及其运算

导数的概念、几何意义及其运算
导数是微积分中一个重要的概念,它描述函数在某一点处变化的速率。
它也被称为微分系数或变化率。
一般来说,导数用来表示函数在特定点处发生变化的速率或斜率。
从几何意义上讲,导数可以看作是函数图像的斜率,即函数在某一点的切线的斜率。
例如,当函数y=f(x)的图像在某一点x=x_0时的斜率是k,那么在x=x_0处的导数就是k。
在运算上,导数可以用导数定义式来求解,该定义式如下:
$$f'(x)=\lim_{h \to 0}{\frac {f(x+h)-
f(x)}{h}}$$
此外,还有一种常用的求导法叫做链式法则,其可以把复杂的函数表达式分解成多个简单的函数,然后把每个简单函数分别求导,最后再把每个简单函数的导数相加。
更具体地说,对于函数$f(x)=g(h(x))$,链式法则表明:
$$f'(x)=g'(h(x))\cdot h'(x)$$。
导数的概念及其运算(解析版)

考点20 导数的概念及其运算【命题解读】从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.除压轴题,同时在小题中也加以考查,难度控制在中等以上.应特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力.【基础知识回顾】1. 导数的概念设函数y=f(x)在区间(a,b)上有定义,且x0∈(a,b),若Δx无限趋近于0时,比值Δy Δx=f(x0+Δx)-f(x0)Δx无限趋近于一个常数A,则称f(x)在x=x0处可导,并称该常数A为函数f(x)在x=x0处的导数,记作f′(x0).若函数y=f(x)在区间(a,b)内任意一点都可导,则f(x)在各点的导数也随着x的变化而变化,因而是自变量x的函数,该函数称作f(x)的导函数,记作f′(x).2. 导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,过点P 的切线方程为y-y0=f′(x0)(x-x0).3. 基本初等函数的导数公式续表4. 导数的运算法则若f′(x),g′(x)存在,则有:(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)⎣⎢⎡⎦⎥⎤f (x )g (x )=f′(x )g (x )-f (x )g′(x )g 2(x )(g(x)≠0). 5. 复合函数的求导法则(1)一般地,对于两个函数y =f(u)和u =g(x),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f(u)和u =g(x)的复合函数,记作y =f(g(x)).(2)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为y′x =y′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1、下列求导结果正确的是( )A .()21'12x x -=-B .()cos30'sin30︒=-︒C .()1ln 2'2x x=⎡⎤⎣⎦ D .'=【答案】D【解析】对于A ,2(1)2x x -'=-,故A 错误; 对于B ,(cos30)0︒'=,故B 错误; 对于C ,11[(2)](2)2ln x x x x'=⨯'=,故C 错误;对于D 31223()2x x '===,故D 正确.故选:D .2、若()ln2x f x e x =,则()f x '=( )A .ln 22xx e e x x+B .ln 2xx e e x x-C .ln 2xxe e x x+D .12xe x⋅【答案】C【解析】()()ln2(ln2)x x f x e x e x =+⋅'⋅''ln 2xxe e x x=+.故选:C .3、(2020·广东肇庆市·高三月考)已知函数1()e ln x f x x x -=+,则()1f '=( )A .0B .1C .eD .2【答案】D【解析】因为1()e ln x f x x x -=+,所以111()e ln e 1ln x x f x x x x x--'=++⨯=++, 所以11(1)e 1ln12f -'=++=, 故选:D4、 设M 为曲线C :y =2x 2+3x +3上的点,且曲线C 在点M 处切线倾斜角的取值范围为⎣⎢⎡⎭⎪⎫3π4,π,则点M 横坐标的取值范围为(D )A . [)-1,+∞B . ⎝⎛⎭⎪⎫-∞,-34C . ⎝ ⎛⎦⎥⎤-1,-34D . ⎣⎢⎡⎭⎪⎫-1,-34 【答案】D【解析】、 由题意y ′=4x +3,切线倾斜角的范围是⎣⎢⎡⎭⎪⎫34π,π,则切线的斜率k 的范围是[)-1,0,∴-1≤4x +3<0,解得-1≤x<-34. 故选D . 5、下列求导过程正确的选项是( ) A.⎝⎛⎭⎫1x ′=1x 2 B .(x )′=12x C .(x a )′=ax a -1D .(log a x )′=⎝⎛⎭⎫ln x ln a ′=1x ln a 【答案】 BCD【解析】 根据题意,依次分析选项: 对于A ,⎝⎛⎭⎫1x ′=(x -1)′=-1x 2,A 错误;对于B ,(x )′=12()x '=12×12x -=12x ,B 正确;对于C ,(x a )′=ax a -1,C 正确;对于D ,(log a x )′=⎝⎛⎭⎫ln x ln a ′=1x ln a ,D 正确; 则B ,C ,D 正确.6、(江苏省南通市西亭高级中学2019-2020学年高三下学期学情调研)若曲线(1)x y ax e =+在(0,1)处的切线斜率为-1,则a =___________. 【答案】2-【解析】,((1)1)x x y y ax e ax a e '=+=++,011,2x y a a ='=+=-∴=-. 故答案为:-2.7、(江苏省如皋市2019-2020学年高三上学期10月调研)已知a R ∈,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为________ . 【答案】1 【解析】函数f (x )=ax −ln x ,可得()1'f x a x=-,切线的斜率为:()'11k f a ==-, 切点坐标(1,a ),切线方程l 为:y −a =(a −1)(x −1), l 在y 轴上的截距为:a +(a −1)(−1)=1. 故答案为1.考向一 基本函数的导数例1、求下列函数的导数(1)()2(34)21y x x x =-+; (2) 31yx x; (3) ln x ye x ;(4) tan yx ; (5)2ln 1x y x =+; (6)2ln(15)xyx .【解析】(1)∵y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,∴218104y x x '=--.(2) 322132y x x -'=-+;(3) 1ln x y e x x ⎛⎫'=+ ⎪⎝⎭;(4) 21cos y x'=;(5)y '=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln xx (x 2+1)2; (6) 52ln 251x y x '=+-.变式1、求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ; (3)y =cos x e x .【解析】、(1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x 2.(3)y ′=⎝⎛⎭⎫cosx e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x . 变式2、求下列函数的导数: (1)f (x )=x 2+xe x ;(2)f (x )=x 3+2x -x 2ln x -1x 2; (3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2.【解析】、(1)f ′(x )=(2x +1)e x -(x 2+x )e x (e x )2=1+x -x 2e x . (2)由已知f (x )=x -ln x +2x -1x 2. ∴f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3. (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12x sin 4x , ∴y ′=-12sin 4x -12x ·4cos 4x =-12sin 4x -2x cos 4x .方法总结:求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元考向二 求导数的切线方程例2、(1)函数ln 2()x xf x x-=的图象在点(1,2)P -处的切线方程为__________. (2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A .(-∞,-2] B .(-∞,2) C .(2,+∞)D .(0,+∞)【答案】 (1)x -y -3=0 (2)B【解析】 (1)f ′(x )=1-ln xx 2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2).变式1、(1)已知曲线S :y =-23x 3+x 2+4x 及点P(0,0),那么过点P 的曲线S 的切线方程为____.(2)已知函数f(x)=x ln x ,过点A(-1e 2,0)作函数y =f(x)图像的切线,那么切线的方程为____.【答案】(1)y =4x 或y =358x(2)x +y +1e 2=0【解析】 (1)设过点P 的切线与曲线S 切于点Q(x 0,y 0),则过点Q 的曲线S 的切线斜率为k =y ′|x =x 0=-2x 20+2x 0+4,又当x 0≠0时,k PQ =y 0x 0,∴-2x 20+2x 0+4=y 0x 0. ①∵点Q 在曲线S 上,∴y 0=-23x 30+x 20+4x 0.②将②代入①得-2x 20+2x 0+4=-23x 30+x 20+4x 0x 0,化简,得43x 30-x 20=0,∴x 0=34或x 0=0, 当x 0=34时,则k =358,过点P 的切线方程为y =358x.当x 0=0时,则k =4,过点P 的切线方程为y =4x ,故过点P 的曲线S 的切线方程为y =4x 或y =358x. (2)设切点为T(x 0,y 0),则k AT =f′(x 0), ∴x 0ln x 0x 0+1e 2=ln x 0+1,即e 2x 0+ln x 0+1=0. 设h(x)=e 2x +ln x +1,则h′(x)=e 2+1x ,当x>0时,h ′(x)>0,∴h(x)在(0,+∞)上是单调增函数,∴h(x)=0最多只有一个根. 又h ⎝⎛⎭⎫1e 2=e 2×1e 2+ln 1e 2+1=0,∴x 0=1e 2.由f′(x 0)=-1得切线方程是x +y +1e 2=0.变式2、已知函数f(x)=x 3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)若直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f(x)的某一切线与直线y =-14x +3垂直,求切点坐标与切线方程.