艺术生高考数学专题讲义考点46抽样方法

合集下载

高考数学复习:随 机 抽 样

高考数学复习:随 机 抽 样

2.抽签法与随机数法的适用情况 (1)抽签法适用于总体中个体数较少的情况,随机数法 适用于总体中个体数较多的情况. (2)一个抽样试验能否用抽签法,关键看两点: 一是抽签是否方便;二是号签是否易搅匀.
考点二 系统抽样 【典例】(1)某班有学生52人,先用系统抽样的方法,抽 取一个容量为4的样本,已知座位是6号,32号,45号的同 学都在样本中那么样本中还有一位同学的座位号是 ________.
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49
A.12
B.32
C.06
D.16
【解析】选B.第15列和第16列的数字为90,从左到右依 次选取两个数字,依次为12,33,06,32,则第四个被选中 的红色球号码为32.
(2)某中学采用系统抽样方法,从该校高一年级全体800 名学生中抽取50名学生做牙齿健康检查,现将800名学 生从1到800进行编号,已知从33~48这16个数中取的数 是39,则在第1小组1~16中随机抽到的数是________.
世纪金榜导学号
【解析】(1)用系统抽样抽出的四个学生的号码从小到 大成等差数列,设样本中还有一位同学的座位号是x,将 号码从小到大排列:6,x,32,45,它们构成公差为13的等 差数列,因此,另一学生的座位号为6+13=19. 答案:19
【对点训练】
1.某班有学生60人,现将所有学生按1,2,3,…60随机编
号,若采用系统抽样的方法抽取一个容量为4的样本(等
距抽样),已知编号为3,33,48号学生在样本中,则样本
中另一个学生的编号为 ( )
A.28
B.23
C.18

高中数学知识点:抽样方法

高中数学知识点:抽样方法

高中数学知识点:抽样方法一、简单随机抽样设一个总体的个体数为N,假如通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称如此的抽样为简单随机抽样。

一样地假如用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。

1.抽签法一样地,抽签法确实是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌平均后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n的样本。

2.随机数法随机抽样中,另一个经常被采纳的方法是随机数法,即利用随机数表、随机数骰子或运算机产生的随机数进行抽样。

二、活用随机抽样系统抽样的最差不多特点是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯独确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,ak=m+(k-1)d,如本题中依照第一组的样本号码和组距,可得第k组抽取号码应该为9+30*(k-1)三、系统抽样要练说,先练胆。

说话胆小是幼儿语言进展的障碍。

许多幼儿当众说话时显得可怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。

总之,说话时外部表现不自然。

我抓住练胆那个关键,面向全体,偏向差生。

一是和幼儿建立和谐的语言交流关系。

每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,排除幼儿恐惧心理,让他能主动的、自由自在地和我交谈。

二是注重培养幼儿敢于当众说话的适应。

或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的爱好,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地关心和鼓舞他把话说完、说好,增强其说话的勇气和把话说好的信心。

三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清晰,声音响亮,学会用眼神。

高考数学复习考点知识讲解课件69 随机抽样、用样本估计总体

高考数学复习考点知识讲解课件69 随机抽样、用样本估计总体
4.理解样本数据标准差的意义和作用,会计算数据标准差.
5.能从样本数据中提取基本的数字特征(如平均数、标准差),并做
出合理的解释.
6.会用样本的频率分布估计总体分布,会用样本的基本数字特征估
计总体的基本数字特征,理解用样本估计总体的思想.
7.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的
实际问题.
·考向预测·
考情分析:简单随机抽样、系统抽样、分层抽样在高考中极少单独
考查,有时与概率问题相结合出现在题目的已知条件中;频率分布直
方图、茎叶图等统计图表属于高考的常考内容,题型多为选择题,有
时也与概率相结合出现在解答题中.
学科素养:通过随机抽样、统计图表、数字特征考查数据分析、数
学运算的核心素养.
(1)简单随机抽样是一种不放回抽样.( √ )
(2)在抽签法中,先抽的人抽中的可能性较大.( × )
(3)一组数据的方差越大,说明这组数据的波动越大.( √ )
(4)在频率分布直方图中,小矩形的面积越大,表示样本数据落在该
区间内的频率越大.( √ )
(5)频率分布表和频率分布直方图是一组数据频率分布的两种形式,
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75
22 53 55 78 32 43 77 89 23 45
若从表中第5行第6列开始向右依次读取3个数据,则抽到的第5名员工的
编号是(
)
A.007 B.253 C.328 D.736
答案:A
3.[2023·蚌埠模拟]某市小学,初中,高中在校学生人数分别为7.5
解析:∵x1,x2,x3,…,xn的平均数为5,
x +x +x +⋯+xn

