锂电池的回收与处理技术分析

锂电池的回收与处理技术分析
锂电池的回收与处理技术分析

201 届毕业设计(论文)

材 料

系 、 部:安全与环境工程学院 环境工程系 学生姓名: 李伟姣 指导教师: 周雯静 职 称: 讲师 专 业: 环境工程 班 级: 环本1002 学 号: 10601540225

201 届毕业设计(论文)课题任务书系:专业:

湖南工学院201 届毕业设计(论文)指导教师评阅表系:

湖南工学院201 届毕业设计(论文)答辩及最终成绩

评定表

系(公章):

说明:最终评定成绩=a+b,两个成绩的百分比由各院、系自己确定,但应控制在给定标准的10%左右。

摘要

随着电子技术的发展以及电子产品的普及,锂电池已成为人们生活中不可或缺的电源工具.不论是日常生活中用到的遥控器,钟表,还是人们出行用到的电动车,都离不开锂电池.由于很多锂电池使用寿命比较短,随意的丢弃会对环境造成非常消极的影响,因此严格规范锂电池的回收处理技术既是十分必然的同时又是意义非凡的.本文初步介绍了锂电池的种类,组成结构,以及国内外对锂电池回收处理的概况,也提出了一些可行的处理技术对锂电池进行回收处理.

关键词 :锂电池,回收处理,处理工艺,

目录

一概况分析 (9)

1.1 锂电池的目前情况 (9)

1.2 锂电池的危害 (11)

1.3 锂电池回收处理的重要性 (13)

二国内外废电池回收处理概况 (13)

2.1 欧美日等国电池回收已具相当规模 (13)

2.2我国电池回收量少、网络缺、水平底 (14)

三设计范围 (15)

四锂电池的回收和处理工艺 (16)

五设备选型 (16)

六其他需要说明的问题 (21)

参考文献 (21)

一概况分析

1 .1锂电池的目前情况

1.1.1锂电池简介

锂电池(Lithium battery)是指电化学体系中含有锂(包括金属锂、锂合金和锂离子、锂聚合物)的电池。锂电池大致可分为两类:锂金属电池和锂离子电池。锂金属电池通常是不可充电的,且内含金属态的锂。锂离子电池不含有金属态的锂,并且是可以充电的。最早得以应用于心脏起搏器中。锂电池的自放电率极低,放电电压平缓。使得起植入人体的搏器能够长期运作而不用重新充电。锂电池一般有高于3.0伏的标称电压,更适合作集成电路电源。二氧化锰电池,就广泛用于计算器,数位相机、手表中。

1.1.2 锂电池的早期研究

为了开发出性能更优异的品种,人们对各种材料进行了研究。从而制造出前所未有的产品。比如,锂二氧化硫电池和锂亚硫酰氯电池就非常有特点。它们的正极活性物质同时也是电解液的溶剂。这种结构只有在非水溶液的电化学体系才会出现。所以,锂电池的研究,也促进了非水体系电化学理论的发展。除了使用各种非水溶剂外,人们还进行薄膜电池的研究。

1992年Sony成功开发锂离子电池。它的实用化,使人们的行动电话、笔记本、计算器等携带型电子设备重量和体积大大减小。使用时间大大延长。由于锂离子电池中不含有重金属镉,与镍镉电池相比,大大减少了对环境的污染。

1.1.3 锂电池的后期发展

1 1970年代埃克森的M.S.Whittingham采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。

2. 1980年,J. Goodenough 发现钴酸锂可以作为锂离子电池正极材料.[2]

3 1982年伊利诺伊理工大学(the Illinois Institute of Technology)的

R.R.Agarwal和J.R.Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。与此同时,采用金属锂制成的锂电池,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。首个可用的锂离子石墨电极由贝尔实验室试制成功。

4 1983年M.Thackeray、J.Goodenough等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。

5 1989年,A.Manthiram和J.Goodenough发现采用聚合阴离子的正极将产生更高的电压。

6 1991年索尼公司与TUSAME 昭和重工发布首个商用锂离子电池。随后,锂离子电池革新了消费电子产品的面貌。

7 1996年Padhi和Goodenough发现具有橄榄石结构的磷酸盐,如磷酸锂铁(LiFePO4),比传统的正极材料更具优越性,因此已成为当前主流的正极材料。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,所以锂电池生产要在特殊的环境条件下进行。但是由于锂电池的很多优点,锂电池被广泛的应用在电子仪表、数码和家电产品上。但是,锂电池多数是二次电池,也有一次性电池。少数的二次电池的寿命和安全性比较差。

后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即

我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。

随着数码产品如手机、笔记本电脑等产品的广泛使用,锂离子电池以优异的性能在这类产品中得到广泛应用,并在近年逐步向其他产品应用领域发展。1998年,天津电源研究所开始商业化生产锂离子电池。习惯上,人们把锂离子电池也称为锂电池,但这两种电池是不一样的。现在锂离子电池已经成为了主流。

1.2 锂电池的危害

日益增长的垃圾产量正在使我们居住的星球超负荷运转,层出不穷的公害事件、"垃圾围城"早已为我们敲响了警钟。如何实现无害化、减量化、资源化已是当务之急。"放错了地方的资源"是近年来人们对垃圾的重新认识。实行垃圾分类将使能够回收的垃圾废物实现物尽其用,变废为宝。

就体积和重量而言,废锂电池在生活垃圾中是微不足道的,但它的害处却非常大,;锂电池中含有汞、镉、铅等重金属物质。汞具有强烈的毒性,铅能造成神经紊乱、肾炎等;镉主要造成肾损伤以及骨疾-骨质疏松、软骨症及骨折。若把废锂电池混入生活垃圾中一起填埋,久而久之,惨出的重金属可能污染地下水和土壤。

锂电池在我们生活中的使用量正在迅速增加,已深入到我们生活和工作的每一个角落。WALKMAN、BP机、移动电话、照相机、计算器。目前,全国的锂电池消费量在70亿只左右。据预测,到2000年仅BP机的锂电池用量就将达到15.5亿只。这些锂电池若未得到妥善处理,将直接或间接地危害人们的身体健康。实施并倡锂电池分类收集活动

为越来越多的人们所认识,并得到越来越多的重视、支持和参与--与其分散污染,不如集中治理。

从我做起,从身边每一件小事做起,是我们的座右铭。关爱身边环境、参与废旧锂电池的分类回收利用是我们每一个人的责任和义务。个人的行为也许微不足道,但把我们每个人的力量联合起来,便足以托起一种文明,一种与自然共生的文明,一种可持续发展的文明。

1.3锂电池回收处理的重要性

综上所述,由于锂电池的市场非常之大,使用量也多,但是如果对锂电池处理不当,极有可能对环境的可持续发展以及人类的健康造成难以预测的影响,因此,着手研究如何回收锂电池里珍惜的成分以及如何处理锂电池里有害的元素成为本篇论文的重点,同时也是社会各界应该引起高度重视的问题。

二国内外废电池回收处理概况

2.1 欧美日等国电池回收已具相当规模

日本:本田汽车公司正采取措施提取电池内可回收利用的金属,同时与金属生产商合作提取电池内含稀土,以推进资源回收利用活动的发展。丰田汽车公司则从电池中提取金属镍作为电池原料,同时也积极推进其他金属的回收利用。此外,日产汽车公司及三菱汽车公司也在其公司内进行电池回收实验。

