超声波原理

超声波原理
超声波原理

超声波原理

1 前言.

在市场经济的环境下,对产品质量要求越来越高。为保证产品质量,许多企业在产品生产过程中,将采用清洗工艺来提高产品质量,为企业创造良好的经济效益。

当前在一些工业产品生产过程中,应用超声波清洗是一种洗净效果好,价格经济,有利于环保的清洗工艺。超声波清洗机可以应用于清洗各式各样体形大小,形状复杂,清洁度要求高的许多工件。例如可用于清洗钟表零件、照相机零件、油咀油泵、汽车发动机零件、精密轴承零件、齿轮、活塞环、铣刀、锯片、宝石、医用注射器及各种光学镜头等;还可以用于清洗印制板、半导体晶片及器件、显象管内的精密零件、磁性元件、硅片、陶瓷晶片、插头座、焊片、电极引线等电子类产品。

一种物件的清洗可以根据其污垢的性质,采用机械物理力清洗的方法或化学力清洗的方法,还可以用各种组合方法来进行清洗。

若是用自来水或净水为清洗液的超声波清洗属物理力的清洗,若在清洗液中添加一些洗涤剂,则属于组合清洗,对不同的清洗对象选用不同的洗涤剂,更具有明显的清洗效果。

表1为几种清洗方法洗净效果比较。

图1为两种清洗方法洗净效果比较。

2 超声波清洗的原理把液体故人清洗槽内,给槽内作用超声波。由于超声波与声波一样是一种疏密的振动波,介质的压力作交替变化。如果对液体中某一确定点进行观察,这点的压力如图2曲线A所示。以静压(一般一个大气压)为中心,产生压力的增减,若依次增强超声波的强度,则压力振幅也随着增加,像图2曲线B

那样,并产生负的压力。

所谓负压,但实际上负的压力是不存在的,这是在液体中产生撕裂的力,且形成真空的空泡,并被后面的压缩力压挤而破灭。这种在声场作用下的振动,当声压达到超声波清洗一定值时,气泡将迅猛增长,然后又突然闭合,在气泡闭合时,由于液体间相互碰撞产生强大的冲击波,在其周围产生上千个大气压的压力。这也就是所说的“超声空化”。超声清洗就是利用了空化作用的冲击波,其清洗过程中由下列四个因素作用所引起。

(1)因空泡破灭时产生强大的冲击波,污垢层在冲击波的作用下被剥离下来,即分散及脱落。

(2) 因空化现象产生如图3a所示的气泡。由冲击形成的污垢层与表面之间的间隙和空隙渗透,由于这种小气泡与声压同步膨胀,收缩,产生像剥皮那样的物理力重复作用于污垢层,污垢一层层被剥开,如图3b所示,小气泡再继续向前推进,直到污垢层被剥下为止。这就是空化二次效应。

(3)超声清洗中清洗液的超声振动本身对清洗的作用力。例如:20kHz,2W/cm2的超声波在清洗液中传播时,它将引起质点的振动,位移幅度1.32lLm,速度0.16m/s,加速度为2.04X104m/sz,(约为2删g的重力加速度),声压为1.45X105Pa,这表明清洗物表面的污垢层每秒将遭到2万次的激烈冲击。

(4)清洗剂也溶解了污垢,产生乳化分散的化学力。

超声清洗的主要原理是超声空化作用,要获得良好的清洗效果,合理选择清洗槽中声场的声学参数和清洗液的物理化学性质是十分重要的。

既然空化是主要的,那么如何产生空化呢?一般来说,空化不仅由介质特性决定,而且也与声场有关。空化阂的高低受到许多因素制约,主要有如下几个因素:

(1) 空化阂与工作频率fa有关。频率越高,空化阂值越高,产生空化越难。气泡在声场的作用下将进行振动,但不一定发生崩溃(破灭),只有当声波的频率低于气泡的谐振频率时才可能使气泡破灭,而当声波的频率高于气泡的谐振频率时,气泡只进行复杂的振动,一般不发生气泡破灭。

(2)空化阂与介质中气泡半径有关,半径越小,空化阂越高。

(3)宝化阂与声波作用时间长短有关,声波幅射时间越长,空化阐越低。

(4)空化阂与环境静压力有关,静压力越

大,空化阂越高。

(5)空化阂与介质的粘滞性有关,粘度大,表面张力大,空化阂高。

(6)空化阂与液体含气量有关,含气量越少,空化阂越高。

(7)空化阂与清洗液温度有关,清洗液温度升高,对空化有利。但清洗液温度过高时,气泡中蒸气压增大,因在气泡闭合期增强了缓冲作用而使空化减弱。而温度还与清洗液的溶解度有关。对于水清洗液较适宜的温度约为60Y。

根据超声清洗的机理我们可选择最佳状态,并得到最佳的清洗效果。还应注意到选择最佳的声强。声强过高会产生大量气泡,在声波表面形成一道屏障,使声波不易辐射到整个液体空间,因而在远离声源的地方,清洗作用减弱。同时过高的声强,气泡膨胀过大,以至于在声波压缩相内,气泡来不及闭合。声强一般选在1W/cm2—2W/cm2,对于一些金属表面氧化膜难于清洗的污垢,则应采用较高的声强。3 超声波清洗的应用

超声波清洗设备一般可分为通用和专用两种机型。

3.1 通用超声波清洗机

超声波清洗机的结构一般有超声电源和清洗器合为一体或分开布局两种形式,一般小功率(200W以下)清洗机用一体式结构,而大功率清洗机采用分体式结构。超声波清洗机分体式结构由三个主要部分组成,如图4所示。

(1)清洗缸;

(2)超声波发生器;

(3) 超声波换能器;清洗缸:清洗缸是用来装载清洗液及被清洗工件的不锈钢容器,大多数工件可先装在网状框架内,再一起放人缸内清洗。超声波发生器:超声清洗机用的超声波发生器,从使用的元器件种类可以分电子管式的,可控硅式的和晶体管式的。近几年来已经发展到用大功率“功率模块”的方式。其输出功率从几十瓦直到几千瓦,工作频率从

15kHz—40kHzo

超声清洗机用的超声波发生器,有以下特点:

(1)随着清洗液深度不同,换能器共振频率和阻抗变化很大。但是实践表明,槽内放进适量清洗物后,基本上就可以稳定在某一定数值上。

(2)一般来说,由于清洗负载变动较小,可以不要求复杂的频率自动跟踪电路。

(3)实用超声波发生器,大多数采用大功率自激式反馈振荡器。超声波换能器:超声波清洗机用的换能器主要有以下几种:

①磁致伸缩换能器国内用的磁致伸缩换能器大多数是用镍片叠成的窗口型换能器,将它银焊在清洗缸底部,然后用导线在窗口上绕一定卷数而成。此种换能器能承受较大功率,且可靠性好,使用寿命长。缺点为效率较压电换能器低,原材料镍片价格贵。

②压电式换能器目前国内外大多数超声波清洗机用的是压电式换能器,勘L形结构如图5。

这种换能器一般有两片压电陶瓷晶片组成。一台清洗机用多个换能器,经粘接剂粘接在清洗缸底部且经并联联接组成一台清洗机的换能器。换能器基元之间距(对于频率20kH4一般在5—10mm为佳,太大了容易产生弯曲振动,且振动板受到腐蚀,同时辐射面相对减少。

通用超声清洗机清洗零件适用性强,已广泛应用于电子、钟表、光学、机械、汽车、航空、原子能工业、医疗器械等许多行业。

2 专用超声波清洗机

一般安装在某些特定物件清洗的生产流水线上。

图6为典型的软磁器件超声波清洗设备,被清洗物件从进料口可传动的不锈钢专用网带送人超声波清洗槽清洗,再经喷淋、烘干等工序后出料,实现被清洗物件可直接包装入库。各工序简要说明如下:

①进料:物件进料可采用半自动进料或

②压电式换能器目前国内外大多数超声波清洗机用的是压电式换能器,勘L形结构如图5。

这种换能器一般有两片压电陶瓷晶片组成。一台清洗机用多个换能器,经粘接剂粘接在清洗缸底部且经并联联接组成一台清洗机的换能器。换能器基元之间距(对于频率20kH4一般在5—10mm为佳,太大了容易产生弯曲振动,且振动板受到腐蚀,同时辐射面相对减少。

通用超声清洗机清洗零件适用性强,已广泛应用于电子、钟表、光学、机械、汽车、航空、原子能工业、医疗器械等许多行业。

3.2 专用超声波清洗机一般安装在某些特定物件清洗的生产流水线上。

图6为典型的软磁器件超声波清洗设备,被清洗物件从进料口可传动的不锈钢专用网带送人超声波清洗槽清洗,再经喷淋、烘干等工序后出料,实现被清洗物件可直接包装入库。各工序简要说明如下:

①进料:物件进料可采用半自动进料或

⑧出料:物件出料可采用自动收料或手工收料方式,格被清洗物件装入包装盒内。

通过上述工序就完成了物件实现利用超声波清洗的全过程。

目前,还有一种超声汽相清洗机,它是选用有机溶剂作清洗液,具有极强的溶解污垢的能力,用于清洗半导体晶片等净治度要求特别高的物件。

威海国创电气有限公司多年来已研制、开发、生产了多系列通用超声波清洗机,产品广泛应用于全国各地的大中型企业,同时还按用户特殊要求研制、开发、生产了用于清洗软磁器件、精密轴承零件、锯片、汽车等零件的专用超声波清洗设备,在生产中发挥了良好的作用。

随着计算机软硬件技术、电力电子技术及信号处理技术的飞速发展,超声波获得了非常广泛的应用。近年来,由于微机的广泛应用,构成计算机控制的智能控制系统或装置越来越多。这里基于PWM技术,应用单片机组成智能控制系统,对目前的大功率、高频率、高性能的智能化超声波电源技术进行了研究。

1 系统的硬件电路组成

系统原理框图如图1所示,他包含功率变换主电路和控制电路两大部分。主电路采用交-直-交结构,包括整流、直流滤波器、逆变器、变压器及负载等组成部分。其中,交-直部分为桥式整流,经过电解电容器虑波得到平稳电流。逆变器选用IGBT作为开关元件,电路在传统桥式结构的基础上加入一个简洁的辅助网络,形成移相控制全桥逆变器,该电路可以在任意负载和输入电压范围内实现零电压开关(ZVS),减少损耗,提高了电源利用效率。

逆变器的控制电路在整个系统中至关重要,这里采用MCS-96系列8089单片机作为智能控制部分的核心,采用正弦脉宽调制方式(SPWM)对逆变器进行控制,用以实现功率匹配和频率跟踪的数字化技术。

1.1 单片机控制系统

本控制系统由MCS-96系列8089单片机、74LS138地址译码、EPROM2764和RAM6264等构成最小微机系统,完成超声波频率给定、载频频率设定,模拟输出单极性正弦波恒幅脉宽调制信号(SPWM),还可实现功率、频率显示以及过压、过流、过温保护控制。

超声波电源系统中负载换能器工作在谐振状态,为了保证负载端电流和电压同频同相,要加上同步锁相环。因此,本文逆变环节采用双环结构的PWM控制方式,控制框图如图2所示。

同步电压信号由相位及峰值检测电路送至单片机锁相处理,单片机通过D/A数模转换口输出与同步电压同相位的标准正弦波,外部电压环通过将直流母线电压给定信号U*d与实际的直流母线电压Ud进行比较后得到的误差信号送入PI调节器,PI调节器的输出则为要控制的输出电流幅值指令信号Im,这里电压环的PI调节器在单片机内部用软件来实现。电流幅值指令信号Im与标准正弦波相乘后得到了幅值可调的正弦电流给定信号i*a,与实际的输出电流反馈信号ia进行比较,电流误差信号经比例调节器(为减小稳态误差,这里采用大比例控制,由外部硬件电路实现)放大后送入比较器,再与三角载波信号比较形成SPWM信号,该SPWM信号经过驱动电路去驱动主电路开关器件,便可使实际的输出电流跟踪给定信号,从而达到与同步电压保持同相位变化,提高了输出的功率因数,同时由于输出电流的幅值决定了输出功率的大小,那么幅值可调也决定了输出功率的可调,并且也达到了控制支流母线电压的目的。

1.2 SPWM原理和波形

脉宽调制逆变器简称PWM,简单地说,是通过控制逆变器内部开关器件的通、断顺序和时间分配规律,调控逆变器输出电压中基波电压的大小和频率,增大输出电压中最低阶次谐波的阶次,并减小其谐波的数值,来达到调控其输出电压,同时又改善输出电压波形的目的。

本文采用单极性正弦波恒幅脉宽调制信号(SPWM),调制原理见图3。图3中,Uc是载波信号,Ur调制信号,利用采样控制理论中冲量等效原理,在他们相交点可得到一组等幅矩形脉冲,脉宽和正弦曲线下的面积成正比,脉宽基本上呈正弦分布。从图中也可以看出在单极性调制时,Uc是与Ur始终保持同极性的关系,即正弦波处于正半周时,载频信号也在正值范围内变化,产生正的调制脉冲序列,与此相同,在负半周产生负的调制脉冲序列。根据在正弦波半周内载频信号的频率,可以确定产生调制脉冲的数目,这样也就同时决定了控制各个功率管的通断次数。SPWM产生的调制波是一系列等幅、等距而不宽的脉冲序列。

1.3 软锁相

锁相环是一个相位反馈控制系统。锁相环由三部分组成,即鉴相器(PD)、环路滤波器(LPF)和压控振荡器(VCO),其基本构成如图4所示。其主要工作原理:输入电压与输出Ui与输出Uo通过鉴相器PD进行相位比较,得到相位误差信号Ue,Ue再经过低通滤波器LPF产生控制电压Ud,Ud加到压控振荡器VCO上使之产生频率偏移,从而跟踪输入信号的

频率,当输入信号频率与输出信号频率相同时,锁相环锁定,从而实现频率跟踪。

本文利用单片机8089实现软锁相。锁相部分的软件设计主要分两个部分,一是输入电压U的相位检测;二是电流指令正弦波的输出。

相位的检测利用8089单片机的外部中断实现,其P0.7引脚的正跳变信号触发中断,连续两次正跳变的时间间隔即为负载基波电压的周期丁Ts。

正弦电流指令的产生由8089单片机与D/A转换器共同完成,他是由N级阶梯波近正弦。8089单片机有2个定时器和4个软件定时器,且均可产生中断,软件定时器的中断时间间隔可设定,利用他来产生正弦的数字信号。首先根据D/A 转换器的参数生成基准正弦Su的正弦表,综合考虑8089单片机的运算速度以及控制程序的运行等,选取合适的正弦表点数(亦即阶梯波的阶梯数)N,则每个阶梯所占的时间为Ts/N。在软件定时器中断服务程序中,首先设定下一次的软定时中断时间Ts/N,再利用查表法实现i*=α?Su,这里α为正弦的比例系数,由电压环的误差电压决定其大小。