【解析】 (1)由函数f(x)的解析式可知点(2,-6)在曲线y =f(x)上,∴f ′(x)=(x 3+x -16)′=3x 2+1, ∴在点(2,-6)处的切线的斜率为k =f′(2)=13, ∴切线的方程为y -(-6)=13(x -2), 即y =13x -32.(2)(方法1)设切点为(x 0,y 0), 则直线l 的斜率为f′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16. 又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16, 整理得x 30=-8,∴x 0=-2, ∴y 0=(-2)3+(-2)-16=-26, f ′(-2)=3×(-2)2+1=13,故直线l 的方程为y =13x ,切点坐标为(-2,-26).(方法2)设直线l 的方程为y =kx ,切点坐标为(x 0,y 0),则k =y 0-0x 0-0=x 30+x 0-16x 0. 又∵k =f′(x 0)=3x 20+1, ∴x 30+x 0-16x 0=3x 20+1,解得x 0=-2, ∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13,∴直线l 的方程为y =13x ,切点坐标为(-2,-26).(3)∵曲线f(x)的某一切线与直线y =-x4+3垂直,∴该切线的斜率k =4.设切点的坐标为(x 0,y 0), 则f′(x 0)=3x 20+1=4,∴x 0=±1,∴⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18.故切线方程为y -(-14)=4(x -1)或y -(-18)=4(x +1),即y =4x -18或y =4x -14.方法总结: 利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标. (2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线y =f(x)“在”点P(x 0,y 0)处的切线与“过”点P(x 0,y 0)的切线的区别:曲线y =f(x)在点P(x 0,y 0)处的切线是指点P 为切点,若切线斜率存在,切线斜率为k =f′(x 0),是唯一的一条切线;曲线y =f(x)过点P(x 0,y 0)的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.考向三 导数几何意义的应用例3、已知函数32()3611f x ax x ax =+--,2()3612g x x x =++和直线:9m y kx =+,且(1)0f '-=.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线()y f x =的切线,又是曲线()y g x =的切线?如果存在,求出k 的值;如果不存在,请说明理由.【解析】:(1)由已知得f ′(x )=3ax 2+6x -6a , ∵f ′(-1)=0,∵3a -6-6a =0,∵a =-2. (2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).∵g ′(x 0)=6x 0+6, ∵切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x 0=±1.当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9.由(1)知f (x )=-2x 3+3x 2+12x -11, ∵由f ′(x )=0得-6x 2+6x +12=0,解得x =-1或x =2. 在x =-1处,y =f (x )的切线方程为y =-18;在x =2处,y =f (x )的切线方程为y =9,∵y =f (x )与y =g (x )的公切线是y =9. ∵由f ′(x )=12得-6x 2+6x +12=12,解得x =0或x =1. 在x =0处,y =f (x )的切线方程为y =12x -11; 在x =1处,y =f (x )的切线方程为y =12x -10; ∵y =f (x )与y =g (x )的公切线不是y =12x +9.综上所述,y =f (x )与y =g (x )的公切线是y =9,此时k =0.变式1、已知函数()()3cos2sin 2,,4f x x x x a f f x π⎛⎫''=++= ⎪⎝⎭是()f x 的导函数,则过曲线3y x =上一点(),P a b 的切线方程为__________________.变式2:若直线2y x m =+是曲线ln y x x =的切线,则实数m 的值为________. 【答案】:(1)3x -y -2=0或3x -4y +1=0 (2)-e【解析】:(1)由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x , 则a =f ′(π4)=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,当P 点为切点时,切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1). 故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0.当P 点不是切点时,设切点为(x 0,x 30),∵切线方程为y -x 30=3x 20(x -x 0), ∵P (a ,b )在曲线y =x 3上,且a =1,∵b =1.∵1-x 30=3x 20(1-x 0),∵2x 30-3x 20+1=0,∵2x 30-2x 20-x 20+1=0,∵(x 0-1)2(2x 0+1)=0,∵切点为11,28⎛⎫-- ⎪⎝⎭,∵此时的切线方程为131842y x ⎛⎫+=+ ⎪⎝⎭, 综上,满足题意的切线方程为3x -y -2=0或3x -4y +1=0. (2)设切点为(x 0,x 0ln x 0),由y ′=(x ln x )′=ln x +x ·1x =ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0),整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e. 变式3、(2019常州期末) 若直线kx -y -k =0与曲线y =e x (e 是自然对数的底数)相切,则实数k =________. 【答案】、 e 2【解析】、设切点A(x 0,e x 0),由(e x )′=e x,得切线方程为y -e x 0=e x 0(x -x 0),即y =e x 0x +(1-x 0)e x 0,所以⎩⎪⎨⎪⎧k =e x 0,-k =(1-x 0)e x 0,解得⎩⎪⎨⎪⎧x 0=2,k =e 2.方法总结:1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.1、【2020年高考全国Ⅰ卷理数】函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为 A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+【答案】B 【解析】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B .2、【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .3、【2018年高考全国Ⅰ卷理数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D【解析】因为函数f(x)是奇函数,所以a −1=0,解得a =1,所以f(x)=x 3+x ,f′(x)=3x 2+1, 所以f′(0)=1,f(0)=0,所以曲线y =f(x)在点(0,0)处的切线方程为y −f(0)=f′(0)x ,化简可得y =x . 故选D.4、【2019年高考全国Ⅰ卷理数】曲线23()e x y x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=5、【2018年高考全国Ⅲ卷理数】曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________.【答案】−3【解析】()e 1e xxy a ax =++',则0|12x y a ='=+=-,所以a =−3.6、【江苏省南通市2019-2020学年高三上学期期初】给出下列三个函数:①1y x=;②sin y x =;③e x y =,则直线12y x b =+(b R ∈)不能作为函数_______的图象的切线(填写所有符合条件的函数的序号). 【答案】①【解析】直线12y x b =+的斜率为k =12, 对于①1y x =,求导得:'21y x =-,对于任意x≠0,21x -=12无解,所以,直线12y x b =+不能作为切线;对于②sin y x =,求导得:'1cos 2y x ==有解,可得满足题意; 对于③x y e =,求导得:'12x y e ==有解,可得满足题意; 故答案为:①7、【江苏省南通市通州区2019-2020学年高三第一次调研抽测】已知函数()()x f x ax b e =+,若曲线y f x =()在点(0,(0))f 处的切线方程为310x y -+=,则(1)f 的值为_______.【答案】3e【解析】因为()()x f x ax b e =+,所以((()))++=++'=x x x ax b f x ae a e x b e a ,则(0)'=+f a b , 又曲线y f x =()在点(0,(0))f 处的切线方程为310x y -+=,当0x =时,1y =,即(0)1f =,所以有31a b b +=⎧⎨=⎩,解得2,1a b ==.因此()(21)x f x x e =+,所以(1)3f e =.故答案为3e8、【2020届江苏省南通市如皋市高三上学期教学质量调研(二)】如图,曲线2f x x =在点M t f t ,处的切线为l ,直线l 与x 轴和直线1x =分别交于点P 、Q ,点()1,0N ,则PQN 的面积取值范围为_____.【答案】80,]27( 【解析】2f x x =的导数为'2f x x ,在点M t f t ,处的切线斜率为2k t ,切点为2,t t ,切线方程为2201y t t x t t (), 令1x =可得22y t t ;令0y =,可得2t x =, 则PQN 的面积为()21112222t S PN QN t t ⎛⎫=⋅=-- ⎪⎝⎭, 由211384(2)(32)44S t t t t , 当203t < 时,0S > ,函数S 递增;当213t <<时,0S < ,函数S 递减, 可得23t = 处S 取得极大值,且为最大值827, 且0t =时,0S =;1t =时,14S , 可得PQN 的面积取值范围为80,]27(, 故答案为:80,]27(.。
导数的概念及运算