欧洲:回收利用企业已具备了先进的锂电池回收处理技术,优美科公司新开发

超高温处理技术(火法回收),可用于大量处理废旧锂电池。优美科公司位于比利时安特卫普的霍博肯工厂目前能够达到年处理7000吨废旧充电电池的规模。

美国:Toxco公司的锂电池回收处理技术:在液氮环境下低温冷冻电池从而使其材料的化学性质变得不活泼,然后拆开电池分离其中的材料。

美国杜克能源与日本伊藤忠集团已签署共同研发先进能源技术协议,着手开展关于电动汽车电池回收利用的评估与测试工作,包括用于其他用途(家庭能源、储能电站等)二次利用。

欧美建立了可充电电池回收利用网络,相关资源利用企业也具备了锂电池的批量回收利用技术,为回收处理汽车动力电池做好了技术储备。

2.2 我国电池回收量少、网络缺、水平底

我国车用动力电池尚未出现大规模报废的情况,因此尚未建立专业车用动力电池回收利用体系。汽车用动力电池与消费类电子产品中的镍氢、镍镉、锂电池的回收处理路线基本相同,主要提取镍、钴、稀土元素等有价值的金属,目前国内已基本具备相应的回收处理技术。但回收体系建立滞后。主要表现在以下几个方面。

1.电池回收量少。以镍回收为例,国内每年通过湿法冶炼获得的8000吨镍当中,通过社会回收渠道回收的镍电池很少,绝大部分是来源于生产企业产生的废料。

2.回收网络不健全。国内现有废电池回收网络主要还是依附在大大小小的回收公司上,多层级回收网络很难保证废电池的有效回收。一般单个充电电池体积较小,价值低,没有利益驱动,回收公司不会主动到消费者手中回收废充电电池。另一方面,成批量的废电池虽然有一定价值,但由于回收公司太多,多次转卖而加大了资源再生

企业回收难度和回收成本,限制了这些再生企业的规模化发展。

3.回收再生企业规模小、水平低。从事钴镍金属回收的企业虽然多,但这些回收公司的规模小,且不以电池回收为主,除报废含镍、钴电池以外,往往还从事其他废旧金属的回收,这些小回收公司的非专业化回收,难以保证资源回收率。

4.环保风险大:依据国家法律,企业需要申请到危险废物经营许可证,才能从事含镍废物回收和处理。但由于利益趋势,社会上大量存在着没有获得危险废物经营许可证的企业非法从事报废电池等含镍、钴元素的废物的回收和提炼,不仅扰乱市场,还带来环境和安全隐患。

三设计范围

3.1锂电池

3.1.1锂电池的结构

锂电池通常有两种外型:圆柱型和方型。电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由钴酸锂

方形电池结构

圆形电池结构

及铝箔组成的电流收集极。负极由石墨化碳材料和铜箔组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件(部分圆柱式使用),以便电池在不正常状态及输出短路时保护电池不受损坏。

单节锂电池的电压为 3.7V(磷酸亚铁锂正极的为 3.2V),电池容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。

四锂电池的回收和处理工艺

4.1 锂电池的回收

金属锂在电池中的应用有许多。锂离子二次电池是用锂量最大的品种。锂离子二次电池的最大的特点是容量大,尺寸小,质量轻,同时不含有对环境造成威海的贡,镉和铅等金属,可充电使用多次。因此含锂电池已经成为电池发展的一个重要方向,锂电池的用量也快速上升。

相对而言,废锂离子二次电池中最具有回收价值的金属是钴,而不是锂。

1.1络合-离子交换法回收钴镍等金属

1 实验目的

1.1 学习离子交换分离的操作方法(包括树脂预处理、装柱、离子交换和淋洗)。

1.2 了解离子交换分离在定量分析中的应用。

1.3 应用络合滴定方法测定钴和镍的含量。

4.2 实验原理

金属离子 Mn2+、Co2+、 Cu2+、 Fe3+、Zn2+在盐酸溶液中能形成氯络阴离子,而Ni2+则不能形成氯络阴离子,又由于各种金属络阴离子的稳定性不同,生成络阴离子所需的Cl-的浓度也不相同,因此可利用阴离子交换柱,选用不同浓度的盐酸作为洗脱液而将这些离子分离。

本实验进行钴、镍离子的分离。当试液中盐酸浓度为9mol·L-1时,Ni2+仍为阳离子,

不被阴离子交换树脂吸附,而Co2+形成CoCl

4

2-,能被阴离子交换柱吸附,交换反应为:

2R

4N+2Cl- + CoCl

4

2-==(R

4

N+)

2

CoCl

4

2-+ 2Cl-

吸附后,交换柱上呈显钴的蓝色带。用9mol·L-1 的HCI洗脱, Ni2+首先被淋洗而流出

交换柱,流出液呈淡黄色。接着用0.1mol·L-1HCl洗脱,CoCl

4

2-转变成Co2+被洗出柱,然后分别用EDTA标准溶液摘定流出液中镍与钴的含量。按以下公式计算分离后镍与钴的回收率。

根据回收率的大小讨论实验的分离效果。

3.仪器与试剂

3.1 镍标准溶液10 mg·mL-1:称取分析纯 NiCl

2·6H

2

O试剂 4.048g,用2mol·L-1HCl

30mL溶解,移入100 mL容量瓶并用2mol·L-1HCl稀释至刻度。

3.2 钴标准溶液 10 mg·L-1:称取分析纯CoCl

2·6H

2

O试剂 4.036 g,用2mol·L-1 HCl

30 mL溶解,移入100mL容量瓶,用2mol·L-1HCl稀释至刻度。

3.3 标准锌溶液(0.02mol·L-1),用纯锌片溶解于少量的6mol·L-1的HCl中配制,稀释成所需浓度。

3.4 EDTA标准溶液(0.02mol·L-1):按络合滴定实验中方法配制。

3.5 二甲酚橙水溶液:0.2%。

3.6 六次甲基四胺水溶液20%,用2 mol·L-1盐酸调至pH5.8。

3.7 盐酸溶液9、6、2和0.01mol·L-1。

3.8 NaOH溶液 6和2mol·L-1。

3.9 定性鉴定用试剂: 1%丁二酮肟乙醇溶液,饱和NH

SCN溶液、戊醇、浓氨水。

4

3.10 离子交换柱:1×20cm

4 实验步骤

4.1 交换柱的准备

强碱性阴离子交换树脂(国产717,新商品牌号为201×7),氯型,40~80目,先用2 mol·L-1 HCl溶液浸泡 24小时,取出树脂,用水洗净。继续用 2 mol·L-1的NaOH溶液浸泡 2小时,然后用去离子水洗至中性,再用2mol·L-1HCI浸泡24小时,备用。

取一支 1×20cm的玻璃交换柱,底部塞以少许玻璃丝,将树脂和水缓慢倒入柱中,树脂柱高约15cm,上面再铺一层玻璃丝。调节流速约为1mL·min-1,待水面下降近树脂层的上端时(切勿使树脂干涸),将9mol·L-1的HCl 20mL分次加入柱内。

4.2 配制试液

取钴、镍等体积混合后的试液 2.0 mL于 50 mL小烧杯中,加入浓盐酸 6 mL,使试液中HCl浓度为9 mol·L-1。

4.3 分离

将试液小心移入交换柱中进行交换,用250mL锥瓶收集流出液,流速0.5mL·min-1,

当液面接近到树脂相时,用20mL 9mol·L-1HCl洗脱Ni2+,开始时用少量9mol·L-1HCl 洗涤烧杯,每次 2~3 mL,洗 3~4次,洗液均倒入柱中,以保证试液全部转移入交换柱。然后将剩余的9mol·L-1HCl分次倒入交换柱。收集流出液以测定Ni2+。待淋洗近结束时,取2滴流出液,用浓氨水碱化,再加2滴1%丁二酮肟,以检验Ni2+是否洗脱完全。继用0.1mol·L-1HCl 25mL分5次洗脱Co2+,流速lmL·min-1,收集流出液于