【优】高三数学抽样方法PPT资料

【优】高三数学抽样方法PPT资料

等,就称这样的抽样为简单随机抽样.
例1 一个工厂有若干个车间,今采用分层抽样方法从全厂某天2048件产品中抽取一个容量为128的样本进行质量检查.
讨论:
总体中的每个个体被剔除的概率是相等的
( 3 ),也就是每个个体不被剔除的概率
1003
相等,为(
1000
).采用系统抽样时每个个
1003
体被抽取的概率都是(
50
),所以在整个
1000
抽样过程中每个个体被抽取的概率仍相等,都
是( 1000 50 50 ). 1003 1000 1003
问题:“为了了解我市高三年级11000名学生(其 中省重点中学2000人,市重点中学6000人,其余 学校共3000人)的数学学习情况……” , 要从中 抽取220人对某一指标进行调查.由于这项指标 与所在学校的层次有关,试问如何抽取更能客观 地反映实际情况?
更具代表性,在实用中更为广泛.
⑶分层抽样的特点:
有限性、分层性、随机性、等率性.
注意事项: 1.分层抽样法适用于总体中个体
差异明显的抽样;
2.分层是按总体中个体的明显差 异进行分类;
3.层抽样是按各层中含个体在总 体中所占的比例,确定层抽样的个体 个数进行随机抽样.
⑷ 应用:
例1 一个工厂有若干个车间,今采用分层抽样方 法从全厂某天2048件产品中抽取一个容量为128 的样本进行质量检查.若一车间一天生产256件产 品,则从该车间抽取产品件数为 16 .
⑷ 以18为起始号,每间隔20抽取一个号码,这 样就得到一个容量为50的样本:
18,38,58,……,978,998 .
问题:
(1)在系统抽样中,每个个体被抽中的概率是 否一样?

2020高考专题复习必修三-抽样方法

2020高考专题复习必修三-抽样方法

人教版高中数学必修三复习教学讲义
分别是多少?
(2)上面三种抽取方式中,各自采用何种抽样方法?
(3)试分别写出上面三种抽取方式各自抽取样本的步骤.
举一反三:
【变式1】某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工
作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为
40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第
8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.
【变式2】某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见下表,则调查小组的总人数为.
相关人员数抽取人数
公务员32 x
教师48 y
自由职业者64 4。