导数的概念及运算知识清单:考点1 函数y =f (x )在x =x 0处的导数 1.概念称函数y =f (x )在x =x 0处的瞬时转变率lim Δ x →0f x 0+Δx -f x 0Δx=lim Δ x →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δ x →0 Δy Δx =lim Δ x →0 f x 0+Δx -f x 0Δx. 2.几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度确实是位移函数s (t )对时刻t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).考点2 大体初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x f ′(x )=a x ln a (a >0且a ≠1)f (x )=e x f ′(x )=e xf (x )=log a xf ′(x )=1x ln a(a >0且a ≠1)f (x )=ln xf ′(x )=1x考点3 假设y =f (x ),y =g (x )的导数存在,那么 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 考点4 复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),那么复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [必会结论]1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一样也不同. 2.f ′(x 0)不必然为0,但[f (x 0)]′必然为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数仍是周期函数.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时转变趋势,其正负号反映了转变的方向,其大小|f ′(x )|反映了转变的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.例题讲解:1.已知()f x 为可导函数,且)4(2f '=,则02()l )i (2mh f h f h h→--+=( )A .8B .8-C .4D .4-2.函数y =f (x )的图象在点P (5,f (5))处的切线方程是y =-x +8,那么f (5)+f ′(5)=( ) A .1 B .2 C .3D .43.曲线y =sin x sin x +cos x-12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ).A .-12B .12C .-22D .224.[2016·云南一检]函数f (x )=ln x -2xx的图象在点(1,-2)处的切线方程为( ) A .2x -y -4=0B .2x +y =0C.x -y -3=0 D .x +y +1=05.(2021·烟台期末)设函数f (x )=x sin x +cos x 的图像在点(t ,f (t ))处切线的斜率为k ,那么函数k =g (t )的部份图像为( ).6.[2016·大同质检]一点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,那么角α的取值范围是( )A.⎣⎡⎦⎤0,π2B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎝⎛⎦⎤π2,3π4 7.[2016·天津东丽质检]若f (x )=2xf ′(1)+x 2,那么f ′(0)等于( ) A .2 B .0 C .-2 D .-48.已知函数()f x 在R 上知足2()2(2)88f x f x x x =--+-,那么曲线()y f x =在点(1,(1))f 处的切线方程是A .B .C .D .9.已知曲线f (x )=x n +1(n ∈N +)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,那么log 2 013x 1+log 2 013x 2+…+log 2 013x 2 012的值为______10.[2021·江苏高考]在平面直角坐标系xOy 中,假设曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,那么a +b 的值是________.11.[2016·沈阳模拟]假设存在过点O (0,0)的直线l 与曲线f (x )=x 3-3x 2+2x 和y =x 2+a 都相切,那么a 的值是( )A .1 B.164 C .1或164 D .1或-16421y x =-y x =32y x =-23y x =-+12.函数f (x )(x ∈R)知足f (1)=1,且f (x )在R 上的导函数f ′(x )>12,那么不等式f (x )<x +12的解集为________.13.[2016·山西师大附中质检]已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.14.[2016·云南大理月考]设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.课后作业:1.[2016·襄阳调研]曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°2. (2021·浙江卷)已知函数y =f (x )的图像是以下四个图像之一,且其导函数y =f ′(x )的图像如右图所示,那么该函数的图像是( ).3.[2021·昆明调研]假设曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,那么a +b =( ) A .-1 B .0 C .1 D .24.已知函数f (x )=(ax 2+bx +c )e x 的导函数y =f ′(xa -b 的值为________.5.[2016·沈阳模拟]假设存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,那么a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或76.已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)假设曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)当a =1时,假设直线l :y =kx -1与曲线y =f (x )相切,求l 的直线方程.。
导数的概念及其意义、导数的运算

§3.1 导数的概念及其意义、导数的运算学习目标了解导数的概念、掌握基本初等函数的导数. 2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如f (ax +b ))的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或0'|x x y =.f ′(x 0)=lim Δx →0 ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)函数y =f (x )的导函数 f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln_a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′=cf ′(x ).5.复合函数的定义及其导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (3)f ′(x 0)=[f (x 0)]′.( × )(4)若f (x )=sin (-x ),则f ′(x )=cos (-x ).( × ) 教材改编题1.函数f (x )=e x +1x 在x =1处的切线方程为________.答案 y =(e -1)x +2 解析 f ′(x )=e x -1x 2,∴f ′(1)=e -1, 又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1, 即切线方程为y -(e +1)=(e -1)(x -1), 即y =(e -1)x +2.2.已知函数f (x )=x ln x +ax 2+2,若f ′(e)=0,则a =________. 答案 -1e解析 f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.3.若f (x )=ln(1-x )+e 1-x ,则f ′(x )=________. 答案1x -1-e 1-x题型一 导数的运算例1 (1)(多选)(2022·济南质检)下列求导运算正确的是( ) A.⎝⎛⎭⎫1ln x ′=-1x ln 2x B .(x 2e x )′=2x +e xC.⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-sin ⎝⎛⎭⎫2x -π3 D.⎝⎛⎭⎫x -1x ′=1+1x 2 答案 AD解析 ⎝⎛⎭⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x , 故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-2sin ⎝⎛⎭⎫2x -π3,故C 错误;⎝⎛⎭⎫x -1x ′=1+1x 2,故D 正确.(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝⎛⎭⎫π3sin x ,则f ⎝⎛⎭⎫π6=________. 答案 π236+2π3解析 f ′(x )=2x +f ′⎝⎛⎭⎫π3cos x , ∴f ′⎝⎛⎭⎫π3=2π3+12f ′⎝⎛⎭⎫π3, ∴f ′⎝⎛⎭⎫π3=4π3, ∴f ⎝⎛⎭⎫π6=π236+2π3.教师备选1.函数y =sin 2x -cos 2x 的导数y ′等于( )A .22cos ⎝⎛⎭⎫2x -π4B .cos 2x +sin xC .cos 2x -sin 2xD .22cos ⎝⎛⎭⎫2x +π4 答案 A解析 y ′=2cos 2x +2sin 2x =22cos ⎝⎛⎭⎫2x -π4. 2.(2022·济南模拟)已知函数f ′(x )=e x sin x +e x cos x ,则f (2 021)-f (0)等于( ) A .e 2 021cos 2 021 B .e 2 021sin 2 021 C.e2 D .e答案 B解析 因为f ′(x )=e x sin x +e x cos x , 所以f (x )=e x sin x +k (k 为常数), 所以f (2 021)-f (0)=e 2 021sin 2 021.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解. (3)复合函数求导,应由外到内逐层求导,必要时要进行换元.跟踪训练1 (1)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于( )A .1B .2C .3D .4 答案 C解析 当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3.(2)已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a =________. 答案 e 2解析 f ′(x )=12x -3·(2x -3)′+a e -x +ax ·(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.