另一锥瓶中以备测定Co2+,(用NH

4

SCN法检验Co2+是否已洗脱完全)。

4.4 Ni2+、Co2+的测定

将Ni2+的洗脱液用6mol·L-1的NaOH中和至酚酞变红,继用6mol·L-1 HCl调至红色褪去,再过量2滴,此时由于中和发热液温升高,可将锥形瓶置于流水中冷却。用移液管加入10.00 ml EDTA溶液,加5mL六次甲基四胺溶液,控制溶液的 pH在5.5左右。加 2滴二甲酚橙,溶液应为黄色(若呈紫红或橙红,则说明pH过高,用3mol·L-1HCl调至刚变黄色),用标准锌溶液回滴过量的EDTA,终点由黄绿变红橙色。Co2+的滴定与 Ni2+滴定相同。

根据滴定结果计算试液中各组分的量,分别计算钴与镍的回收率。

用9 mol·L-1 HCL 20~30 ml处理交换柱,使之再生。

1.2氢氧化物沉淀法回收锂和钴

依据沉淀反应的基本原理,采用酸溶—氢氧化纳沉铝—氢氧化钠沉钴—Na

2CO

3

锂工艺处理电池用钴基本合金废料。最佳沉铝条件为:温度为80摄氏度,PH值4.5,最佳沉钴温度为30摄氏度,PH为8。铝,钴及锂的回收率都达到了百分之九十以上。

钴基合金废料

硫酸浸出

过滤

不溶渣弃法氢氧化钠沉淀铝氢氧化铝沉淀

氢氧化钠沉淀钴碳酸钠沉淀锂

氢氧化钴沉淀碳酸锂沉淀

盐酸溶解

浓缩结晶

氯化钴

废料的综合回收工艺流程

五设备选型

由于采取回收的都属于化学反应回收,因此成本不是很大,但是规模也比较小。具体的要求是基本的实验室设备需求,成本试处理量而定,预计每处理100克的锂离子二次电池的成本为100元,不包括机器设备的使用。

六其他需要说明的问题

由于对于锂电池的回收利用目前还未建立完整的体系,因此本篇论文也只是写了一些毛皮,深度还远远不够,但是也是可以尝试的方法。

参考文献:

1 废电池与材料的回收利用,化学工业出版社

2 固体废物处理处置与工程实例,中国建材工业出版社

附录(三号、黑体、居中)

(附录下空2行,换行后打印以下内容)

1、计算机源程序或其他资料

2、毕业实习报告

3、实习日记

4、读书笔记

中国废旧电池的回收与再利用技术现状

US-China Electric Vehicles and Battery Technology Workshop, China 2011
中国废旧电池的回收与再利用技术现状
Current situation of recycling and reusing for spent batteries in China 李 丽 北京理工大学
Li Li Beijing Institute of Technology
E-mail: lily863@https://www.360docs.net/doc/e312432366.html,

US-China Electric Vehicles and Battery Technology Workshop, China 2011
内容提要 Outline
1
我国目前的废旧电池回收现状
The current status of spent battery recycling in China
2
废旧电池综合回收利用技术
Recycle and recovery technologies of spent batteries
3
国内典型电池回收企业
Typical battery recycling companies in China
Beijing Institute of Technology

US-China Electric Vehicles and Battery Technology Workshop, China 2011
Challenge and Opportunites of Power Battery 1.Performance and Safety 2.Cost Reduction 3.Battery Recycling
From the viewpoints of environmental preservation, recovery of major components or valuable resources, and provision of raw materials, the battery recycling is highly desirable inInstitute ofpresent time or the future. Beijing either the Technology

国内外废旧电池回收利用处理方式

废旧电池回收利用处理方式 一、国内使用电池现状 国内使用最多的工业电池为铅蓄电池,铅占蓄电池总成本50%以上,主要采用火法、湿法冶金工艺以及固相电解还原技术。外壳为塑料,可以再生,基本实现无二次污染。 小型二次电池目前国内的使用总量只有几亿只,且大多数体积较小,废电池利用价值较低,加上使用分散,绝大部分作生活垃圾处理,其回收存在着成本和管理方面的问题,再生利用也存在一定的技术问题。 废电池作为生活垃圾进行焚烧处理时,废电池中的Hg、Cd、Pb、Zn 等重金属一部分在高温下排人大气,一部分成为灰渣,产生二次污染。 二、国际废旧电池处理方式 国际上通行的废旧电池处理方式大致有三种:固化深埋、存放于废矿井、回收利用。 1.固化深埋、存放于废矿井。废电池一般都运往专门的有毒、有害垃圾填埋场,但这种做法不仅花费太大而且还造成浪费,因为其中尚有不少可作原料的有用物质。 2.回收利用。 (1)热处理:瑞士有两家专门加工利用旧电池的工厂,巴特列克公司采取的方法是将旧电池磨碎后送往炉内加热,这时可提取挥发出的汞,温度更高时锌也蒸发,它同样是贵重金属。铁和锰熔合后成为炼钢所需

的锰铁合金。该工厂一年可加工2000吨废电池,可获得780吨锰铁合金,400吨锌合金及3吨汞。另一家工厂则是直接从电池中提取铁元素,并将氧化锰、氧化锌、氧化铜和氧化镍等金属混合物作为金属废料直接出售。不过,热处理的方法花费较高,瑞士还规定向每位电池购买者收取少量废电池加工专用费。 (2)“湿处理”:马格德堡近郊区正在兴建一个“湿处理”装置,在这里除铅蓄电池外,各类电池均溶解于硫酸,然后借助离子树脂从溶液中提取各种金属,用这种方式获得的原料比热处理方法纯净,因此在市场上售价更高,而且电池中包含的各种物质有95%都能提取出来。湿处理可省去分拣环节(因为分拣是手工操作,会增加成本)。马格德堡这套装置年加工能力可达7500吨,其成本虽然比填埋方法略高,但贵重原料不致丢弃,也不会污染环境。 (3)真空热处理法:德国阿尔特公司研制的真空热处理法还要便宜,不过这首先需要在废电池中分拣出镍镉电池,废电池在真空中加热,其中汞迅速蒸发,即可将其回收,然后将剩余原料磨碎,用磁体提取金属铁,再从余下粉末中提取镍和锰。这种加工一吨废电池的成本不到1500马克(按汇率为4.7148来算的话,约合7072元人民币) 三、废旧电池的回收

华兴环境科技有限公司废旧电池回收综合处置项目

1 建设项目概况 1.1 项目简介 华兴环境科技XX废旧电池回收综合处置项目,拟建于XX省XX市澄海区隆都镇南溪村隆樟公路旁工业用地内。建设规模与投资:总征地20000平方米,建筑面积10000平方米。投资1200万元,年回收处置废旧电池10000吨,预计年回收铅6000吨,回收塑料2000吨。预计投产后年产值5000万元,年利润可达400万元,投资回收期三年。 再生铅生产具有不需要建设矿山,不需要投入巨资建设冶炼厂,而且具有能耗低、生产周期短等优势。减轻了采选冶对环境和人体的危害,消除了含铅废物随处弃置对环境所造成的影响;实现废旧电池和有色金属资源化回收利用,不仅可以缓解环境污染,实现清洁生产,而且将具有显著的生态和经济效益。企业办厂宗旨是实现固体废物的“二次利用”,利用废旧电池,回收其中的有用成分,实现废旧电池的资源化与无害化处理。 本项目总定劳动员40名,采用四班三运转工作制,每年生产300天。预计建设期为十个月;项目环境保护投资主要用于废气、废水、噪声治理,预计环境保护投资为200万元,其中废气治理150万元、废水治理40万元、噪声治理10万元。 本项目的地理位置见图1-1。 图1-1:建设项目地理位置图 1.2 主体设备--熔炼炉窑 本项目对废旧电池、废有色金属和电镀污泥的回收采用火法处理工艺,属于新型炉窑。设备采用节能环保中心和通达利新节能设备XX共同开发的重点科技成果技术设备,即单段式低风压煤气发生炉。该设备由炉体、双钟罩、炉篦、煤斗提升机、灰盘、汽包、灰盘传动装置和放散管组成,其中灰盘采用涡轮蜗杆传动,运行稳定,炉体属水夹套结构,自产蒸汽,完全满足煤气炉自身煤的气化,及探火孔汽封使用,双钟罩或电动滚筒式自动加煤装置,结构简单,布煤均匀,偏心炉篦,除渣效果好,送风均匀,气化稳定,投资少,占地面积小,操作方便。 熔炼废铅需将废铅液加热到1350℃~1400℃,而发生炉煤气热值低,约140