以上分析了相位的检测和正弦电流指令的产生,接下来是实现正弦指令与输入电压的同步。在利用查表法产生正弦时,正弦表指针P对正弦表循环计数(0~N)。当发生外中断,即负载基波电压过零时,正弦电流指令也应该正向过零点,所以在外部中断服务程序里,应该修改指针P,使P位于正弦表的正向过零点。然而由于存在软硬件的延时,往往不能将P指向正弦表的正向过零点,而应指向p*(这里p*与正弦表的正向过零点有一个偏差△p),才能使D/A输出的电流指令i*与输入电压U的相位差为0。p*的选取需要在实验中确定,于是在外中断服务程序里将P指向p*。

2 系统软件设计

2.1 主程序

主程序包含初始化子程序、显示子程序和采样子程序以及中断程序地址的设定,参数的设定等,开放软中断以及软定时中断等。初始化子程序中,对各寄存器设定初值,对单片机本身的I/O口、定时器设定工作方式。显示子程序可对电压与电流信号进行定时采样,A/D转换后,经I/O口输出,进行动态显示。本系统还可对超声波电源频率、功率进行设定、显示。

2.2 中断服务子程序

中断服务子程序分为外部中断服务程序和软件定时器中断服务程序

2.2.1 外部中断服务程序

外部中断服务程序中主要完成以下任务:在每次发生外部中断时,把指针P重新指向p*,同时将正弦表点数即阶梯数赋给初值(这里程序中一共在一个周期中设置了125个正弦表点数,每次外中断发生时,依次输出125个点即完成正弦电流指令的输出),并设置外中断发生标志和采样标志。

2.2.2 软件定时器中断服务程序

软件定时器根据母线电压PI子程序计算的正弦比例来实现正弦波的输出,或者也可以通过软件设置为固定的比例输出,即固定的功率输出。由于采用周期控制,一个周期20 ms,正弦表点数取为125,所以大约160μs发生一次中断。其程序流程图如图5所示。

2.3 母线电压PI调节子程序

母线电压采样信号送人CPU后,由软件来实现电压环PI调节的数字化,本文采用增量型PI算法,其表达式为:

令A=KP+KIT,B=KP,他们是与比例系数、积分系数、采样周期相关的系数。则上式可简化为u(k)=u(k-1)+Ae(k)-Be(k-1),那么数字PI控制算法的程序流程图如图6所示。

3 结语

基于SPWM技术的大功率超声波电源由于采用单片机智能控制系统,从而使电源频率可实现人工设定,输出电压亦可通过调节可控整流角α而改变;锁相环实现输出电流与电压保持同频同相,从而能将电能以近似于1的功率因数,提高了电能利用率;同时采用高频调制后可获得高质量的输出电流波形,抑制了高次谐波,使换能器损耗减小,从而可为大功率超声波换能器在各个领域应用提供性能优良的超声波电源。

超声波发生器的原理

超声波发生器的原理 超声波发生器,通常称为超声波发生源,超声波电源。它的作用是把我们的市电(220V或380V,50或60Hz)转换成与超声波换能器相匹配的高频交流电信号。从放大电路形式,可以采用线性放大电路和开关电源电路,大功率超声波电源从转换效率方面考虑一般采用开关电源的电路形式。线性电源也有它特有的应用范围,它的优点是可以不严格要求电路匹配,允许工作频率连续快速变化。从目前超声业界的情况看,超声波主要分为自激式和它激式电源。 发生器的原理是首先由信号发生器来产生一个特定频率的信号,这个信号可以是正弦信号,也可以是脉冲信号,这个特定频率就是换能器的频率,一般应用在超声波设备中的超声波频率为20KHz、25KHz、28KHz、33KHz、40KHz、60KHz;1OOKHz 或以上现在尚未大量使用。但随着以后精密清洗的不断发展。相信使用面会逐步扩大。 比较完善的超声波发生器还应有反馈环节,主要提供二个方面的反馈信号:第一个是提供输出功率信号,我们知道当发生器的供电电源(电压)发生变化时。发生器的输出功率也会发生变化,这时反映在换能器上就是机械振动忽大忽小,导致清洗效果不稳定。因此需要稳定输出功率,通过功率反馈信号相应调整功率放大器,使得功率放大稳定。

第二个是提供频率跟踪信号。当换能器工作在谐振频率点时其效率最高,工作最稳定,而换能器的谐振频率点会由于装配原因和工作老化后改变,当然这种改变的频率只是漂移,变化不是很大,频率跟踪信号可以控制信号发生器,使信号发生器的频率在一定范围内跟踪换能器的谐振频率点。让发生器工作在最佳状态。当然随着现代的电子超声技术,特别是微处理器(uP)及信号处理器(DSP)的发展,发生器的功能越来越强大,但不管如何变化,其核心功能应该是如上所述的内容,只是每部分在实现时超声波技术不同而已 超力超声的超声波发生器具有以下六个特点 1.面板设有输出强度条形装置,也有独特的频率和输出强度交替数字显示装置可选配; 2.设有强度可调的扫频功能,以不断改变清洗槽中的声场分布,避免工件表面的线状空化蚀刻纹路的产生,也使工件表面的污物迅速脱落,提高清洗效果; 3.设有功率调节功能,采用先进的功率调节线路,实现超声功率无级平滑调节,克服了通过调节频率来间接的调节功率这种传统方法所带来的诸多弊病; 4.具有国内独创的防共震功能,克服了传统发生器在工件表面易产生纹路而损坏工件,也避免了因因空化而击穿槽体的缺点;