答案 5x -y +2=0 解析 y ′=⎝⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为__________. 答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2 求参数的值(范围)例3 (1)(2022·青岛模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( )A .4B .3C .2D .1 答案 A解析 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵ f (x )=a ln x +b ,∴ f ′(x )=a x ,由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln 1+b =2,解得b =2,故2a +b =2+2=4.(2)(2022·广州模拟)过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________. 答案 (1,+∞)解析 由y ′=a e x ,若切点为(x 0,0e x a ), 则切线方程的斜率k =0'|x x y =0e x a >0,∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea =0e x (2-x 0)有两个不同的解, 令φ(x )=e x (2-x ), ∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0; x →+∞时,φ(x )→-∞, ∴0<ea<e ,解得a >1,即实数a 的取值范围是(1,+∞). 教师备选1.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3) D .(1,-3)答案 C解析 设切点P (x 0,y 0), f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1=2,∴x 20=1, ∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上, ∴y 0=x 30-x 0+3, ∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3. ∴切点P 为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M 是曲线y =ln x +12x 2+(1-a )x 上的任一点,若曲线在M 点处的切线的倾斜角均是不小于π4的锐角,则实数a 的取值范围是( )A .[2,+∞)B .[4,+∞)C .(-∞,2]D .(-∞,4]答案 C解析 因为y =ln x +12x 2+(1-a )x ,所以y ′=1x +x +1-a ,因为曲线在M 点处的切线的倾斜角均是不小于π4的锐角,所以y ′≥tan π4=1对于任意的x >0恒成立,即1x +x +1-a ≥1对任意x >0恒成立, 所以x +1x ≥a ,又x +1x≥2,当且仅当x =1x ,即x =1时,等号成立,故a ≤2,所以a 的取值范围是(-∞,2].思维升华 (1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”. 跟踪训练2 (1)(2022·南平模拟)若直线y =x +m 与曲线y =e x -2n相切,则( )A .m +n 为定值 B.12m +n 为定值 C .m +12n 为定值D .m +13n 为定值答案 B解析 设直线y =x +m 与曲线y =e x -2n切于点(x 0,02e x n -),因为y ′=e x-2n,所以02e x n -=1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m , 即12m +n =12. (2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是______. 答案 [2,+∞)解析 直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0.又4x +1x≥24x ·1x=4, 当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4 (1)(2022·邯郸模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0 B .-1 C .3 D .-1或3 答案 D解析 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g (x )=x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)(2022·韶关模拟)若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,则a 的取值范围为________. 答案 ⎣⎡⎭⎫e24,+∞ 解析 由y =ax 2(a >0),得y ′=2ax , 由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线, 设公切线与曲线C 1切于点(x 1,ax 21), 与曲线C 2切于点(x 2,2e x ),则2ax 1=222121e e ,x x ax x x -=-可得2x 2=x 1+2,∴a =1121e2x x +, 记f (x )=12e2x x +, 则f ′(x )=122e(2)4x x x+-, 当x ∈(0,2)时,f ′(x )<0,f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增. ∴当x =2时,f (x )min =e 24.∴a 的取值范围是⎣⎡⎭⎫e 24,+∞.延伸探究 在本例(2)中,把“存在公共切线”改为“存在两条公共切线”,则a 的取值范围为________. 答案 ⎝⎛⎭⎫e 24,+∞ 解析 由本例(2)知,∵两曲线C 1与C 2存在两条公共切线,∴a =1121e2x x +有两个不同的解. ∵函数f (x )=12e2x x+在(0,2)上单调递减, 在(2,+∞)上单调递增,且f (x )min =f (2)=e 24,又x →0时,f (x )→+∞, x →+∞时,f (x )→+∞, ∴a >e 24.教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于( )A .1B .2C .3D .3或-1 答案 D解析 设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x =1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于( )A .-1B .-2C .1D .2 答案 B解析 已知曲线y =e x 在点(x 1,1e x )处的切线方程为 y -1e x =1e x (x -x 1),即1111e e e ,xxxy x x =-+曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得1112121e ,e e 1ln ,x x x x x x ⎧=⎪⎨⎪-=-+⎩ 得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+11lnex =-1-x 1, 则1e x =x 1+1x 1-1.又x 2=11e x ,所以x 2=x 1-1x 1+1,所以x 2-1=x 1-1x 1+1-1=-2x 1+1,所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)(2022·青岛模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为( ) A .2 B .5 C .1 D .0答案 C解析 根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a -1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a -1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________. 答案 y =e x 或y =x +1解析 设直线l 与f (x )=e x 的切点为(x 1,y 1), 则y 1=1e x ,f ′(x )=e x , ∴f ′(x 1)=1e x , ∴切点为(x 1,1e x ), 切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1), 即y =1e x ·x -x 11e x +1e x ,①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2), ∴y 2=ln x 2+2, g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2), 切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1,②由题意知,①与②相同,∴111121221e e ,e e ln 1,x x x x x x x x -⎧=⎪⎨⎪-+==+⇒⎩③④ 把③代入④有111e e x x x -+=-x 1+1, 即(1-x 1)(1e x -1)=0, 解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ; 当x 1=0时,切线方程为y =x +1, 综上,直线l 的方程为y =e x 或y =x +1.课时精练1.(2022·营口模拟)下列函数的求导正确的是( ) A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln 10)′=110D .(e 2x )′=2e x 答案 B解析 (x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对; (ln 10)′=0,∴C 错; (e 2x )′=2e 2x ,∴D 错.2.(2022·黑龙江哈师大附中月考)曲线y =2cos x +sin x 在(π,-2)处的切线方程为( ) A .x -y +π-2=0 B .x -y -π+2=0 C .x +y +π-2=0 D .x +y -π+2=0答案 D解析 y ′=-2sin x +cos x ,当x =π时,k =-2sin π+cos π=-1,所以在点(π,-2)处的切线方程,由点斜式可得y +2=-1×(x -π),化简可得x +y -π+2=0.3.(2022·长治模拟)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 4.