2017年废旧锂电池回收利用市场分析报告

2017年废旧锂电池回收利用市场分析报告

目录 第一节废旧锂电池的资源性和对环境的危害性逐步得到重视 (6) 一、动力锂电池的需求量和报废量不断增长 (6) 二、废弃动力锂电池具有显著的资源性,其中钴和锂潜在价值最高 (12) 三、废弃动力电池威胁环境和人类健康,影响社会可持续发展 (24) 第二节动力锂电池回收渠道及商业模式分析 (26) 一、目前以小作坊回收渠道为主,随规模扩大必将走向规范化 (26) 二、发达国家电池回收产业以市场调节为主、政府约束为辅 (28) 1、德国:政府立法回收,生产者承担主要责任,设立基金完善回收体系市场 化建设 (28) 2、日本:生产方式逐步转变为“循环再利用”模式,企业作为先锋参与到电 池回收中 (29) 3、美国:市场调节为主,政府通过制定环境保护标准对其进行约束管理,辅 助执行废旧动力电池的回收 (30) 三、我国明确采用生产者责任延伸制度,随政策不断完善,产业正逐步走向规范化 (31) 四、商业模式比较:构建经济激励下的生产者回收体系 (33) 第三节废旧锂离子电池的资源化技术:湿法回收技术为主 (38) 一、锂离子电池回收技术概况 (38) 二、国内外企业动力电池回收的技术路线和趋势:湿法工艺和高温热解为主流 42 第四节锂电回收经济性强,电池厂商自行拆解或第三方拆解模式是目前主流 (44) 第五节部分相关企业分析 (49) 一、赣锋锂业:锂产品龙头企业,同行业具有废料提锂能力唯一企业 (49) 二、杉杉股份:积极布局动力电池回收和梯次利用,打造全生命周期运营闭环 49 三、格林美:专业废旧电池回收企业,依托汽车拆解基地抢占动力电池回收先机 (49) 四、比亚迪:与锂电回收龙头格林美合作,强强联手打造回收再利用闭环 (50) 五、超威动力:发展智能化电池回收,回收率可达百分之百 (50) 六、骆驼股份:正在进行资质申请 (51)

国内外废旧电池回收处理现状

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 国内外废旧电池回收处理现状 国内外废旧电池回收处理现状摘要: 论述了废旧电池回收的意义和目的, 介绍了国内外废旧电池回收的现状, 并对废旧电池回收处理的方法作了简明的阐述。 废旧电池的回收处理工艺主要有基于火法冶金和湿法冶金原理的两种工艺流程, 针对我国废旧电池处理过程中存在的问题提出了相关的建议。 关键词: 废旧电池; 回收处理; 火法; 湿法随着人类社会能源需求的不断增长, 电池作为一种便携式能量储蓄器, 在社会和人们的日常生活中所占的比例越来越大, 成为第三大消费品之一。 与此同时产生的废旧电池量也是日渐增多, 这些废弃的电池如不适当处理, 会给人们的生活环境带来严重危害。 废旧电池的危害废弃的电池中含有许多有害物质, 表 1 中列出了常见电池中所含的有害物质,其中 Hg、 Cd、 Ni 、 Pb 等对人类和大自然有极大危害。 一节一号电池如不经过处理, 随意丢弃在田地里, 能使 1 m2 的土壤永久失去农用价值, 一粒纽扣电池可使600t 水受到污染。 废弃的电池如不适当处理, 电池中所含的重金属元素就会渗露出来, 污染土壤和地下水, 并在动植物体内蓄积, 经过生物链, 最后被人体吸收。 在人体内这些有害物质如果长期蓄积难以排除, 会损害人的神经 1 / 7

系统、造血功能、肾脏和骨骼, 甚至还能致癌危害人类健康。 表常用电池组成电池种类所含主要物质主要有害物质电池种类所含主要物质主要有害物质锌锰电池 Zn, MnO2, NH4Cl , ZnCl 2 Hg 碱性锌锰电池 Zn, MnO2, KOH KOH, Hg 镍镉电池 Cd, Ni , KOH Cd, Ni , KOH 镍氢电池 Ni , KOH Ni , KOH 锂离子电池 Li , Co, Ni , Mn 有机电解质铅蓄电池废旧电池回收处理的意义废旧电池是可以再生利用的二次资源。 以占我国电池总量 92. 5%的锌锰电池为例, 1 号废旧锌锰电池的重量约 70g 左右, 其中碳棒 5. 1g, 锌皮 7. 0g, 锰粉 25g,铜帽0. 5g, 其它 32g。 其中的有用物质锌、放电二氧化锰、铁、铜、汞及石墨质量占电池总量的 75%左右, 仅锌、放电二氧化锰、铁质量就占了 70%, 可以作为资源化的主要对象。 根据中国电池工业协会提供的 2019 年我国电池生产的数据计算, 仅生产锰锌电池每年就要消耗锌金属 15 万 t, 放电二氧化锰27 万 t, 铜金属0. 8 万 t, 钢 1 6 万 t, 还有石墨的消耗。 这些金属和非金属都取之于我国的矿产资源。 据有关部门测算, 我国每年产生的废旧电池经处理可回收 12 万 t 锌, 2 万 t铜, 以及大量的其它可利用物资。 由此可见回收并再生利用废旧电池, 符合我国可持续发展战略。 国内外废旧电池回收现状国外废旧电池回收现状丹麦: 丹麦是欧洲最早对废旧电池进行循环利用的国家。

废旧锂离子电池回收工艺研究

废旧锂离子电池回收工艺研究 摘要:锂离子电池回收处理技术随着锂离子电池的大量使用变得越来越重要,早期的锂电池回收主要采用湿法冶金技术,主要回收负极材料中的Co。随着处理技术的发展,锂离子电池里的多种金属都成为了回收目标,机械粉碎、热处理等新方法不断被引入到锂离子电池的回收过程中,锂离子电池的回收技术不断走向成熟。 关键词:锂离子电池回收预处理湿法冶金粉碎 1引言 从20世纪50年代开始,锂电池逐渐从研发实现了大规模的应用。从最初的锂原电池到可反复充电的锂金属二次电池,到现在广泛应用于笔记本电脑、智能手机、各种数码产品的二次锂离子电池(锂电池的发展历史见图1[1])。锂电池主要由正负极和电解质构成,正负电极和电解质之间有隔膜隔开;直接用金属Li作负极的称为锂电池,由能“储存”Li+的材料构成负极的称为锂离子电池。 大量的应用需求刺激了工业生产,松下、索尼、三洋、富士等公司都生产着大量的各种型号的锂离子电池[1]。随着各种电子产品的更新换代,大量的废旧电子产品变成了电子垃圾,但是电子垃圾的处理速度却远远没有跟上。各种简单粗暴的处理方式,如焚烧、酸淋、填埋等对环境和人类造成了不可挽回的伤害[2]。目前针对大多数电子垃圾的回收多是回收其中的贵金属、铁、铝和一些较容易回收的塑料,对结构组成复杂的部件则弃之不理。锂电池结构复杂,为了保证电池的安全性、高效性,锂电池封装紧密、结构紧凑,这导致锂电池的拆解回收就变得很困难,也增加了锂电池的回收成本[3]。 图1锂电池发展历程[1]