艺术生高考数学专题讲义:考点47 用样本估计总体及样本的数字特征

艺术生高考数学专题讲义:考点47 用样本估计总体及样本的数字特征

考点四十七 用样本估计总体及样本的数字特征知识梳理1.统计图表统计图表是表达和分析数据的重要工具,常用的统计图表有条形统计图、扇形统计图、折线统计图、茎叶图等. 2.频率分布直方表(1)含义:把反映总体频率分布的表格称为频率分布表. (2)频率分布表的画法步骤:第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表. 3. 频率分布直方图利用直方图反映样本的频率分布规律,这样的直方图称为频率分布直方图. (1)作频率分布直方图的方法①先制作频率分布表,然后作直角坐标系.②把横轴分成若干段,每一线段对应一个组的组距,然后以此线段为底作一矩形,它的高等于该组的频率组距,这样得出一系列的矩形.③每个矩形的面积恰好是该组的频率,这些矩形就构成了频率分布直方图. (2)频率分布直方图的特征①从频率分布直方图可以清楚地看出数据分布的总体趋势;②从频率分布直方图中得不出原始的数据内容,把数据表示为频率分布直方图后,原有的数据信息就丢失了;③直方图中各小长方形的面积之和为1.④直方图中纵轴表示频率组距,故每组样本的频率为组距×频率组距,即矩形的面积.⑤直方图中每组样本的频数为频率×总体数. 4.频率分布折线图将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起来,就得到频率分布折线图. 5.总体密度曲线如果将样本容量取得足够大,分组的组距足够小,则相应的频率折线图将趋于一条光滑曲线,即总体密度曲线.6.茎叶图茎相同者共用一个茎(如两位数中的十位数),茎按从小到大的顺序从上向下列出,共茎的叶(如两位数中的个位数),一般按从小到大(或从大到小)的顺序同行列出.这样将样本数据有条理地列出来的图形叫做茎叶图.其优点是当样本数据较少时,茎叶图可以保留样本数据的所有信息,直观反映出数据的水平状况、稳定程度,且便于记录和表示;缺点是对差异不大的两组数据不易分析,且样本数据很多时效果不好. 茎叶图的画法步骤第一步:将每个数据分为茎(高位)和叶(低位)两部分;第二步:将最小茎与最大茎之间的数按大小次序排成一列; 第三步:将各个数据的叶依次写在其茎的两侧.7.样本的数字特征:众数、中位数、平均数、方差、标准差(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据叫做这组数据的中位数.在频率分布直方图中,中位数左边和右边的直方图的面积应该相等. (3)平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…+x n ).(4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x ,则这组数据的标准差和方差分别是 s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2], s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]标准差是反映总体波动大小的特征数,样本方差是标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差. (5)标准差和方差的一些结论若取值x 1,x 2,…,x n 的频率分别为p 1,p 2,…,p n ,则其平均值为x 1p 1+x 2p 2+…+x n p n ;若x 1,x 2,…,x n 的平均数为x ,方差为s 2,则ax 1+b ,ax 2+b ,…,ax n +b 的平均数为a x +b ,方差为a 2s 2.典例剖析题型一 频率分布直方图例1 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________.答案 12解析 志愿者的总人数为20(0.16+0.24)×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.变式训练 某中学为了了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.答案 600解析 由直方图易得数学考试中成绩小于60分的频率为(0.002+0.006+0.012)×10=0.2,所以所求分数小于60分的学生数为3 000×0.2=600.解题要点 解决频率分布直方图时要明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1. 常用的结论有: ③直方图中各小长方形的面积之和为1.④直方图中纵轴表示频率组距,故每组样本的频率为组距×频率组距,即矩形的面积.⑤直方图中每组样本的频数为频率×总体数. 题型二 茎叶图例2 在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.答案 45 46解析 甲组数据为:28,31,39,42,45,55,58,57,66,中位数为45.乙组数据为:29,34,35,42,46,48,53,55,67,中位数为46.变式训练 若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是________. 答案 91.5和91.5解析 这组数据由小到大排列为87,89,90,91,92,93,94,96, ∴中位数为12×(91+92)=91.5.平均数为18×(87+89+90+91+92+93+94+96)=91.5.解题要点 求解茎叶图的习题,要读懂图,弄清楚“茎”和“叶”分别是什么,从而还原出具体的数据.题型三 用样本的数字特征估计总体的数字特征例3 (2014·高考陕西卷)某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x -和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为________. 答案 x -+100,s 2 解析x 1+x 2+…+x 1010=x -,y i =x i +100,所以y 1,y 2,…,y 10的均值为x -+100,方差不变.变式训练 甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品质量,从产品中各随机抽出6件进行测量,测得数据如下:(单位:mm) 甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1) 分别计算上述两组数据的平均数和方差;(2) 根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解析 (1) x -甲=100+16(-1+0-2+0+0+3)=100;x -乙=100+16(-1+0+2-1+0+0)=100.s 2甲=16[(-1)2+02+(-2)2+02+02+32]=73, s 2乙=16[(-1)2+02+22+(-1)2+02+02]=1. (2) 由(1)知,x -甲=x -乙,s 2甲>s 2乙, ∴ 乙机床加工的这种零件更符合要求.解题要点 1.熟记一些常用结论:若取值x 1,x 2,…,x n 的频率分别为p 1,p 2,…,p n ,则其平均值为x 1p 1+x 2p 2+…+x n p n ;若x 1,x 2,…,x n 的平均数为x ,方差为s 2,则ax 1+b ,ax 2+b ,…,ax n +b 的平均数为a x +b ,方差为a 2s 2.2. 平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.当堂练习1.(2015安徽理)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________. 答案 16解析 已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16.2.