超声波发生器电源控制电路

超声波发生器电源控制电路信息发布时间:(2008年8月7日22:02:40 ) 发布者IP地址: 信息详细内容: 第60324篇:基于PWM大功率超声波电源的设计发布时间:2006年12月30日点击次数:120 来源:电子设计应用作者:内蒙古科技大学机械工程学院苏凤岐汪建新孙建平摘要:本文详细介绍了为驱动磁滞伸缩换能器而设计的一种频率、功率可调式大功率超声波电源,该电源采用由IGBT构成的全桥式逆变主电路,实现了逆变降压和输出电压调控。控制电路以脉宽调制电路为核心,通过给定信号和反馈信号电压的比较,获得宽度可变的脉冲信号,调节电源的输出电压,并实现对电源的闭环控制。关键词:IGBT;波形发生器;超声换能器;脉宽调制引言近年来,随着全控制型电子器件和PWM技术的迅速发展,功率超声的应用及其驱动电源的开发已成为热点研究领域之一。本文介绍的高频换能器驱动电源,采用全桥移相式串联电路拓扑,以单片脉宽调制电路为核心、IGBT功率管为功率开关器件,实现了大功率输出。它具有效率高、性能稳定、体积小、质量轻和调节方便等优点。超声波电源的设计超声波电源的组成及原理框图逆变式超声波电源主要由主电路和控制电路两部分组成,其基本原理框图如图1所示。图1超声波发生器原理框图主电路是将电能从电网传递给负载的电路,其主要作用是减小变压器体积和改善电源的动态品质。控制电路则主要为逆变主电路提供开关脉冲信号,驱动逆变主电路工作,并借助反馈电路和给定电路来实现对逆变器的闭环控制。逆变主电路逆变主电路包括输入整流滤波、逆变器和输出滤波三个主要部分,而逆变器则是其核心部件。逆变器本设计采用的逆变电路为全桥式逆变电路,其优点是:适用于大功率输出,主变压器只需一个原边绕组,通过正、反向的电压得到正、反向的磁通。因此,变压器铁芯和绕组得到最佳利用,使效率得到提高。另外,功率开关管在正常运行情况下,最大的反向电压不会超过电源电压,4个能量恢复二极管能消除一部分由漏感产生的瞬时电压,无须设置能量恢复绕组,反激能量 便得到恢复利用。在全桥式逆变电路中,采用IGBT作为大功率开关器件。IGBT管构成的逆变器的电路原理图如图2所示。图2桥式变换电路图交流电经桥式整流器而获得直流电压,并经C0滤波,变成平滑的直流电压V+。该电压加在IGBT功率管Tr1、Tr2、Tr3、Tr4组成的逆变桥上。当Tr1、Tr2、Tr3、Tr4都截止时,中频变压器T 原边线圈绕组T1p两端的电压U1=0。给Tr1、Tr3触发脉冲,这两个功率管导通, Tr2、Tr4截止时, 此时中频变压器T原边线圈绕组T1p两端的电压U1=V+,流经变压器原边线圈绕组T1p的电流方向由下至上。当Tr1、Tr3截止, Tr2、Tr4导通时, 此时中频变压器T原边线圈绕组T1p两端的电压U1=-V+,变压器原边线圈绕组T1p电流的方向为由上至下。由此可见,通过Tr1、Tr3和Tr2、Tr4的交替导通和关断,也就是交替驱动Tr1、Tr3和Tr2、Tr4, 中频变压器T的二次侧即得到矩形波交流输出,实现了直流变交流的过程。T r1, Tr2、Tr3, Tr4的通断受控于电子控制电路,其每秒钟驱动IGBT的次数决定了电源的工作频率。中频变压器在逆变器部分, 中频变压器的作用是实现电压变换,功率传递以及输入、输出之间的隔离。由于中频变压器的工作频率较高,随着频率的增大,铁芯的铁损将成倍增加。为了减少其铁损需选用厚度极薄的硅钢片,这显然是很不经济的,因而选用高导磁合金材料的铁氧体磁芯。铁氧体磁芯的规格可根据输出功率及其效率来确定,则磁芯有效截面积Ae、总磁感应强度增量△B也就确定。根据公式1,可计算出中频变压器的原边绕组匝数。 (1) 其中,Np为变压器原边绕组匝数,U1为变压器绕组电压,△B为总磁感应强度增量,Ton为最大导通时间。控制电路控制电路主要由电子控制电路和驱动电路构成,而电子控制电路又包括时序控制电路和脉宽调制电路。其中,脉宽调制电路是整个超声电源控制系统的核心,它与控制系统中的其它电路都有直接联系,其主要作用是将电压给定信号和电压 反馈信号进行比较放大,根据给定值与反馈值的差值,输出相应宽度的脉冲信号,以调整电源输出电压的大小。通常采用定频率调脉宽的PWM方式来达到换能器所需的各种特性控制。脉宽调制电路还有欠压、过压、过流等保护功能,封锁输出脉冲,使电源停止输出。另外,脉宽调制电路还具有软启动、死区设定等功能。脉宽调制电路本设计采用SG3525A作为电源的PWM芯片。该芯片使用简单,只需要外接少量电阻电容,即可构成所需的脉宽调制电路。如图3所示,芯片内部主要由误差放大器N1、比较器N2、振荡器、分相器和触发器等组成。图3 脉宽调制电路图给定电压Ug和反馈电压Uf分别接至误差放大器N1的同相端和反相端,N1 端的输出电压UN1接至比较器N2的反相输入端,同时,振荡器产生的三角波信号UN2,接至N2的同相输入端。误差放大器的输出与锯齿波电压在比较器中进行比较,从而在比较器的输出端输出一个随误差放大器输出电压的高低而改变脉宽的方波脉冲。再将此方波脉冲送或非门的一个输入端,或非门另三个输入端分别为触发器、振荡锯齿波、欠压

甲状腺超声造影

甲状腺超声造影检查 一、超声造影的基本原理 血液在普通二维声像图上表现为“无回声”,通常较大血管的边界容易识别,但因混响等伪差存在和分辨力限制,组织微小血管结构难以 显示。超声造影利用造影剂微泡的声散射性能,形成造影剂灌注部位与周围组织声阻抗差对比,提高图像的对比分辨率,低速血流及微小 血管能以清晰敏感显示,从而提供比彩色多普勒超声更丰富、明确的诊断信息。 二、超声造影过程 造影剂用声诺维( SonoVue) , 使用前用生理盐水5 ml, 振荡摇匀, 配制成微泡悬浊液,用量2.4ml。 造影前首先以常规二维超声多个切面扫查甲状腺, 记录结节的大小、数目、形态、边界等, 利用多普勒超声显示结节的血流灌注情况, 选择合适的超声造影切面。若为单发结节, 选择一个切面同时显示完整病灶和周边部分正常甲状腺组织, 若为多发结节,则选择一个同时显示恶性更可疑的病灶和正常组织的切面, 必要时可分多次造影。选择好切面后, 嘱患者平静呼吸, 切入造影模式, 经肘静脉快速团注2.4 ml 微泡造影剂, 同时按下计时键记录并存储动态图像。动态回放造影全过程, 观察病灶的二维增强模式,同时利用ACQ 软件, 分别在病灶周边和内部选择一个感兴趣区(ROI)。选择ROI 时注意避开病灶内肉眼可见的粗大血管、粗大钙化、坏死、囊性变, 甲状腺癌的微小钙化是肿瘤实质部分, 不影响数据分析, 可包含在ROI 内。从得到的

时间-强度曲线( time-intensity curve, TIC) 中获得以下参数: 周边ROI 峰值强度( peak intensity, PI) , 达峰时间( t ime t o peak, T T P) , 及达峰时刻病灶内部ROI 曲线的相对应的造影 剂增强强度( inter ior intensity, II) 。 一、超声造影结果: (一)将甲状腺实质性结节造影增强模式分为三型:I型:无增强型,整个结节未见造影剂增强;Ⅱ型:周边增强型,结节周边明显增强,但中央区无增强;Ⅲ型:弥漫低增强型,整个结节呈弥漫性增强,分布均匀或不均匀,发现三型都可表现为甲状腺癌的造影模式。 1、结甲:结节性甲状腺肿结节性甲状腺肿处于不同的增生时期,血供特点不同,因而超声造影模式表现为多样性,既可以为等血供型,也可以为高血供及低血供型。超声造影剂进入结节时间及消退时间与正常甲状腺组织相比可为较慢、较快或相等。普遍认可结节性甲状腺肿造影剂灌注时多表现为与周边正常甲状腺实质基本同步显影,达峰时病灶增强程度多为等增强、低增强,少数为高增强。周边环状增强模式对诊断结节性甲状腺肿最有帮助,以此征象判断甲状腺良性结节的灵敏度和特异度均较高。 2、甲状腺腺瘤:甲状腺腺瘤多为单侧低回声病灶, 周边可见光滑完整声晕,彩色多普勒常见由外周向中心包绕的丰富血流信号, 且结节周边血管粗大。超声造影剂进入肿块时间早于正常甲状腺组织,而且肿块内排空时间晚于正常甲状腺组织,即为“快进慢出,高增强”。有时,腺瘤易发生囊变,囊性变成分张力高,压迫周围残存实性成分,

压电式超声波发生器原理

由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人研制上也得到了广泛的应用。下面为大家介绍超声波测距原理是什么。 超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。 2、压电式超声波发生器原理 压电式超声波发生器实际上是利用电晶体的谐振来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 。这就是所谓的时间差测距法。 超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。由此可见,超声波测距原理与雷达原理是一样的。 测距的公式表示为:L=C×T 式中L为测量的距离长度;C为超声波在空气中的传播速度;T为测量距离传播的时间差(T为发射到接收时间数值的一半)。 对于超声波测距精度要求达到1mm时,就必须把超声波传播的环境温度考虑进去。例如当温度0℃时超声波速度是332m/s, 30℃时是350m/s,温度变化引起的超声波速度变化为18m/s。若超声波在30℃的环境下以0℃的声速测量100m距离所引起的测量误差将达到5m,测量1m误差将达到5cm。