2早期锂离子电池处理技术 锂原电池在锂电池的发展过程中逐渐被淘汰,因为用金属Li直接做负极的缺陷在于不能实现重复充电使用,这显然不能符合将锂电池作为一种便捷的能源储备装置来使用。因此现今已实现商业化生产的锂电池都是锂离子电池,它们的不同之处主要是负极材料不同。各种负极材料的使用比例见表1[4]。 表1锂离子电池中各种负极材料的使用比例(体积)[4] LiNi0.33Mn0.33Co0.33O2LiCoO2LiNiO2LiMn2O4LiFePO4 29.00%37.20%7.20%21.40% 5.20% 废旧锂离子电池回收利用的研究开始于20世纪90年代中后期,相比于锂电池的历史要短的多,主要集中在使用最多的以石墨为正极、LiCoO2为负极的锂离子电池上。早期的锂离子电池处理大都采用了湿法冶金的处理技术[5,6]。采矿工业中的湿法冶金工艺成熟,借鉴这种技术使得处理废旧锂离子电池在设备和工艺上都有很好的基础条件。直到现在还有很多人在不断优化这种处理技术[7,8]。 在1999年,M.Contestabile就看到了锂离子电池的市场份额在快速增长,并预感到了处理这些使用过的电池将会变成一个棘手的问题[6]。为了解决这个问题,他设计了一个实验室规模的多步处理过程处理阴极材料为LiCoO2的锂离子电池(图2)。 图2回收过程流程图[6] 该处理方法首先把锂离子电池的外壳剥离,然后使用破碎和分离的设备把锂离子电池切碎,利于进一步的处理。在切碎的过程中由于电池正负极的短接会产生强烈的放热,需要一定的冷却处理,以防止有害物质的挥发和可能发生的爆炸。考虑到锂离子电池中的正负极材

废旧电池回收利用处理方式(最新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 废旧电池回收利用处理方式(最 新版)

废旧电池回收利用处理方式(最新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 一、国内使用电池现状 国内使用最多的工业电池为铅蓄电池,铅占蓄电池总成本50%以上,主要采用火法、湿法冶金工艺以及固相电解还原技术。外壳为塑料,可以再生,基本实现无二次污染。 小型二次电池目前国内的使用总量只有几亿只,且大多数体积较小,废电池利用价值较低,加上使用分散,绝大部分作生活垃圾处理,其回收存在着成本和管理方面的问题,再生利用也存在一定的技术问题。 废电池作为生活垃圾进行焚烧处理时,废电池中的Hg、Cd、Pb、Zn等重金属一部分在高温下排人大气,一部分成为灰渣,产生二次污染。 二、国际废旧电池处理方式 国际上通行的废旧电池处理方式大致有三种:固化深埋、存放于废矿井、回收利用。

锂离子电池回收技术

废旧锂离子电池回收利用技术 锂离子电池自商业化以来,因其具有比能量高、体积小、质量轻、应用温度范围广、循环寿命长、安全性能好等独特的优势,被广泛应用于民用及军用领域,如摄像机、移动电话、笔记本电脑及便携式测量仪器等,同时锂离子电池也是未来电动汽车首选的轻型高能动力电池之一。2012年中国锂离子电池总产量已达到35.5亿只。 锂离子电池经过500~1000次充放电循环之后,其活性物质就会失去活性,导致电池的容量下降而使电池报废。锂离子电池的广泛使用势必带来大量的废旧电池,如若对其随意丢弃不仅会对环境造成严重污染,更是对资源的浪费。锂离子电池中含有较多的钴(Co)、铜(Cu)、锂(Li)、铝(Al)、铁(Fe)等金属资源,其中钴、铜及锂的含量最高分别可达20%、7%和3%。如果能将废旧锂离子电池中的经济价值高的金属加以回收利用,无论从环保方面还是资源的循环利用方面来讲,都具有重大的意义。 1 废旧锂离子电池正极材料回收工艺 锂离子电池通常由电池盖、电池壳、正极、负极、电解质、隔膜等部件组成。目前可用的锂离子电池正极材料有LiCoO2、LiNiO2、LiMn2O4、LiFePO4和三元材料等,负极材料有石墨材料、锡基材料、硅基材料以及钛酸锂材料等。电解质溶液中的导电盐一般为LiPF6、LiBF4、LiCF3SO3等锂盐,常用的溶剂有碳酸乙烯脂(EC)、碳酸丙稀脂(PC)、碳酸二甲脂(DMC)、甲乙基碳酸酯(EMC)等。钴酸锂作为第 1 代商品化的锂电池正极材料是目前最成熟的正极材料,短时间内,特别是在通讯电池领域还有不可取代的优势。目前废锂离子电池的回收利用研究主要集中于电池中正极活性物质的回收利用方法。一般来说,根据所采用的主要关键技术,可以将废锂离子电池的资源化处理过程分为物理法、化学法和生物法这三类。 1. 1 物理法 物理法包括火法、机械破碎浮选法、机械研磨法及有机溶剂溶解法等。物理法往往需要后续化学处理才能进一步得到所需的目标产物。 1. 1. 1 火法

废旧电池回收协议

废旧电池回收协议 甲方:乙方:丙方: 为贯彻落实国家环保局《固体废物处理法》的规定,决定对报废的电池回收,经由乙方 退回甲方集中处理,为确保上述故事顺利实施,经双方协商,特定如下协议;甲、乙、丙三方经友好协商,同意就丙方回收乙方汽车电池业务达成以下协议: 一、各方责任。 1 、甲方责任:(1)甲方负责提供处理废旧电池的环保宣传咨询服务,收集统计废旧电池回收资料提供给政府主管部门,加强管理。 (2)检查规范乙、丙双方的收集、保管、交收、转移工作,确保回收工作有效、安全、规 范。 (3)协调乙、丙双方的关系,协助单位完成年度报表,完善管理。 2 、乙方责任。 (1)乙方指定专人负责收集、管理废铅酸电池,安排专门场地堆放及联系废旧电池交收业务并报维修协会备案。 (2)乙方每月填写和保存回收实施报表,保留废电池交收记录以备维修协会查核(附表1:《回收废铅酸电池交收记录表》;表2:《回收废铅酸电池年度统计表》)。 (3)配合丙方核对上月交收数量,协助填写由环保局发出的危险物品转移联单,保留第一联及第一联副联,并将第二联及其副联上交相关的单位和管理部门。 3 、丙方责任。 (1)丙方负责提供相关的收集废旧电池的环保资质证明文件。 (2)丙方负责派出专职回收队按照双方商定的日期,每月定期上门回收乙方废旧电池并填写《回收废铅酸电池交收记录表》。回收队人员佩带盖有甲方和丙方印章的工作证。 (3)每月在约定的日期与乙方结算回收废电池的回收款。填写由环保局发出的危险物品转移联单,保留并上交相关的环保局和管理部门。 (4)必须将回收的电池严格按国家规定收集及转移至具资质的废铅电池处理。保证全过程符合环保部门和主管部门的要求。 二、合同有效期为两年。合同期满后如各方无异议,本合同自动延伸。 五、合同期内,乙方不得私自售卖废旧电池或将废旧电池移交第三方处理。否则,乙方须承担相关的违反环保法规责任和经济责任。 六、合同中如有未尽事宜,各方可协商解决。 甲方:代表: 盖章: 地址:

新能源电池回收行业分析报告

新能源电池回收行业分析报告

目录索引 一、政策未雨绸缪,2018年市场启动 (4) 二、梯次利用+拆解利用酝酿电池回收广阔市场 (6) 2.1规模化、体系化、商业化亟待完善 (6) 2.2梯次与拆解利用齐头并进 (6) 2.3蓄势待发直指未来五年巨大市场空间 (9) 三、电池厂布局提速,变现渠道价值 (11) 四、相关标的:提前布局蓝海,卡位细分领域 (14) 4.1东方精工:立足P ACK建立回收渠道优势 (14) 4.2天奇股份:整合回收设备产业链 (15) 4.3格林美:再生资源龙头企业 (16) 4.4湖南邦普:深耕电池回收,稳居同业第一 (17) 五、投资建议 (17) 六、风险提示 (18)

图表索引 图1:动力电池回收产业链 (6) 图2:动力电池梯次利用途径 (6) 图3:湿法回收锂和铁的工艺流程 (7) 图4:固相法再生磷酸铁锂工艺流程 (7) 图5:动力电池回收行业产业链布局 (11) 图6:第三方回收系商业模式 (11) 图7:2016年电池回收市场份额 (12) 图8:锂电材料系商业模式 (12) 图9:动力电池系商业模式 (14) 图10:普莱德产业链布局 (14) 图11:天奇股份主营业务 (15) 图12:邦普集团主营业务 (17) 表1:动力锂电池主要回收资源及污染来源 (4) 表2:我国电池回收相关的主要政策 (4) 表3:我国动力电池报废量预测 (5) 表4:钴、镍、锰及其混合物回收工艺 (8) 表5:动力电池市场空间测算 (9) 表6:动力电池回收市场空间测算 (10) 表7:动力电池企业布局电池回收 (13) 表8:天奇股份电池回收业务布局 (15) 表9:格林美电池回收业务布局 (16)

废旧电池回收利用处理方式(通用版)

废旧电池回收利用处理方式 (通用版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0756

废旧电池回收利用处理方式(通用版) 一、国内使用电池现状 国内使用最多的工业电池为铅蓄电池,铅占蓄电池总成本50% 以上,主要采用火法、湿法冶金工艺以及固相电解还原技术。外壳为塑料,可以再生,基本实现无二次污染。 小型二次电池目前国内的使用总量只有几亿只,且大多数体积较小,废电池利用价值较低,加上使用分散,绝大部分作生活垃圾处理,其回收存在着成本和管理方面的问题,再生利用也存在一定的技术问题。 废电池作为生活垃圾进行焚烧处理时,废电池中的Hg、Cd、Pb、Zn等重金属一部分在高温下排人大气,一部分成为灰渣,产生二次污染。

二、国际废旧电池处理方式 国际上通行的废旧电池处理方式大致有三种:固化深埋、存放于废矿井、回收利用。 1.固化深埋、存放于废矿井。废电池一般都运往专门的有毒、有害垃圾填埋场,但这种做法不仅花费太大而且还造成浪费,因为其中尚有不少可作原料的有用物质。 2.回收利用。 (1)热处理:瑞士有两家专门加工利用旧电池的工厂,巴特列克公司采取的方法是将旧电池磨碎后送往炉内加热,这时可提取挥发出的汞,温度更高时锌也蒸发,它同样是贵重金属。铁和锰熔合后成为炼钢所需的锰铁合金。该工厂一年可加工2000吨废电池,可获得780吨锰铁合金,400吨锌合金及3吨汞。另一家工厂则是直接从电池中提取铁元素,并将氧化锰、氧化锌、氧化铜和氧化镍等金属混合物作为金属废料直接出售。不过,热处理的方法花费较高,瑞士还规定向每位电池购买者收取少量废电池加工专用费。 (2)“湿处理”:马格德堡近郊区正在兴建一个“湿处理”装置,

2018年锂电池回收市场分析报告

2018年锂电池回收市场分析报告 2018年1月

目录 一、锂电池回收市场已处于爆发前夜,预计2020年市场规模将达到156亿元 (5) 1、锂电池回收兼具环保性和经济性,是构筑产业链闭环的关键 (5) 2、政策框架明确,细则不断落实推动回收市场发展 (7) 3、动力电池首批退役潮将至,预计2020年市场整体规模将达156亿元 (9) 二、商业模式已具雏形,三元电池的资源化回收或将成主角 (12) 1、“回收网络+专业化处理”的框架性商业模式正在不断优化 (12) 2、动力电池生产者在磷酸铁锂的梯次利用领域具有“先天优势” (16) (1)离散整合技术 (18) (2)全生命周期追溯技术 (18) 3、三元电池的资源化回收综合效益高,需求放量后将成为市场主角 (20) 三、专业化处理企业优势显著,能延伸至三元材料者盈利更强 (22) 1、湿法技术日渐成为主流,多种技术发展综合提高回收效率 (22) 2、专业化处理回收企业在资源化回收领域具有多方面优势 (25) 3、具备三元材料及前驱体生产能力的专业化处理企业盈利能力更强 (27) 四、相关企业简析 (29) 1、芳源环保:掌握三元材料前驱体技术,实现对松下供货 (30) 2、西恩科技:三废资源综合利用服务商,主打电池级硫酸镍 (31) 3、金源新材:湿法资源回收技术成熟,钴产品质量高标 (32) 五、主要风险 (33) 1、政策落地不达预期 .......................................................................................... 33 33 2、梯次利用经济效益偏低 .................................................................................. 33 3、竞争加剧破坏行业生态 ..................................................................................

8000吨年废锂电池回收工艺项目可行性实施报告

8000吨/年废锂电池回收工艺项目 1 总论 1.1 概述 1.1.1 项目名称、主办单位名称 项目名称:8000吨/年废锂电池金属全封闭清洁回收工艺及其应用项目项目性质:新建 项目总投资:15000万元 企业名称:今创博凡能源新材料有限公司 项目地址:市武进区遥观镇工业园今创集团 1.1.2 可行性研究报告编制的依据和原则 1.1. 2.1 编制依据 ⑴英凯工程设计研究院有限公司与今创博凡能源新材料有限公司签定的《今创博凡能源新材料有限公司8000吨/年废锂电池金属全封闭清洁回收工艺及其应用项目建设工程咨询合同》。 ⑵今创博凡能源新材料有限公司提供的设计基础资料。 1.1. 2.2 可行性研究报告编制原则 ⑴执行原化学工业部《化工建设项目可行性研究报告容和深度的规定》(修订本)化计发(1997)426号。 ⑵ 认真贯彻执行国家基本建设的方针政策和经济法规。 ⑶ 重视环境保护,使生产装置的生产达到环保要求。同时严格执行国家有关生产及工业卫生的各项法令、法规,并做到环保措施与工程建设“三同时”。 ⑷ 充分利用现有今创集团提供的公用工程设施和环保设施,以节约投资,加快建设进度。