(2015江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 答案 6解析 这组数据的平均数为16(4+6+5+8+7+6)=6.3. (2015重庆文)重庆市2013年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是________. 答案 20解析 由茎叶图,把数据由小到大排列,处于中间的数为20,20,所以这组数据的中位数为20.4.(2015山东文)为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为________. 答案 ①④解析 甲地5天的气温为:26,28,29,31,31, 其平均数为x 甲=26+28+29+31+315=29;方差为s 2甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6;标准差为s 甲= 3.6.乙地5天的气温为:28,29,30,31,32, 其平均数为x 乙=28+29+30+31+325=30;方差为s 2乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2;标准差为s 乙= 2. ∴x 甲<x 乙,s 甲>s 乙.5.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为________.答案 5,8解析 因为甲组数据的中位数为15,由茎叶图可得x =5, 因乙组数据的平均数为16.8, 则9+15+(10+y )+18+245=16.8,解得y =8.课后作业一、 填空题1.样本中有五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为________. 答案 2解析 由题意知该组数据的平均值为15(a +0+1+2+3)=1,解得a =-1,所以样本方差为s 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.2.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 且支出在[20,60)元的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n 的值为______.答案 100解析 支出在[50,60)元的频率为1-0.36-0.24-0.1=0.3, 因此30n=0.3,故n =100.3.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为________.答案 0.4解析 落在[22,30)的频数为4,则所求频率为P =410=0.4.4.已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,则这组数据的平均数和方差分别为________. 答案 5,24235.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是________. 1 2 5 2 0 2 3 3 3 1 2 4 4 8 9 4 5 5 5 7 7 8 8 9 5 0 0 1 1 4 7 96 178 答案 46,45,56解析 样本中数据共30个,中位数为45+472=46;显然样本数据中出现次数最多的为45,故众数为45;极差为68-12=56.6.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是________. 答案 62.8,3.6解析 平均数增加60,即为62.8.方差=1n ∑ni -1[(a i +60)-(a +60)]2=1n ∑ni -1 (a i-a )2=3.6.7.某校甲、乙两个班级各有编号为1,2,3,4,5的五名学生进行投篮练习,每人投10次,投中的次数如表:答案 25解析 甲班的平均数为x 甲=6+7+7+8+75=7,甲班的方差为s 2甲=(6-7)2+(7-7)2+(7-7)2+(8-7)2+(7-7)25=25;乙班的平均数为x 乙=6+7+6+7+95=7,乙班的方差为s 2乙=(6-7)2+(7-7)2+(6-7)2+(7-7)2+(9-7)25=65.∵65>25,∴s 2=25. 8.(2013·福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为________.答案 480解析 少于60分的学生人数600×(0.05+0.15)=120(人),∴不少于60分的学生人数为480人.9.某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为________. 答案 78解析 由题意得75×0.4+80×0.6=30+48=78,∴平均分为78.10. (2015湖北文)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.答案 (1)3 (2)6 000解析 由频率分布直方图及频率和等于1可得0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a ×0.1=1,解得a =3.于是消费金额在区间[0.5,0.9]内频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6,所以消费金额在区间[0.5,0.9]内的购物者的人数为:0.6×10 000=6 000,故应填3,6 000.11.下面茎叶图是甲、乙两人在5次综合测评中成绩的茎叶图,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为________.答案 45解析 设被污损的数字为a (0≤a ≤9且a ∈N ),则由甲的平均成绩超过乙的平均成绩得88+89+90+91+92>83+83+87+99+90+a ,解得8>a ,即得0≤a ≤7且a ∈N ,∴甲的平均成绩超过乙的平均成绩的概率为P =810=45.二、解答题 12. (2015广东理)某工厂36名工人的年龄数据如下表.(1)年龄数据为44,列出样本的年龄数据; (2)计算(1)中样本的均值x 和方差s 2;(3)36名工人中年龄在x -s 与x +s 之间的有多少人?所占的百分比是多少(精确到0.01%)? 解析 (1)44,40,36,43,36,37,44,43,37. (2)x =44+40+36+43+36+37+44+43+379=40.s 2=19[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=1009.(3)40-103=1103,40+103=1303在⎝⎛⎭⎫1103,1303的有23个,占63.89%. 13.(2015广东文)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解析 (1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1得:x =0.007 5,所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230. 因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5得:a =224,所以月平均用电量的中位数是224.(3)月平均用电量为[220,240]的用户有0.012 5×20×100=25户,月平均用电量为[240,260)的用户有0.007 5×20×100=15户,月平均用电量为[260,280)的用户有0.005×20×100=10户,月平均用电量为[280,300]的用户有0.002 5×20×100=5户,抽取比例=1125+15+10+5=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5户.。