超声造影

超声医学最新进展——超声造影技术 前言 回顾医学超声发展的历史,我们看到,70 年代崛起的实时灰阶超声(real-time grey-scale ultrasound )即 B 型超声或二维灰阶超声断层扫描技术,奠定了现代超声诊断的基础,为超声极为广泛地临床应用铺平了道路;80 年代发展起来的彩色多普勒成像技术,使现代超声影像诊断极具特色,为心血管和全身器官组织血流的无损检测和血流动力学研究开创了新的领域;90 年代以来,许多超声新技术的出现可谓层出不穷,其中对医学超声最具影响力并能进一步提升其在现代影像技术中地位者,莫过于超声造影成像,即造影增强超声(contrast enhanced ultrasound)。借助于静脉注射造影剂和超声造影谐波成像技术,能够清楚显示微细血管和组织血流灌注,增加图像的对比分辨力,大大提高超声检出病变的敏感性和特异性。这和增强CT 扫描极为相似。如今造影不仅进一步开拓了临床应用范围,提高常规灰阶/彩色多普勒超声的诊断水平,在靶向治疗方面还具有良好的发展前景。总之,超声造影是重大的技术革新和研究方向,是医学超声发展历程中新的里程碑。 超声造影的概念 Barry B. Goldberg 是世界上研究开发新型超声造影剂的先驱者,他对各类超声造影剂的研究和应用表现出浓厚的兴趣。Goldberg 等将微泡超声造影剂称作血管造影剂(vascularcontrast agents)或血管增强超声造影剂,它有别于通常用于胃肠造影的口服造影剂(oralagents)。因此,超声造影有血管造影剂和口服或灌肠造影剂 2 类,前者也称微泡造影剂。十多年来,超声造影增强或血管超声造影技术的发展最为迅速。微泡超声造影剂初始研究阶段,最早用于造影的气体主要是空气和氧气,其后,是以CO2自由微气泡为代表的无壳膜造影剂静脉注射和经导管肝动脉内注射进行超声造影。90年代开始新型超声造影剂问世,以Levovist(利声显)、Albunex 和Echvist 为代表的含空气微泡的壳膜造影剂,称为第一代新型造影剂。此后,更有含惰性气体的SonoVue(声诺维)、Options 等为代表的壳膜型造影剂出现,亦称第二代新型造影剂。新型造影剂微泡的平均直径约3~5μm,可以顺利通过肺循环,实现左右心室腔、心肌以及全身器官组织和病变的造影增强。微泡超声造影剂的安全性:经大量实验研究和超过万例临床应用经验证明,微泡造影剂是安全的。据测算,超声造影每次静脉注入的微泡含空气/气体总量小于200μl(0.2 ml),没有发生气栓的任何危险;目前上市的造影剂中只有利声显的壳膜是由半乳糖构成,其余造影剂多以白蛋白、磷脂或聚合物等构成,易被人体自然代谢,对人体不会产生毒副作用。因此,是比较理想的超声造影剂。研究指出,第二代新型超声造影剂采用低溶解度和低弥散性的高分子量含氟惰性气体如SF6、C3F8 等,可显著延长微泡造影剂在人体血液中的寿命,增加了微泡的稳定性。超声造影原理 超声造影剂的研究经历了三个阶段,即以CO2 自由微气泡为代表的第一代无壳膜型造影剂,以Albunex 和Levovist (利声显) 为代表的第二代含空气微气泡有壳膜型造影剂,及含惰性气体的新型微泡造影剂如SonoVue 、Optison、Echogen 等。这些造影剂的基本原理都是通过改变声衰减、声速和增强后散射等,改变声波与组织间的基本作用,即吸收、反射和折射,从而使所在部位的回声信号增强。理想的超声造影剂微泡要小至能够通过肺、心脏及毛细血管循环,以便通过简单的外周静脉注射即可造影,并可以在成像中稳定地保持其声学效应。研究发现采用低溶解性、低弥散性的高分子气体如含氟气体,可以提高微泡在血液中的寿命,增加稳定性。随着高分子化学的发展,国外有学者利用可生物降解多聚体材料来替代人血白蛋白和磷脂等自然物质,改变微泡的外壳组成,从而避免了由于这些自然物质本身的局限性而造成的声学效果不稳定等问题。目前国内外的研究表明多聚体微泡的开发是最具有前途的超声造影剂,它可以通过改变聚合条件使其声学特性可以设计,可为某种成像条件“量身定做”适合

超声成像基础原理以及心脏超声

超声成像 学习要求:掌握超声成像的基本原理(超声、超声的物理特性及其应用)、超声图像的特点了解超声波的产生、超声成像、超声检查技术与设备,超声诊断的方法学目的:理解超声诊断的临床应用 超声成像的定义:利用超声波的物理特性和人体器官组织声学特征相互作用后所产生的信息,经信息处理形成图像的成像技术,借此进行疾病诊断的检查方法。 一、超声波的物理特性(1): 波可分为:电磁波(包括可见光、无线电波、X线)和机械波(包括声波、水波、地震波)声波:20~20000 Hz 超声波:>20000 Hz 医用超声波:2.5~10 MHz 二、超声波的物理特征(2) 1.超声波的物理量(波长、频率、传播速度)及其关系: 物理量: 频率(f) : Hz 声速(c) : m /s 或cm/s 波长(λ) : m 介质密度(ρ) : g/cm3 声阻抗(Z):Z=ρ×c(g/cm2.s) 关系: c2=K / ρ即声速取决于波长和频率, 并与介质中的弹性(K) 和密度(ρ) 密切相关c=f ×λ即同一介质中传播(C确定),频率越高则波长越短 传播速度: 固体>液体>气体 2.束射性或指向性(超声波的直线传播) 其方向性与超声频率、声源直径及后者与波长的比值有关 扩散角越小,方向性越好 3.反射:超声在均质性介质传播中不出现反射 反射条件: ①介质声阻抗差>0.1% ②界面大于波长 声阻抗=介质密度与速度的乘积 4.散射

超声波在介质中传播如遇不规则的小界面, 或界面小于波长时,则发生散射 5.衰减: 超声波在介质中传播由于介质吸收(声能转化为热) 、反射、散射等原因,其振幅与强度逐渐降低,这种现象称为衰减。(振幅与强度的减小) 6.多普勒效应: 声束在介质中传播时,如遇到运动的反射界面,其反射的超声波频率随界面运动的情况而发生改变的现象 三、超声波的产生: 1、压电晶片(换能器) 2、压电效应:逆压电效应(电能转变为声能) 正压电效应 四、超声成象基本原理 1、器官、组织中各种界面对超声波的不同反射和/或散射是构成图象的基础。 2、仪器将接收到的含有各种声学信息的回声,经过处理,在显示器上显示为波形、曲线、图象 五、超声诊断的种类 1、A型---A mplitude 以波的形式显示出来,为幅度调制型 2、M型---M otion echocardiography 是B型超声中的一种特殊显示方式 3、B型---B rightness 以光点的形式显示出来,为辉度调制型 扫查连续, 由点, 线而扫描出脏器的解剖切面, 是二维空间显示, 又称二维法 4、D型---D oppler ( pw、cw、color doppler) 彩色多普勒血流显像CDFI(color Doppler flow imaging): 将二维彩色血流信号重叠到二维B型扫描或M型扫描图上,实现解剖结构与血流状态两种图像结合的实时显像 用红, 黄, 蓝三种基本颜色编码,显示不同血流方向 颜色的辉度与血流速度成正比 彩色多普勒血流显像不仅能清楚的显示心脏大血管的形态结构和活动情况,而且能直观和形象地显示心内血流的方向、速度、范围、有无血流紊乱及异常通路等 ——故有人称之为非损伤性心血管造影法。 六、超声图像特点:

超声波发生器的整体电路5

超声波发生器的整体电路基本由三部分组成,信号发生部分,功率放大部分,换能器和换能器的的匹配电路组成。信号发生电路可由RC 振荡电路、555 定时器构成的多谐波振荡器分别产生正弦波和矩形波两种,并且依据不同的原理可以实现变频。功率放大部分,由选定的功率放大器或模块实现功率放大,用来达到驱动功率放大器的功率。换能器是用来实现能量转化的,在两种电路中的用法和作用完全相同,都是在匹配电路的作用下实现能量转化的最大化。 5.1 变频RC 振荡整体电路的简述。 变频RC振荡整体电路由三部分部分组成,第一部分是变频RC振荡电路的发生部分,振变频RC振荡电路是用来产生一定频率和一定幅值正弦波的电路,它不需要外接输入信号,输出端就有信号输出。它的基本构思是在放大电路中人为地介入正反馈电路来产生稳定的振荡。根据选择电阻的不同来控制不同的频率,它的基本组成是RC振荡电路,运算放大器等组成 第二部分是功率放大部分。信号发生电路中输出的信号功率较小,不足以带动换能器工作,在逐级信号传递过程中,信号功率因太小,易失真和掺入杂波,加上功率放大电路,以满足小功率信号传递的需要。为输出足够大的功率,功率放大电路的输出电压、电流幅度都比较大。功率放大电路工作在大信号工作状态,从能量转换的观点来看,功率放大电路提供给负载的交流功率是在输入交流信号的控制下,将直流电源提供的能量转换成交流能量而来的。 第三部分为换能器和换能器的匹配电路,换能器是超声波发生器的核心器件,其特性参数决定整个设备的性能。超声波换能器就是通过换能器将高频电能转换为机械振动。换能器的特性取决与选材和制作工艺,匹配电路的作用是保证电信号能高效而安全地传输给换能器。 由三部分组成的变频RC 振荡整体电路如下

超声波清洗原理是由超声波发生器发出的高频振荡信号

超声波清洗原理是由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质,清 洗溶剂中超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的微小气泡,存在于液体中的 微小气泡在声场的作用下振动,当声压达到一定值时,气泡迅速增大,然后突然闭合,在气泡闭合时产生冲击波,在其周围产生上千个大气压,破坏不溶性污物而使他们分散于清洗液中,当团体粒子被油污裹着而黏附在清 洗件表面是,油被乳化,固体粒子及脱离,从而达到清洗件净化的目的超声波清洗原理是由超声波发生器发 出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质,清洗溶剂中超声波在清洗液中疏密相间 的向前辐射,使液体流动而产生数以万计的微小气泡,存在于液体中的微小气泡在声场的作用下振动,当声压 达到一定值时,气泡迅速增大,然后突然闭合,在气泡闭合时产生冲击波,在其周围产生上千个大气压,破坏不 溶性污物而使他们分散于清洗液中,当团体粒子被油污裹着而黏附在清洗件表面是,油被乳化,固体粒子及 脱离,从而达到清洗件净化的目的,且通过其空化作用达到洗盲脚的作用 超声波清洗机 开放分类:机械 人们所听到的声音是频率20-20000Hz的声波信号,高于20000Hz的声波称之为超声波,声波的传递依照正弦曲线纵向传播,即一层强一层弱,依次传递,当弱的声波信号作用于液体中时,会对液体产生一定的负压,即液体体积增加,液体中分子空隙加大,形成许许多多微小的气泡,而当强的声波信号作用于液体时,则会对液体产生一定的正压,即液体体积被压缩减小,液体中形成的微小气泡被压碎。经研究证明:超声波作用于液体中时,液体中每个气泡的破裂会产生能量极大的冲击波,相当于瞬间产生几百度的高温和高达上千个大气压,这种现象被称之为“空化作用”,超声波清洗正是用液体中气泡破裂所产生的冲击波来达到清洗和冲刷工件内外表面的作用。 第二超声波在液体中传播,使液体,与清洗槽在超声波频率下一起振动,液体与清洗槽振动时有自己固有频率,这种振动频率是声波频率,所以人们就听到嗡嗡声。还有其它不清楚的,可以发邮件来问 miaoda@https://www.360docs.net/doc/e23771208.html,,尽我所能。 1、什么是超声波:波可以分为三种,即次声波、声波、超声波。次声波的频率为20Hz以下;声波的频率为20Hz~20kHz;超声波的频率则为20kHz以上。其中的次声波和超声波一般人耳是听不到的。超声波由于频率高、波长短,因而传播的方向性好、穿透能力强,这也就是为什么设计制作超声波清洗机的原因。 2、超声波如何完成清洗工作 超声波清洗是利用超声波在液体中的社会化作用、加速度作用及直进流作用对液体和污物直接、间接的作用,使污物层被分散、乳化、剥离而达到清洗目的。目前所用的超声波清洗机中,空化作用和直进流作用应用得更多。

超声诊断仪基本原理和结构

江西中医学院计算机学院08生物医学工程2班黄月丹学号5047 超声诊断仪原理及其基本结构 超声成像检查技术是指运用超声波的物理特性,通过高科技电子工程技术对超声波发射、接收、转换及电子计算机的快速分析处理和显像,从而对人体软组织的物理特性、形态结构与功能状态作出判断的一种非创性检查技术。 超声诊断技术的发展历程 20世纪50年代建立,70年代广泛发展应用的超声诊断技术,总的发展趋势是从静态向动态图像(快速成像)发展,从黑白向彩色图像过渡,从二维图像向三维图像迈进,从反射法向透射法探索,以求得到专一性、特异性的超声信号,达到定量化、特异性诊断的目的。80年代介入性超声逐渐普及,体腔探头和术中探头的应用扩大了诊断范围,也提高了诊断水平,90年代的血管内超声、三维成像、新型声学造影剂的应用使超声诊断又上了一个新台阶。 二.超声诊断仪的种类 (一) A型这是一种幅度调制超声诊断仪,把接收到的回声以波的振幅显示,振幅的高低代表回声的强弱,以波型形式出现,称为回声图,现已被B型超声取代,仅在眼科生物测量方面尚在应用,其优点是测量距离的精度高。(二) B型这是辉度调制型超声诊断仪,把接收到的回声,以光点显示,光点的灰度等级代表回声的强弱。通过扫

描电路,最后显示为断层图像,称为声像图。B型超声诊断仪由于探头和扫描电路的不同,显示的声像图有矩形、梯形和扇形。矩形声像图和梯形声像图用线阵探头实现,适用于浅表器官的诊断;扇形声像图用的探头有多种,机械扇扫探头、相控阵探头和凸阵探头均显示扇形声像图。前二种探头可由小的声窗窥见较宽的深部视野,适用于心脏诊断;后一种探头浅表与深部显示均宽广,适用于腹部诊断,有一种曲率半径小的凸阵探头,也可用小的声窗,窥见深部较宽的视野。 (三) M型 M型超声诊断仪是B型的一种变化,介于A型和B型之间,得到的是一维信息。在辉度调制的基础上,加上一个慢扫描电路,使辉度调制的一维回声信号,得到时间上的展开,形成曲线。用以观察心脏瓣膜活动等,现在M型超声已成为B型超声诊断仪中的一个功能部分不作为单独的仪器出售。(四) D型在二维图像上某点取样,获得多普勒频谱加以分析,获得血流动力学的信息,对心血管的诊断极为有用,所用探头与B型合用,只有连续波多普勒,需要用专用的探头。超声诊断仪兼有B型功能和D型功能者称双功超声诊断仪。(五) 彩色多普勒超声诊断仪具有彩色血流图功能,并覆盖在二维声像图上,可显示脏器和器官内血管的分布、走向,并借此能方便地采样,获得多普勒频谱,测得血流的多项重要的血流动力学参数,供诊断之用。彩色多普勒超声诊断仪一般均兼有B型、M型、D型和彩色血流图功能。(六) 三维超声诊断仪三维超声是建立在二维基础上,在彩色多普勒超声诊断仪的基础上,配上数据采集装置,再加上三维重建软件,该仪器即有三维显示功能。(七) C型C型超声仪也是辉度调制型的一种,与B型不同的是其显示层面与探测面呈同等深度。超声诊断仪基本原理