⑸ 技术选择上力求高起点,先进稳妥可靠,以较小的投入获取最大的经济效益。工艺生产充分考虑节能降耗,以降低成本。 ⑹ 贯彻“工厂布置一体化、生产装置露天化、建构筑物轻型化、公用工程社会化、引进技术国产化”的“五化”设计原则。 ⑺ 本着对国家负责、对建设单位负责的精神,力求对技术成熟程度,市场需求预测、建设条件、经济效益,“三废”治理等方面进行全面的考察研究,对今创博凡能源新材料有限公司8000吨/年废锂电池金属全封闭清洁回收工艺及其应用的可行性作出比较科学、合理的结论。 1.1.3 项目建设容 8000吨/年废锂电池金属全封闭清洁回收工艺及其应用。 1.1.4 项目提出的背景、投资必要性和经济意义 1.1.4.1 项目承办单位基本情况 今创博凡能源新材料有限公司是今创集团的下属子公司,占地15000平米,固定资产投资6000万元,总投资额约1.5亿元人民币。公司以拥有自主知识产权的生产工艺为基础,以先进的生产设备和雄厚的技术力量为依托,以科学的生产管理和严格品质控制为保证,主要生产电积钴、电池级四氧化三钴以及硫酸钴、氯化钴等钴盐系列产品,年产量达到1500吨钴金属量,此外还有副产品1200吨电积铜。公司产品主要针对二次充电电池的严格要求设计、生产和检验的,完全满足合金产品的质量要求,可广泛应用于二次充电电池、航空航天、电机电气、机械、陶瓷、通讯、化工等行业。产品的各项性能指标均达到国际领先水平,深受客户信赖,具有很强的产品竞争力。 公司重视与地方高校建立产学研合作,建立了以技术师学院省贵金属深加工技术及其应用重点实验室为技术支撑的课题研发组,配以本公司的技术骨干和市场开发人员,分层次解决技术和产业化过程中工程与市场问题。小试研究在大学实验室,共同完成实验室技术的攻关。此外,本公司还配有技术开发工程师和市场开发工程师,与课题组一起完成工程设计和应用任务,同时具备新产品的市场开发能力和经济分析能力。工程师群体的任务是负责对高校合作取得的实验室技术进行中试转化与市场接轨工作,完成工程应用,

中国废旧锂电池回收利用市场分析报告

中国废旧锂电池回收利用市场分析报告

目录 第一节废旧锂电池的资源性和对环境的危害性逐步得到重视 (6) 一、动力锂电池的需求量和报废量不断增长 (6) 二、废弃动力锂电池具有显著的资源性,其中钴和锂潜在价值最高 (12) 三、废弃动力电池威胁环境和人类健康,影响社会可持续发展 (24) 第二节动力锂电池回收渠道及商业模式分析 (26) 一、目前以小作坊回收渠道为主,随规模扩大必将走向规范化 (26) 二、发达国家电池回收产业以市场调节为主、政府约束为辅 (28) 1、德国:政府立法回收,生产者承担主要责任,设立基金完善回收体系市场 化建设 (28) 2、日本:生产方式逐步转变为“循环再利用”模式,企业作为先锋参与到电 池回收中 (29) 3、美国:市场调节为主,政府通过制定环境保护标准对其进行约束管理,辅 助执行废旧动力电池的回收 (30) 三、我国明确采用生产者责任延伸制度,随政策不断完善,产业正逐步走向规范化 (31) 四、商业模式比较:构建经济激励下的生产者回收体系 (33) 第三节废旧锂离子电池的资源化技术:湿法回收技术为主 (38) 一、锂离子电池回收技术概况 (38) 二、国内外企业动力电池回收的技术路线和趋势:湿法工艺和高温热解为主流 42 第四节锂电回收经济性强,电池厂商自行拆解或第三方拆解模式是目前主流 (44) 第五节部分相关企业分析 (49) 一、赣锋锂业:锂产品龙头企业,同行业具有废料提锂能力唯一企业 (49) 二、杉杉股份:积极布局动力电池回收和梯次利用,打造全生命周期运营闭环 49 三、格林美:专业废旧电池回收企业,依托汽车拆解基地抢占动力电池回收先机 (49) 四、比亚迪:与锂电回收龙头格林美合作,强强联手打造回收再利用闭环 (50) 五、超威动力:发展智能化电池回收,回收率可达百分之百 (50) 六、骆驼股份:正在进行资质申请 (51)

锂离子电池回收处理工艺流程图

锂离子电池回收处理工艺流程图 锂离子电池是目前世界上技术性能最好的可充电化学电池,具有工作电压高、比能量大、循环寿命长、自放电小、无记忆效应、无污染等优点,广泛用于移动通讯、笔记本电脑、便携式工具、电动自行车等领域。2006年世界锂离子电池总产量超过25亿只,目前全球的锂二次电池市场主要集中于移动通信和笔记本电脑,国内移动用户已超过2亿户,位居全球第一,锂电池消耗量巨大,对不可再生的金属资源的消耗是相当大的,因此,回收锂离子电池中经济价值高,含量较 大的金属,实现节能减排、可持续发展,具有重要意义。 锂离子电池中需要重点回收的钴和铝主要集中在正极材料钴锂膜上,钴锂膜的主要成分是LiCoO2 活性物质、导电乙炔黑、铝箔集流体和PVDF (聚偏氟乙烯)粘接剂。 常用的钴锂膜处理方法有硫酸溶解法、碱煮一酸溶法、还原焙烧一浸出法、浮选法等。处理钴锂膜是要实现钴、铝和乙炔黑三者的分离,现有处理方法中对钴、乙炔黑的分离较为成功,而对钴、铝分离效果不够理想,且分离过程复杂、条件较难控制、成本高。本文选择一种有机溶剂溶解钴酸锂的粘结剂PVDF,使钴酸锂从铝箔上脱落下来,直接回收单质铝箔,不需要进行传统锂电池回收工艺中的钴铝分离,简化整个废旧锂电池回收流程并增加回收产品。 工艺流程如下

深圳市泰力锂电池回收处理工艺 深圳市泰力废旧电池回收技术有限公司,总部位于深圳市宝安区,工厂位于广东韶关始兴县,是一家专业从事各种废旧锂离子、聚合物、镍氢、镍镉、二次电池、废钴、镍、铅、鋅回收与技术研发的再生能源高新技术企业。 泰力公司在回收处理的工艺中,采用先进的处理技术,最低限度减少了电池镉和其他有害物质对环境造成的污染,而且利用废旧电池中有用的物质如钴、镍、铅、鋅等作为生产原料,运用于电池再生产中,为国家节约了资源。从而最大限度地进行无害化处理以及循环再利用,实现了对废旧电池的“绿色”回收处理。

废旧电池回收利用处理方式(正式版)

文件编号:TP-AR-L9483 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 废旧电池回收利用处理 方式(正式版)

废旧电池回收利用处理方式(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、国内使用电池现状 国内使用最多的工业电池为铅蓄电池,铅占蓄电池总成本50%以上,主要采用火法、湿法冶金工艺以及固相电解还原技术。外壳为塑料,可以再生,基本实现无二次污染。 小型二次电池目前国内的使用总量只有几亿只,且大多数体积较小,废电池利用价值较低,加上使用分散,绝大部分作生活垃圾处理,其回收存在着成本和管理方面的问题,再生利用也存在一定的技术问题。 废电池作为生活垃圾进行焚烧处理时,废电池中

的Hg、Cd、Pb、Zn等重金属一部分在高温下排人大气,一部分成为灰渣,产生二次污染。 二、国际废旧电池处理方式 国际上通行的废旧电池处理方式大致有三种:固化深埋、存放于废矿井、回收利用。 1.固化深埋、存放于废矿井。废电池一般都运往专门的有毒、有害垃圾填埋场,但这种做法不仅花费太大而且还造成浪费,因为其中尚有不少可作原料的有用物质。 2.回收利用。 (1)热处理:瑞士有两家专门加工利用旧电池的工厂,巴特列克公司采取的方法是将旧电池磨碎后送往炉内加热,这时可提取挥发出的汞,温度更高时锌也蒸发,它同样是贵重金属。铁和锰熔合后成为炼钢所需的锰铁合金。该工厂一年可加工2000吨废电