已知点A 是函数f (x )=x 2-ln x +2图象上的点,点B 是直线y =x 上的点,则|AB |的最小值为( ) A. 2 B .2 C.433 D.163答案 A解析 当与直线y =x 平行的直线与f (x )的图象相切时,切点到直线y =x 的距离为|AB |的最小值.f ′(x )=2x -1x =1,解得x =1或x =-12(舍去),又f (1)=3,所以切点C (1,3)到直线y =x 的距离即为|AB |的最小值,即|AB |min =|1-3|12+12= 2.5.设曲线f (x )=a e x +b 和曲线g (x )=cos πx2+c 在它们的公共点M (0,2)处有相同的切线,则b+c -a 的值为( ) A .0 B .π C .-2 D .3 答案 D解析 ∵f ′(x )=a e x ,g ′(x )=-π2sin πx2,∴f ′(0)=a ,g ′(0)=0,∴a =0,又M (0,2)为f (x )与g (x )的公共点,∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.(2022·邢台模拟)设点P 是函数f (x )=2e x -f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是( ) A.⎣⎡⎭⎫0,3π4 B.⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π C.⎝⎛⎭⎫π2,3π4 D.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 答案 B解析 ∵f (x )=2e x -f ′(0)x +f ′(1), ∴f ′(x )=2e x -f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x -x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π), ∴α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π. 7.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2) 答案 BCD解析 f ′(x 0)的几何意义是f (x )在x =x 0处的切线的斜率.由图知f ′(2)>f ′(3)>0, 故A 错误,B 正确. 设A (2,f (2)),B (3,f (3)), 则f (3)-f (2)=f (3)-f (2)3-2=k AB ,由图知f ′(3)<k AB <f ′(2),即f ′(3)<f (3)-f (2)<f ′(2),故C ,D 正确.8.(多选)(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,3π4上是凸函数的是( ) A .f (x )=-x 3+3x +4 B .f (x )=ln x +2x C .f (x )=sin x +cos x D .f (x )=x e x 答案 ABC解析 对A ,f (x )=-x 3+3x +4, f ′(x )=-3x 2+3, f ″(x )=-6x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故A 为凸函数; 对B ,f (x )=ln x +2x ,f ′(x )=1x +2,f ″(x )=-1x2,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故B 为凸函数; 对C ,f (x )=sin x +cos x , f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎫x +π4, 当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故C 为凸函数; 对D ,f (x )=x e x ,f ′(x )=(x +1)e x , f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )>0,故D 不是凸函数. 9.(2022·马鞍山模拟)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =________. 答案 -1解析 因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x , f ′(π)=cos π-π·sin π=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1.10.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =________.答案 2解析 f ′(x )=-(ax -1)′(ax -1)2+e xcos x -e xsin x =-a(ax -1)2+e x cos x -e x sin x , ∴f ′(0)=-a +1=-1,则a =2.11.(2022·宁波镇海中学质检)我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=2e x,则f ′(x )=________,其在点(0,1)处的切线方程为________.答案 22e xx y =1 解析 ∵f (x )=2e x ,故f ′(x )=(x 2)′2e x =22e x x ,则f ′(0)=0.故曲线y =f (x )在点(0,1)处的切线方程为y =1.12.已知函数f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为____________________. 答案 (-∞,-1)∪(3,+∞)解析 因为f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根,则Δ=4a 2-12⎝⎛⎭⎫23a +1>0,即a 2-2a -3>0, 解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.拉格朗日中值定理又称拉氏定理,是微积分学中的基本定理之一,它反映了函数在闭区间上的整体平均变化率与区间某点的局部变化率的关系,其具体内容如下:若f (x )在[a ,b ]上满足以下条件:①在[a ,b ]上图象连续,②在(a ,b )内导数存在,则在(a ,b )内至少存在一点c ,使得f (b )-f (a )=f ′(c )(b -a )(f ′(x )为f (x )的导函数).则函数f (x )=x e x -1在[0,1]上这样的c 点的个数为( ) A .1 B .2 C .3 D .4 答案 A解析 函数f (x )=x e x -1, 则f ′(x )=(x +1)e x -1, 由题意可知,存在点c ∈[0,1], 使得f ′(c )=f (1)-f (0)1-0=1,即(1+c )e c -1=1,所以e c -1=11+c ,c ∈[0,1],作出函数y =e c -1和y =11+c的图象,如图所示,由图象可知,函数y =e c-1和y =11+c的图象只有一个交点,所以e c -1=11+c ,c ∈[0,1]只有一个解,即函数f (x )=x e x -1在[0,1]上c 点的个数为1.14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( ) A .e b <a B .e a <b C .0<a <e b D .0<b <e a答案 D解析 方法一 设切点(x 0,y 0),y 0>0, 则切线方程为y -b =0e x (x -a ),由⎩⎨⎧y 0-b =0e x (x 0-a ),y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解. 设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ), 由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增, 当x >a 时,f ′(x )<0,f (x )单调递减, 所以f (x )max =f (a )=e a (1-a +a )=e a , 当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0, 当x →+∞时,f (x )→-∞,函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a .方法二 (用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线 ,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方, 得0<b <e a .15.若曲线y =14sin 2x +32cos 2x 在A (x 1,y 1),B (x 2,y 2)两点处的切线互相垂直,则|x 1-x 2|的最小值为( ) A.π3 B.π2 C.2π3 D .π 答案 B解析 ∵y =14sin 2x +32cos 2x=14sin 2x +32×1+cos 2x2 =12sin ⎝⎛⎭⎫2x +π3+34, ∴y ′=cos ⎝⎛⎭⎫2x +π3, ∴曲线的切线斜率在[-1,1]范围内, 又曲线在两点处的切线互相垂直,故在A (x 1,y 1),B (x 2,y 2)两点处的切线斜率必须一个是1,一个是-1.不妨设在A 点处切线的斜率为1, 则有2x 1+π3=2k 1π(k 1∈Z ),2x 2+π3=2k 2π+π(k 2∈Z ),则可得x 1-x 2=(k 1-k 2)π-π2=k π-π2(k ∈Z ),∴|x 1-x 2|min =π2.16.(2022·南昌模拟)已知曲线C 1:y =e x +m ,C 2:y =x 2,若恰好存在两条直线l 1,l 2与C 1,C 2都相切,则实数m 的取值范围是____________. 答案 (-∞,2ln 2-2)解析 由题意知,l 1,l 2的斜率存在,设直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,设l 1与C 1,C 2的切点坐标分别为(x 1,y 1),(x 2,y 2), 则⎩⎨⎧k 1=1e x m+=2x 2(k 1>0),k 1x 1+b 1=1e x m+,k 1x 2+b 1=x 22,可得⎩⎪⎨⎪⎧x 1=ln k 1-m ,x 2=k 12,k 1(x 2-x 1)=x 22-1ex m+,故k 1⎝⎛⎭⎫k 12-ln k 1+m =k 214-k 1, 整理得m =ln k 1-k 14-1,同理可得,当直线l 2:y =k 2x +b 2与C 1,C 2都相切时, 有m =ln k 2-k 24-1,综上所述,只需m =ln k -k4-1(k >0)有两解,令f (k )=ln k -k4-1,则f ′(k )=1k -14=4-k4k ,故当f ′(k )>0时,0<k <4, 当f ′(k )<0时,k >4,所以f (k )在(0,4)上单调递增,在(4,+∞)上单调递减, 故f (k )max =f (4)=ln 4-44-1=2ln 2-2,所以只需满足m <2ln 2-2即可.。
导数的概念及其计算

x 0
x
x 0 x
我们称它称为函数 y = f (x) 在 x = x0 处的导数, 记作 f (x0) 或 y |xx0 , 即 f(x0) lx i0 m f(x0Δ x)xf(x0).