超声波焊接机的工作原理

精心整理超声波焊接机的工作原理 超音波焊接机的工作原理是:? 是通过振荡电路振荡出高频信号由换能器转化成机械能(即频率超出人耳听觉阈的高频机械振动能),该能量通过焊头传导到塑料工件上,以每秒上几十万次的振动加上压力使塑料工件的接合面剧烈摩擦后熔化。振动停止后维持在工件上的短暂压力使两焊件以分子链接方式凝固为一体。一般焊接时间小于1秒钟,所得到的焊接强度可与本体相媲美。超声波塑料焊接机可用于热塑性塑料的对焊,也用于铆焊、点焊、嵌入、切除等加工工艺。根据产品的外观来设计模具的大小、形状。? 超声波塑料焊接 1 2 一触发控制信号气压传动系统,气缸加压焊头下降并压住焊触发超声发生器工作,发射超声并保持一定焊接时间去除超声发射继续保持一定压力时间退压,焊头回升焊接结束。 3、超声波发生器 (1)功率较大的超声波塑料焊接机,发生器信号采用锁相式频率自动跟踪电路,使发生器输出的频率基本上与换能器谐振频率一致。 (2)功率在500W以上的超声波塑料焊接机所用发生器采用自激式功率振荡器,也具有一定的频率跟踪能力。 4、超声波焊接机使用的声学系统,主要是有换能器和工具头构成的。 一、打开电源无显示? 二、原因:保险丝熔断?

三、解决方法:? 四、1、?检查功率管是否短路? 五、2、?更换保险丝? 六、 七、二、超声波测试无电流显示? 八、原因: 九、1、?功率管烧毁? 十、2、?高压电容烧毁? 十一、3、继电器控制线路部分有故障? 十二、解决方法:更换相关烧毁零件? 十三、 十四、 十五、 十六、 十七、 十八、 十九、 二十、 二十一、 二十二、 二十三、 二十四、 二十五、 二十六、 二十七、 二十八、 二十九、 三十、 三十一、 三十二、 三十三、 三十四、 三十五、 三十六、 三十七、 三十八、 三十九、解决方法: 四十、1、?将急停开关复位? 四十一、2、?检测使两个触发开关能同时触发? 四十二、3、?检测程序板排除故障,一般为IC问题? 四十三、 四十四、六、触发触发开关后,超声时间非常长或者保压时间非常长? 四十五、原因:焊接时间或保压时间波段开关断路? 四十六、解决方法:调整波段开关触点,使之接触良好? 四十七、 四十八、七、触发触发开关后,超声波不能触发? 四十九、原因:

超声波原理

超声波原理: 超声波清洗是基於空化作用,即在清洗液中无数气泡快速形成并迅速内爆。由此产生的冲击将浸没在清洗液中的工件内外表面的污物剥落下来。随着超声频率的提高,气泡数量增加而爆破冲击力减弱,因此,高频超声特别适用於小颗粒污垢的清洗而不破环其工件表面。 空化泡的扩大以及爆裂(内爆) 气泡是在液体中施加高频(超声频率)、高强度的声波而产生的。因此,任何超声清洗系统都必须具备三个基本元件:盛放清洗液的槽、将电能转化为机械能的换能器以及产生高频电信号的超声波发生器。 换能器和发生器: 超声清洗系统最重要的部分是换能器。现存两种换能器,一种是磁力换能器,由镍或镍合金制成;一种压电换能器,由锆钛酸铅或其他陶瓷制成。将压电材料放入电压变化的电场中时,它会发生变形,这就是所谓的'压电效应'。相对来说,磁力换能器是用会在变化的磁场中发生变形的材料制成的。 无论使用何种换能器,通常最基本的因素为其产生的空化效应的强度。超声波和其它声波一样,是一系列的压力点,即一种压缩和膨胀交替的波(如下图示)。如果声能足够强,液体在波的膨胀阶段被推

开,由此产生气泡;而在波的压缩阶段,这些气泡就在液体中瞬间爆裂或内爆,产生一种非常有效的冲击力,特别适用於清洗。这个过程被称做空化作用 声波的压缩和膨胀 从理论上分析,爆裂的空化泡会产生超过10,000 psi的压力和20,000 °F (11,000 °C) 的高温,并在其爆裂的瞬间冲击波会迅速向外辐射。单个空化泡所释放的能量很小,但每秒钟内有几百万的空化泡同时爆裂,累计起来的效果将是非常强烈的,产生的强大的冲击力将工件表面的污物剥落,这就是所有超声清洗的特点。 如果超声能量足够大,空化现象会在清洗液各处产生,所以超声波能够有效清洗微小的裂缝和孔。空化作用也促进了化学反应并加速了表面膜的溶解。 然而只有在某区域的液体压力低於该气泡内气体压力时才会在该区

超声波无损检测基础原理

第1章绪论 1.1超声检测的定义和作用 指使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 作用:质量控制、节约原材料、改进工艺、提高劳动生产率 1.2超声检测的发展简史和现状 利用声响来检测物体的好坏 利用超声波来探查水中物体1910‘ 利用超声波来对固体内部进行无损检测 1929年,前苏联Sokolov 穿透法 1940年,美国的Firestone 脉冲反射法 20世纪60年代电子技术大发展 20世纪70年代,TOFD 20世纪80年代以来,数字、自动超声、超声成像 我国始于20世纪50年代初范围 专业队伍理论及基础研究标准超声仪器 差距 1.3超声检测的基础知识 次声波、声波和超声波 声波:频率在20~20000Hz之间次声波、超声波 对钢等金属材料的检测,常用的频率为0.5~10MHz 超声波特点: 方向性好 能量高 能在界面上产生反射、折射、衍射和波型转换 穿透能力强 超声检测工作原理 主要是基于超声波在试件中的传播特性 声源产生超声波,采用一定的方式使超声波进入试件; 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变; 改变后的超声波通过检测设备被接收,并可对其进行处理和分析; 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 超声检测工作原理 脉冲反射法: 声源产生的脉冲波进入到试件中——超声波在试件中以一定方向和速度向前传播——遇到两侧声阻抗有差异的界面时部分声波被反射——检测设备接收和显示——分析声波幅度和位置等信息,评估缺陷是否存在或存在缺陷的大小、位置等。 通常用来发现和对缺陷进行评估的基本信息为: 1、是否存在来自缺陷的超声波信号及其幅度; 2、入射声波与接收声波之间的传播时间; 3、超声波通过材料以后能量的衰减。 超声检测的分类 原理:脉冲反射、衍射时差法、穿透、共振法 显示方式:A 、超声成像(B C D P) 波型:纵波、横波、表面波、板波