第46讲 超几何分布与二项分布(解析版)-【高考艺术生专用】2022年高考数学复习(,全国通用版)

第46讲 超几何分布与二项分布一、单选题1.(2021·全国高二单元测试)一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为A .49041001C C -B .0413109010904100C C C C C + C .1104100C CD .1310904100C C C【答案】D 【详解】由超几何分布概率公式可知,所求概率为3190104100C C C故选:D2.(2021·云南昆明一中高三月考(理))某同学从家到学校要经过三个十字路口,设各路口信号灯工作相互独立,该同学在各路口遇到红灯的概率分别为12,13,14,则该同学从家到学校至少遇到一次红灯的概率为( ) A .124B .1124 C .23D .34【答案】D 【详解】解:由题意,该同学从家到学校至少遇到一次红灯的概率为111311112344P ⎛⎫⎛⎫⎛⎫=--⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选:D.3.(2021·全国高二单元测试)设随机变量()~2,B p ξ,()~4,B p η,若()519P ξ≥=,则()2P η≥的值为( ) A .1127B .3281C .527D .1681【答案】A 【详解】因为随机变量()~2,B p ξ,所以()()()25110119P P p ξξ≥=-==--=,解得13p =, 所以1~4,3B η⎛⎫⎪⎝⎭,则()()()4311411111210111C 133327P P P ηηη⎛⎫⎛⎫⎛⎫≥=-=-==----=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A .4.(2021·全国高二单元测试)某校团委决定举办“鉴史知来”读书活动,经过选拔,共10名同学的作品被选为优秀作品,其中高一年级5名同学,高二年级5名同学,现从这10个优秀作品中随机抽7个,则高二年级5名同学的作品全被抽出的概率为( ) A .112 B .13C .12D .34【答案】A 【详解】从10个作品中抽7个,用X 表示抽到高二年级同学的作品数,则()5255710C C 15C 12P X ⋅===. 故选:A .5.(2021·全国高二单元测试)已知10名同学中有a 名女生,若从这10名同学中随机抽取2名作为学生代表,恰好抽到1名女生的概率是815,则a =( ) A .1 B .4或6C .4D .6【答案】B 【详解】设抽到的女生人数为X ,则X 服从超几何分布,()()111021010C C 81C 4515a a a a P X --====,解得4a =或6a =. 故选:B .6.(2021·黑龙江哈尔滨市第六中学校高二月考)一袋中装有除颜色外完全相同的3个黑球和3个红球,从袋中任取2球.已知取出的2球中有黑球,则取出的两个球都是黑球的概率为( ) A .14B .15C .12D .25【答案】A 【详解】 从袋中任取2球,取出的2球中有黑球,共有226312C C -=种基本事件,两个球都是黑球共有233C =种基本事件,∴已知取出的2球中有黑球,则取出的两个球都是黑球的概率为31124= 故选:A .7.(2021·全国高二课时练习)某校从学生会中的10名女生干部与5名男生干部中随机选取6名学生干部组成“文明校园督察队”,则组成4女2男的“文明校园督察队”的概率为( )A .615615C AB .33105615C C CC.42105615C CCD.42105615C AA【答案】C 【详解】组成4女2男的“文明校园督察队”的概率为42105615C CPC=.