当x= x0变化时,f’(x)便是一个函数,我们称它为f(x)
的导函数(简称导数)。
C(x) 5284 100 x
C '(x)5 2 8 4'(1 0 0x) 5 2 8 4 (1 0 0x)' 5284
(1 0 0x)2
(100 x)2
(1)C'(90)(105 0289 40)252.84
5284
(2)C'(98)
1321
(10098)2
答:(1)纯净度为90%时,费用的瞬时变化率为 52.84元/吨;(2)纯净度为98%时,费用的瞬时变 化率为1321元/吨。
C.4x-5 D.4x-3
4. 函数 y=sin2x 在点 M( , 3 )处的切线斜率为( C )
62
A.-1
B.-2
C.1
D.2
例 6.已知抛物线 y=ax2+bx+c 通过点(1,1),且在点(2,-1)处与直线 y=x
-3 相切,求 a、b、c 的值.
分解析:∵:本f题(1考)=查1,导∴数a+的b几+c何=1意. 义.函数在 x=2 处的导数①等于直线
2. 若曲线 y=f(x)在点(x0,f(x0))处的切线方程为 2x+y+1=0,则( C )
A.f′(x0)>0
B.f′(x0)=0
C.f′(x0)<0
D.f′(x0)不存在
1. 导数的概念及计算
例8 设y = arctan x , 求y′.
(
)
1 (arctan x )′ = ; 2 1+ x 同理可得 ( arc cot x )′ = − 1 1 + x2
tan(arctan x ) = x
记住此公式
19/54
例9. 求函数y = f ( x ) = x 3 + 2 x − 1的反函数x = f −1 ( y ) 在y = 2处的导数. 解:
1 注: f ′( x0 ) = ϕ ′ ( y0 )
17/54
x
ϕ ( y )在某区间 I y 内单调、可导且 ϕ ′( y ) ≠ 0
例7 求函数 y = arcsin x 的导数. 解 x = sin y在 I y = ( − ,
2 且 (sin = y )′ cos y > 0,
π
π
2
)内单调、可导 ,
同理可得 (cot x )′ = − csc 2 x .
12/54
记住公式
例4
1 ′ y′ (sec x )′ = = 解 cos x − (cos x )′ sin x = = = sec x tan x . 2 2 cos x cos x
求 y = sec x 的导数 .
f ′( x ) = lim
14/54
x, f ( x) = ln(1 + x ),
当 x = 0 时,
x<0 f ( x0 + ∆ x ) − f ( x0 ) f ′( x0 ) = lim ∆x → 0 x≥0 ∆x
(0 + ∆x ) − ln(1 + 0) f −′(0) = lim− = 1, ∆x → 0 ∆x ln[1 + (0 + ∆x )] − ln(1 + 0) = 1, f +′ (0)= lim+ ∆x → 0 ∆x
导数定义运算知识点总结
导数定义运算知识点总结一、导数的定义在微积分中,导数是描述函数变化率的一个重要概念。
具体来说,如果一个函数在某一点处的导数存在,那么这个导数就描述了函数在该点处的变化速率。
导数的定义可以通过极限的概念来给出,具体来说,对于函数y=f(x),如果在某一点x处函数f(x)的变化率为:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示函数f(x)在x处的导数,lim表示极限运算,h表示自变量x的增加量。
上面的定义是导数的一般形式,通过这个定义可以得到一些常用的导数计算方法。
比如对于幂函数、指数函数、对数函数、三角函数等一些基本函数,我们可以通过导数的定义来计算它们在某一点处的导数。
另外,还可以通过导数的定义来证明某一函数在某一点处的导数的存在性和计算导数的值。
二、导数的基本运算法则导数的基本运算法则是微积分中的一个重要内容,它包括导数的四则运算法则、复合函数的导数、反函数的导数、隐函数的导数等方面的内容。
1. 导数的四则运算法则对于两个函数y=f(x)和y=g(x),它们的导数满足一些基本运算法则。
具体来说,如果函数f(x)和函数g(x)分别在某一点x处的导数存在,那么它们的和、差、积、商的导数可以通过以下公式求得:- (f(x) ± g(x))' = f'(x) ± g'(x)- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / [g(x)]^2这些公式可以帮助我们在实际计算中求解复合函数的导数、隐函数的导数等问题。
2. 复合函数的导数复合函数是指一个函数中包含了另一个函数。
如果函数y=f(g(x))是一个复合函数,那么它的导数可以通过链式法则来求解。
导数基本概念
第一节 导数的概念与运算一、 思维导图二、知识模块【知识点1】导数的定义 1. 导数的概念设函数()y f x =在0x x =附近有定义,如果0x ∆→时,y ∆与x ∆的比yx∆∆(也叫函数的平均变化率)有极限,即yx∆∆无限趋近于某个常数,我们把这个极限值叫做函数()y f x =在0x x =处的导数,记作0'()f x 或0'x x y =.即0'()f x =0000000()()()()lim lim lim x x x x f x x f x f x f x yx x x x ∆→∆→→+∆--∆===∆∆-.2. 导数的物理意义:瞬时速度设0t =时刻一车从某点出发,在t 时刻车走了一定的距离().S S t =在01~t t 时刻,车走了10()()S t S t -,这一段时间里车的平均速度为1010()()S t S t t t --,当1t 与0t 很接近时,该平均速度近似于0t 时刻的瞬时速度.若令10t t →,则可以认为101010()()lim t t S t S t t t →-=-,即0'()S t 就是0t 时刻的瞬时速度.3. 思路提示:利用导数的定义,经过合理的添项、拆项与调配系数,凑成导数的极限定义的等价形式.例1: 设0'()f x 存在,求下列各式极限.⑴()()0003limx f x x f x x∆→+∆-∆;⑵()()000lim h f x h f x h →--例2: 若()()0002lim13x f x x f x x∆→+∆-=∆,则0'()f x 等于()A.23 B.32C.3D. 2 例3: 设()f x 在0x 处可导,则()()0003limx f x x f x x x∆→+∆--∆∆等于( )A. 02'()f xB. 0'()f xC. 03'()f xD.04'()f x 例4: 若()y f x =既是周期函数,又是偶函数,则其导函数'()y f x =( ) A.既是周期函数,又是偶函数B.既是周期函数,又是奇函数C.不是周期函数,但是偶函数D.不是周期函数,但是奇函数例5: 已知函数2,0(),0x x y f x x x ⎧≥==⎨<⎩,那么0'x y =的值为()A.0B.1C.1或0D.不存在例6: 已知22lim 21x x ax b x →∞⎛⎫--=⎪+⎝⎭,其中,a b R ∈,则a b -的值为() A.6- B.2- C.2 D.6例7: 已知,,m N a b R *∈∈,若()01limmx x ab x→++=,则ab 等于()A. m -B. mC. 1-D. 1 例8:1x →等于()A.12 B.0 C.12- D.