超声造影试题

第八章超声造影 1超声造影剂产生的散射回声强度与造影剂颗粒的横截面大小成(A) A 正比 B 反比 C 等比 D 无比例关系 E 频率决定比例关系 2左心室及外周血管超声造影,因造影剂必须通过毛细血管网,所有造影剂气泡直径必须小于(B) A 红细胞 B 10um C 20um D 50um E 100um 3心肌造影的造影剂必须进入心肌内的冠状动脉的细小分支,所以造影剂微气泡直径必须小于(A) A 5um B 10um C 20um D 50um E 100um 4以下那些造影剂不可以应用于心肌造影(B) A AHV563 A 声振白蛋白溶液 B 1%的盐酸或2%的醋酸或3%的 双氧水 C AFO150(以人体白蛋白、脂类、聚合物包裹氟碳微气泡的造影剂)D 以糖类为基质的超声造影剂 E QW7437(以人体白蛋白、脂类、聚合物包裹氟碳微气泡的造影剂) 5造影剂在超声作用下产生振动,以下哪些描述振动的频率不正确(B) A 振动的频率是线性的 B 振动的频率是非线性的 C 与超声波 的频率有关 D 与超声波的波长有关 E 与超声波的频率保持谐振关系 6谐振是指(D) A 造影剂微气泡的振动频率与发射超声频率成非线性比例 B 照影 剂微气泡的振动频率与发射超声的振幅成线性比例C造影剂微气泡的振动频率与发射超声频率不一致D造影剂微气泡的振动频率与发射超声频率一致 E 造影剂微气泡的振动频率与发射超声频率无关 7在达到谐波反射状态时,造影剂的散射散射面积比实际的几何面积大 (D) A 1倍 B 2倍 C 3倍 D 4倍 E 9倍 8造影剂的第一次谐波反射,也称为(A) A 基波反射 B 声波反射 C 二次谐波 D 三次谐波 E 四次谐波9超声造影的反射源是(B) A 气体 B 微气泡 C 血液中的胶原蛋白 D 血液中的红细胞 E 以上都可以 10压缩系数大小的排列顺序哪个正确(D) A 气体> 固体> 液体 B 固体> 液体> 气体 C 液体> 固 体> 气体 D 气体> 液体> 固体 E 固体> 气体> 液体 11右心超声造影的原理是(E) A 造影剂经静脉注射或点滴进入人体 B 微气泡直径小于10um C

超声波提取原理、特点与应用介绍

超声波提取原理、特点与应用介绍 超声波指频率高于20KHz,人的听觉阈以外的声波。 超声波提取在中药制剂质量检测中(药检系统)已广泛应用。《中华人民共和国药典》中,应用超声波处理的有232个品种,且呈日渐增多的趋势。 近年来,超声波技术在中药制剂提取工艺中的应用越来越受到关注。超声波技术用于天然产物有效成分的提取是一种非常有效的方法和手段。作为中药制剂取工艺的一种新技术,超声波提取具有广阔的前景。 超声波提取是利用超声波具有的机械效应,空化效应和热效应,通过增大介质分子的运动速度、增大介质的穿透力以提取生物有效成分。 1、提取原理 (1)机械效应超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。 (2)空化效应通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。 (3)热效应和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。 此外,超声波还可以产生许多次级效应,如乳化、扩散、击碎、化学效应等,这些作用也促进了植物体中有效成分的溶解,促使药物有效成分进入介质,并于介质充分混合,加快了提取过程的进行,并提高了药物有效成分的提取率。 2、超声波提取的特点 (1)超声波提取时不需加热,避免了中药常规煎煮法、回流法长时间加热对有效成分的不良影响,适用于对热敏物质的提取;同时,由于其不需加热,因而也节省了能源。 (2)超声波提取提高了药物有效成分的提取率,节省了原料药材,有利于中药资源的充分利用,提高了经济效益。 (3)溶剂用量少,节约了溶剂。 (4)超声波提取是一个物理过程,在整个浸提过程中无化学反应发生,不影响大多数药物有效成分的生理活性。 (5)提取物有效成分含量高,有利于进一步精制。 3、超声波技术在天然产物提取方面的应用 与水煎煮法对比,采用超声波法对黄芩的提取结果表明,超声波法提取与常规煎煮法相比,提取时间明显缩短,黄芩苷的提取率升高;超声波提取10、20、40、60min均比煎煮法提取3h的提取率高。 应用超声波法对槐米中主要有效成分芦丁的提取结果表明,超声波处理槐米30min所

超声波发生器与换能器的匹配设计

超声波发生器与换能器的匹配设计 选自《近代超声原理与应用》袁易全主编作者:思忠 一、匹配概述 超声波发生器与换能器匹配包括两个方面,一是通过匹配使发生器向换能器输出额定的电功率,这是由于发生器需要一个最佳的负载才能输出额定功率所致,把换能器的阻抗变换成最佳负载,也即阻抗变换作用; 二是通过匹配使发生器输出效率最高,这是由于换能器有静电抗的原因,造成工作频率上的输出电压和电流有一定相位差,从而使输出功率得不到期望的最大输出,使发生器输出效率降低,因此在发生器输出端并上或串上一个相反的抗,使发生器负载为纯电阻,也即调谐作用。由此可见匹配的好坏直接影响着功率超声源的产生和效率。 二、阻抗匹配 为了使功率放大器输出额定功率最大;在电源电压给定条件下主要取决于负载阻抗。一般在D类开关型功放中其发生器变压器初级等效负载Rl'上的输出功率表达式为: 式中,V Am为等效负载上的基波幅度; V cc为电源电压;V ces为功放管饱和压降,故 为了保证系统有一定功率余量(因输出变压器,末级匹配回路及晶体管损耗电阻都有损耗,Po' 需要乘上一个约等于1.4—1.5的系数。即输出功率Po为1.5Po'; 从上式可知,在电源电压给定之后,输出功率的大小取决于等效负载R L’。目前大多数功率超声发生器的负载为压电型换能器,其阻抗约为几十欧姆至几百欧姆间,为了要达到要求的额定功率,因此需要对换能器负载R L进行阻抗变换。由高阻抗变换为低阻抗。一般常用的方法,通过输出变压器的初次级线圈的匝数比进行变换。变压器次初级匝数比为n/m,则输出功率P O时的初级电阻

举例:要求一发生器输出在换能器上的功率为1000W,设直流电V CC为220V,V CES=1V,功率应留有一定余量,则P O=1.5P O'=1500W。则变压器初级的 6.5Ω 若换能器谐振时等效电阻RL=200Ω,则输出变压器次级/初级圈数比 以上称谓阻抗变换,是通过输出变压器实行的。 输出变压器是超声波发生器阻抗匹配、传输功率的重要部件,它的设计与绕制工艺对发生器的工作安全是十分重要的。它不仅会以漏感、励磁电流等方式影响电路的工作,其漏感还是形成输出电压尖峰的主要原因。为此,在设计时,应选取具有高磁通密度B,高导磁率μ,高电阻率ρc和低矫顽力Hc的高饱和材料作铁芯。一般在防止高频变压器的瞬态饱和时,在设计时要注意如下几点: 1.工作磁通密度B的选取 铁芯材料的磁感应增量ΔB愈大,所需线圈匝数愈少,直流电阻R 也愈小,从而线圈的铜损P m也愈小。ΔB取得高时,传输的脉冲前沿就愈陡。因此,在设计变压器时,选取高磁通密度的材料作铁芯,这对降低变压器的损耗、减小体积和重量都是很有利的。为了避免在稳态或过渡过程中发生饱和,一般选取工作磁通密度B≤Bs/3为宜,这里Bs 为磁芯的最大和磁通密度。 2. 要保证初级电感量足够大 一般要求变压器初级阻抗应满足下式关系:ωLl≥15R L',其中R L' 为次级负载所算到初级边的等效电阻值,ωL1为初级电感感抗,若初级电感量太小,励磁电流将比较大,励磁电流过大,变压器的损耗将增加,温升随之增高,从而降低Bs,使变压器进入饱和的可能性增大。 3.要考虑“集肤效应”的影响 在高频工作时,流过导线的电流会产生“集肤效应”。这相当于减少了导线有效截面积,增加了导线的电阻,从而引起导线的压降增大,导致变压器温度升高,结果增大了变压器进入饱和的危险性,建议采用小直径的多股导线并绕的方法。

相关文档
最新文档