锂电池电极涂布机NMP废气处理回收工艺

锂电池电极涂布机NMP废气处理回收工艺改进与施工 (广东省工业设备安装公司 周伟波) 摘 要 NMP-甲基吡咯烷酮,是一种以γ-丁内酯为原料,与甲胺缩合而成液体,挥发性、渗透性极强,PH值为7-9碱性,易燃易爆,锂电池生产中应用广。在锂电池电极制造过程中,涂布机会产生高温NMP废气。以往的工艺一般为经废气塔吸收达环保标准后直接排放,造成了价格昂贵的NMP的浪费。我们改进的工艺回收原理是用冷却水经水-气换热器将含有NMP的高温空气冷却,使废气中的NMP以液态的形式从空气中分离后回收,已分离NMP的空气经过气-气换热器进行热能交换再循环利用,达到节省能源,零排放环保标准,并且在本技术工艺的施工中采用了相应的施工工艺,解决了NMP极易渗透问题。 关键词 NMP 工艺回收水-气换热器气-气换热器零排放 1.工艺概况 东莞某电子厂锂电池电极涂布机NMP废气系统位于厂区内涂布车间天面,NMP废气出口温度为104 0C,风量为4500m3/h。在涂布过程中由于NMP不断蒸发,使废气出口的浓度不断增加,环保要求不能直接排放,循环利用需控制浓度。原设计为1/3气经冷凝NMP 液回收后直接排放,涂布机需补新风预热(见图一), NMP浪费,热用量增加。业主方委托我司对该方案进行改进,我方设计以下方案,经在一条生产线安装调试,效果非常好,并且在全厂20条涂布机废气回收中使用,每年节约了大量运行费用。 本处理回收工艺系统设计如下:取NMP废气排气量1/3为回收风量(即1500m3/h),2/3直接循环利用,主要由水-气换热器(冷凝器)、气-气换热器、挡液板、收集器、风机、风量调节阀、风管系统、管道系统组成。工艺安装连接方式:采用焊接和法兰连接,法兰连接的密封填料采用耐酸耐碱性耐高温的橡胶板。

华兴环境科技有限公司废旧电池回收综合处置项目

1 建设项目概况 1.1项目简介华兴环境科技有限公司废旧电池回收综合处置项目,拟建于广东省汕头市澄海区隆都镇南溪村隆樟公路旁工业用地内。建设规模与投资:总征地20000 平方米,建筑面积10000 平方米。投资1200 万元,年回收处置废旧电池10 000 吨,预计年回收铅6000吨,回收塑料2000 吨。预计投产后年产值5000 万元,年利润可达400 万元,投资回收期三年。 再生铅生产具有不需要建设矿山,不需要投入巨资建设冶炼厂,而且具有能耗低、生产周期短等优势。减轻了采选冶对环境和人体的危害,消除了含铅废物随处弃置对环境所造成的影响;实现废旧电池和有色金属资源化回收利用,不仅可以缓解环境污染,实现清洁生产,而且将具有显著的生态和经济效益。企业办厂宗旨是实现固体废物的“二次利用”,利用废旧电池,回收其中的有用成分,实现废旧电池的资源化与无害化处理。 本项目总定劳动员40 名,采用四班三运转工作制,每年生产300 天。预计建设期为十个月;项目环境保护投资主要用于废气、废水、噪声治理,预计环境保护投资为200 万元,其中废气治理150万元、废水治理40 万元、噪声治理10 万元。 本项目的地理位置见图1-1 。 图1-1 :建设项目地理位置图 1.2 主体设备-- 熔炼炉窑本项目对废旧电池、废有色金属和电镀污泥的回收采用火法处理工艺,属于 新型炉窑。设备采用北京节能环保中心和北京通达利新节能设备有限公司共 同开发的重点科技成果技术设备,即单段式低风压煤气发生炉。该设备由炉体、双钟罩、炉篦、煤斗提升机、灰盘、汽包、灰盘传动装置和放散管组成,其中灰盘采用涡轮蜗杆传动,运行稳定,炉体属水夹套结构,自产蒸汽,完全满足煤气炉自身煤的气化,及探火孔汽封使用,双钟罩或电动滚筒式自动加煤装置,结构简单,布煤均匀,偏心炉篦,除渣效果好,送风均匀,气化 稳定,投资少,占地面积小,操作方便。 熔炼废铅需将废铅液加热到1350C?1400C,而发生炉煤气热值低,约140 Okcal

废锂电池的处理方法——湿法回收技术

废锂电池的处理方法——湿法回收技术 废弃的锂电池中含有大量不可再生且经济价值高的金属资源,如钴、锂、镍、铜、铝等,如果能有效地回收处理废弃或不合格的锂电池,不仅能减轻废锉电池对环境的压力,还可以避免造成钴、镍等金属资源的浪费。 常州今创博凡能源新材料有限公司与高校合作,建立了以江苏技术师范学院、江苏省贵金属深加工技术及其应用重点实验室为技术支撑的课题组,立项研究从废锂离子电池中回收有价金属,经过3年研发,解决了生产中操作复杂、流程长、有机溶剂对环境造成危害等不利因素,缩短了工艺流程,降低了耗电量,提高了金属回收率、纯度和回收量,形成“每年8000吨废锂电池金属全封闭清洁回收工艺及其应用”成果。 项目属于固体废弃物资源化利用应用领域,技术原理是采用湿法冶金技术进行有色金属的分离和回收,包括浸出、溶液净化与富集、溶剂萃取等,另外还采用电冶金技术即电积最终获得单质金属产品。 技术路线是:首先对废锂电池进行预处理,包括放电、拆解、粉碎、分选;拆解后的塑料及铁外壳回收;分选后的电极材料进行碱浸出、酸浸出、除杂后,进行萃取。萃取是关键一步,将铜与钴、镍分离;铜进入电积槽进行电积产生电积铜产品;经萃取后的钴、镍溶液再进行萃取分离,这时经过结晶浓缩,直接得到钴盐和镍盐;或者经萃取分离的钴、镍分别进入电积槽中,得到电积钻和电积镍产品。电沉积工序的钻、铜、镍回收率达99%,品级分别达到99.98%、99.95% 和 99.2%~99.9%,硫酸钴、硫酸镍产品等都达到相关标准。 本项目在最优化的研究成果前提下,进行规模化、产业化的研发和建设,建成一条年回收量达8000吨的废锂离子全封闭清洁生产线,回收得到钴1500吨、铜 1200吨和镍420吨,总产值超过4亿元。将湿法回收重金属技术进行规模化应用,经了解在国内还未见,在国外也不多见。这项成果对全国废锂电池金属资源回收具有一定的指导作用,成功地填补了国内空白;清洁环保,成本低,利润高,在同类企业中具有较大的竞争优势。 采用湿法回收工艺,整合、简化工艺流程,整套工艺能耗低,产品回收率高。浸出工序采用3次回流浸出,提高浸 出率至98.7%;高效的铜、钴萃取剂将铜、钴萃取分离出来,并富集成高浓度的硫酸铜液、硫酸钴液,使之满足电解沉积的工艺要求,提高了回收重金属的效率。电沉积工序电压和电流密度降低,节省电耗。整个工艺流程回收率高,是高值化生产工艺。 电积工序中,产生的少量硫酸雾废气用集气罩负压抽风收集处理,减少了废气排放;电积完的贫电积液,其中铜离

相关文档
最新文档