不存在 例9: 已知(3)4,'(3)1f f ==,则343()lim3x x f x x →-=-____ 例10: 已知定义在R 上的函数(),()f x g x ,若01()1(),lim (),2x f x xg x g x →=+=-则()f x 在0x =处的导数'(0)f =___例11: 如图157-,函数()f x 的图象是折线段ABC ,其中,,A B C 的坐标分别为()0,4,()2,0,()6,4,则()()0f f =___;()()011lim x f x f x∆→+∆-=∆___ 例12: 设等差数列{}n a 的前n 项和为n S ,若1312,a S ==则2lim nn S n →+∞=____例13: 211lim34x x x x →-=+-___例14: 已知函数23,0(),0x x f x a x +≠⎧=⎨=⎩,在点0x =处连续,则2221lim n an a n n →∞+=+_____ 例15: 设2,1(),1x x f x ax b x ⎧≤=⎨+>⎩,试求,a b 的值,使()f x 在1x =处可导.【知识点2】求函数的导数1. 导数的运算的法则(和、差、积、商)设()u u x =,()v v x =均可导,则⑴()'''u v u v ±=±;⑵()'''uv u v uv =+;⑶2''()'(0)uu v uv v v v-=≠ 2. 基本导数表⑴'0(C C =为常数);⑵1()'()nn x nx n Q -=∈;⑶()'ln x x a a a =;⑷()'x x e e =;⑸1(log )'ln a x x a =;⑹1(ln )'x x=;⑺(sin )'cos x x =;⑻(cos )'sin x x =-; 3. 思路提示:对于简单函数的求导,关键是合理转化函数关系式为可以直接应用公式的基本函数的形式,以免求导过程中出现指数或系数的失误.例1: 求下列函数的导数⑴5y x =;⑵41y x=;⑶y =10x y =;⑸2log y x =;⑹sin y x = 例2:()()sin ln cos ln y x x x =+⎡⎤⎣⎦,则'y 等于()A. ()2cos ln xB. 12cos ln x ⎛⎫⎪⎝⎭C. ()2sin ln xD. ()sin ln x例3:()2f L ='()f L 为() A.例4:设函数1()sin 2sin 2f x x x =+,导函数为'()f x ,则下列关于导函数'()f x 的说法正确的是()A.仅有最小值的奇函数B.既有最大值,又有最小值的偶函数C.仅有最大值的偶函数D.非奇非偶函数例5: 记,22x x x xe e e e shx chx ---+==,则()'shx =() A. shx - B. shx C. chx D.chx -例6:二次函数2()f x ax bx c =++导函数为'()f x ,已知'(0)0f >,且对任意实数x ,有()0f x ≥,则(1)(0)f f 的最小值为___ 例7:已知函数()'()cos sin 4f x f x x π=+,则()4f π的值为_____【知识点3】复合函数求导 1. 复合函数的导数复合函数[()]y f g x =的导数与函数()y f u =,()y f u =的导数之间具有关系'''x u x y y u =⋅,该关系用语言表述就是“y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积”,也就是先把()g x 当做一个整体,把[()]y f g x =对()g x 求导,再把()g x 对x 求导,这二者的乘积就是复合函数[()]y f g x =对x 的导数 例1:求下列函数的导数. ⑴32x y e+=;⑵()2log 21y x =+;⑶sin 23y x π⎛⎫=+⎪⎝⎭;⑷11y x=-例2: 函数cos 2y x =+的导数为( )A.2sin 2x -2sin 2x +C.2sin 2x -2sin 2x例3:函数()()sin sin +cos cos y x x =的导数是( ) A. ()()'cos cos sin sin sin cos y x x x x =-B. ()()'cos cos sin sin sin cos y x x x x =+C. ()()'sin cos cos sin y x x =+D. 'cos 2y x =例4:函数()()sin ln cos ln y x x =+的导数为( ) A.cos ln sin ln x x x + B. cos ln sin ln x xx-C.cosln sin ln x x +D. cosln sin ln x x - 例5:求函数()sin cos xy x =的导数例6:求函数y =的导数【知识点4】导数的几何意义1. 导数的几何意义:函数在定点处的切线斜率函数()y f x =在0x 处的导数0'()f x ,表示曲线()y f x =在点()00,()P x f x 处的切线PT 的斜率,即0tan '()f x α=,如图3-1所示,过点P 的切线方程为000'()()y y f x x x -=-.同样可以定义曲线()y f x =在0x 的法线为过点()00,()P x f x 与曲线()y f x =在0x x =的切线垂直的直线.过点P 的法线方程为00001()('()0).'()y y x x f x f x -=--≠例1:设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线斜率为()A.15- B.0 C.15D.5 例2:下列各函数在点0x =处没有切线的是()A.3sin y x x =+B.2cos y x x =-C.1y =D.cos y x =例3:若0y =是曲线3y x bx c =++的一条切线,则3232b c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭()A.1-B.0C.1D.2例4:已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为() A.3 B.2 C.1 D.12例5:若在曲线sin (0)y x x π=<<上取一点M ,使过M点的切线与直线2y x =平行,则点M 坐标为()A.(,32πB.(,32π±±C.1(,)62πD.(,62π例6:如果一直线过原点且与曲线11y x =+相切于点P ,那么切点P 的坐标为() A.1(,2)2- B.12(,)23- C.(2,1)-- D.1(2,)3例7:已知函数3()f x x x =-.(I )求曲线()y f x =在点(,())M t f t 处的切线方程;(II )设0a >,如果过点(,)a b 可作曲线()y f x =的三条切线,证明:()a b f a -<<例8:曲线在点处的切线方程为__________. 例9:曲线在点处的切线方程_________. 例10:曲线在点处的切线的斜率为A. B. C. D. 例11:曲线在点处的切线斜率为____________.例12:已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是 A. B. C. D.例13:若曲线存在垂直于轴的切线,则实数的取值范围是_____________. 例14:设直线是曲线的一条切线,则实数的值为_____________.例15:已知曲线21y x =-在0x x =点处的切线与曲线31y x =-在0x x =点处的切线互相平行,则0x 的值为___________________. 例16:已知函数2()ln (0)f x x ax x a =-->(I )若曲线()y f x =在点(1,(1))f 处的切线斜率为2-,求a 的值以及切线方程; (II )若()f x 是单调函数,求a 的取值范围。
导数的概念及其运算
5.(2010·新课标全国)曲线y=x3-2x+1在点(1,0)处的切线方程为
()
A.y=x-1
B.y=-x+1
C.y=2x-2
D.y=-2x+2
解析:由题可知,点(1,0)在曲线y=x3-2x+1上,求导可得y′=3x2-2, 因此在点(1,0)处的切线的斜率k=1,切线过点(1,0),根据直线 的点斜式可得切线方程为y=x-1,故选A.
第16页 共 45 页
3
y
(lnx)( x 2
1) (x2
lnxo(x2 1)2
1)
1 (x2 1) lnx 2x x (x2 1)2
x2 1 2x2 lnx x(x2 1)2 ;
4 y 3sin2x 2 ?sin2x 6sin2 2xcos2x.
第17页 共 45 页
类型三
导数的几何意义及应用
式求导. (2)以根式或分式形式出现的函数求导问题,先化成指数的形
式再运用公式求导. (3)比较复杂的函数,往往需要先化简再求导. (4)对于某些没有给出求导公式的函数,能够先化为有求导公
式的函数表达再求导.
第30页 共 45 页
补充作业:
1.求下列函数的导数 :
(1) y 1 1 ;(2) y sin x (1 2 cos2 x );(3) y e x 1.
解题准备:求曲线切线方程的环节是:
①求导数f′(x);
②求斜率k=f′(x0);
③写出切线方程y-y0=f′(x0)(x-x0).但是要注意,当函数 f(x)在x=x0处不可导时,曲线在该点处并不一定没有切 线,同时还必须明确P(x0,y0)为切点.
第18页 共 45 页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★ 知 识 梳理 ★
1. 函数y =f (x )在x =x 0处的导数
定义:称函数y =f (x )在x =x 0处的瞬时变化率x x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim lim
0000为函数y =f (x )在x =x 0
处的导数,记作)(0x f '或0|x x y =',即x
y
x f x ∆∆='→∆00lim
)(.
几何意义:曲线f (x )在某一点(x 0,y 0)处的导数是过点(x 0,y 0)的切线的斜率。
相应地,切线方程为y -f (x 0)=)(0x f '(x -x 0). 2. 函数f (x )的导函数 称函数)(x f '=x
x f x x f x ∆-∆+→∆)
()(lim
为f (x )的导函数,导函数有时也记作y '.
3. 几种常见函数的导数
'c =0(c 为常数);()n x '=1n nx -(R n ∈);
'(sin )x =x cos ;'(cos )x =x sin -;
(ln )x '=
1x ; (log )a x '=1
log a e x
; '()x e =x e ;'()x a =ln x a a . 4. 运算法则
①求导数的四则运算法则:
'()u v ±=''u v ±;'()uv =''
u v uv +;'
u v ⎛⎫= ⎪⎝⎭
''
2
u v uv
v -(0)v ≠.
②复合函数的求导法则:复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.
导数的定义
例1.设函数()f x 在0x 处可导,则x
x f x x f x ∆-∆-→∆)
()(lim
000
等于( )
A .)('0x f
B .0'()f x -
C .0()f x
D .0()f x - 练习:
1. 设2)(0='x f ,则0lim →h h
h x f h x f )
()(00--+=________.
2.设()f x 在点x 处可导,b a ,为常数,则0
lim
→∆x x x b x f x a x f ∆∆--∆+)
()(=_____.
导数的计算
例2. 求下列函数的导数:
(1) cos x y e x = (2)2tan y x x =+
(3) )12ln(+=x y (4)2)cos 1(x y +=
练习:1. 求函数y=x x
++
-12
12
的导数.
2.设函数()()(2)(3)f x x x k x k x k =++-,且(0)6f '=,则k =
A .0
B .-1
C .3
D .-6
3.设函数()f x 在),0(+∞内可导,且x x e x e f +=)(,则.______
)1('=f 导数的几何意义
1.曲线24y x x =-上两点(4,0),(2,4)A B ,若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标为( )
()A (1,3)
()B (3,3) ()C (6,12)- ()D (2,4)
2.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )
A .430x y --=
B .450x y +-=
C .430x y -+=
D .430x y ++=
3.设点P 是曲线33
35
y x x =-+上的任意一点,点P 处切线的倾斜角为α,则角α取值范围是( )
A.2[0,]3π
B.2[0,][,)23
ππ
π C.2(,]23ππ D.2[,]33ππ
曲线的切线 例4. 已知曲线3
4
313+=
x y . (1)求曲线在点)4,2(P 处的切线方程; (2)求曲线过点)4,2(P 处的切线方程。
变式练习:
1.曲线1
y x
=和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是 .
2.过原点作曲线x e y =的切线,则切点的坐标为__________,切线的斜率为________.
3.求曲线x x y 23-=过点)1,1(-的切线方程。
曲线切线的几种类型
(1)已知函数和切点求切线方程
曲线)1ln 3(+=x x y 在点)1,1(处的切线方程为__________。
(2)含参数的切线方程
已知函数x x b ax e x f x 4)()(2--+=,曲线)(x f y =在点))0(,0(f 处的切线方程为
44+=x y ,求b a ,的值。
(3)不知切点,怎么办?设切点
已知直线1+=x y 与曲线)ln(a x y +=相切,则a 的值为( )
1.A
2.B 1.-C 2.-D
课后作业
1. 已知,1
)(3x
x x f +==∆+-∆→∆x f x f x 2)1()1(lim
0___________.
2.与曲线21
y x e
=相切于P (,)e e 处的切线方程是( )
A . 2y ex =-
B . 2y ex =+
C . 2y x e =+
D . 2y x e =- 3.已知函数)(x f 的导函数为()f x ',,且满足)2(23)(2f x x x f '+=,则._____)5(='f
4. 设函数()()()()f x x a x b x c =---,(a 、b 、c 是两两不等的常数),
则
='+'+')
()()(c f c
b f b a f a .
5.已知直线x +2y -4=0与抛物线y 2=4x 相交于A 、B 两点,O 是坐标原点,P 是抛
物线的弧上求一点P ,当△P AB 面积最大时,P 点坐标为 .
6.在函数x y ln =的图像上找一点,使它到直线2+=x y 的距离最小。
7.设函数x
be x ae x f x x
1
ln )(-+=,曲线)(x f y =在点))1(,1(f 处的切线方程为2)1(+-=x e y .
求.,b a
8.已知函数)()(,)(2d cx e x g b ax x x f x +=++=,若曲线)(x f y =和曲线)(x g y =都过点)2,0(P ,且在点P 处有相同的切线24+=x y ,求.,,,d c b a
9.已知函数)(),(),(2
1)(,ln )(2
x g x f l a a x x g x x f 与函数直线为常数+=
=的图象都相切,且l 与函数)(x f 图象的切点的横坐标为1,求直线l 的方程及a 的值;
10.已知定义在正实数集上的函数2
21()2,()3ln 2
f x x ax
g x a x b =
+=+,其中0a >。
设两曲线(),()y f x y g x ==有公共点,且在公共点处的切线相同。
(1)若1a =,求b 的值;
(2)用a 表示b ,并求b 的最大值。