故选:C8.(2021·广东电白·高二期中)围棋起源于中国,据先秦典籍世本记载:“尧造围棋,丹朱善之”,至今已有四千多年历史围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵在某次国际围棋比赛中,甲、乙两人进入最后决赛比赛采取五局三胜制,即先胜三局的一方获得比赛冠军,比赛结束假设每局比赛甲胜乙的概率都为23,没有和局,且各局比赛的胜负互不影响,则甲在比赛中以3:1获得冠军的概率为()A.19B.827C.1627D.1781【答案】B【详解】甲在比赛中以3:1获得冠军,即前三局中甲胜两局,且第四局甲胜.所以,甲在比赛中以3:1获得冠军的概率2232128C33327P⎛⎫=⋅⋅⋅=⎪⎝⎭.故选:B.二、多选题9.(2021·全国高二课时练习)(多选)下列随机变量中,服从超几何分布的有()A.在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为X B.从3台甲型彩电和2台乙型彩电中任取2台,记X表示所取的2台彩电中甲型彩电的台数C.一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯的数为随机变量XD .从10名男生,5名女生中选3人参加植树活动,其中男生人数记为X 【答案】ABD 【详解】解:依据超几何分布模型定义可知,试验必须是不放回地抽取n 次,A 、B 、D 中随机变量X 服从超几何分布.而C 中显然不能看作一个不放回抽样问题,故随机变量X 不服从超几何分布. 故选:ABD10.(2021·全国高二单元测试)一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,下列变量服从超几何分布的是( ) A .X 表示取出的最大号码 B .X 表示取出的最小号码C .取出一个黑球记2分,取出一个白球记1分,X 表示取出的4个球的总得分D .X 表示取出的黑球个数 【答案】CD 【详解】AB 不符合超几何分布的定义,无法用超几何分布的数学模型计算概率,即AB 错;CD 选项符合超几何分布的定义,将黑球视作次品,白球视作正品,则可以用超几何分布的数学模型计算概率,即CD 正确; 故选:CD.11.(2021·山东潍坊·高二期末)袋子中有3个黑球2个白球现从袋子中有放回地随机取球4次取到白球记1分,黑球记0分,记4次取球的总分数为X ,则( ) A .2~4,5X B ⎛⎫ ⎪⎝⎭B .()1442625P X ==C .X 的期望()125E X = D .X 的方差()2425D X =【答案】AD 【详解】从袋子中有放回地随机取球4次,则每次取球互不影响,并且每次取到白球的概率相等,又取到白球记1分,取4次球的总分数,即为取到白球的个数, 对于A ,每次取球取到白球的概率为25P =,随机变量X 服从二项分布2~4,5X B ⎛⎫⎪⎝⎭,故A 正确; 对于B ,2X =,即4次取到2次白球,概率222423216(2)55625P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,故B 错误; 对于C ,因为2~4,5X B ⎛⎫⎪⎝⎭,所以X 的期望28()455E X =⨯=,故C 错误;对于D ,因为2~4,5X B ⎛⎫⎪⎝⎭,所以X 的方差32452()5254D X =⨯⨯=,故D 正确. 故选:AD .12.(2021·湖北武汉·高二期中)袋子中有2个黑球,1个白球,现从袋子中有放回地随机取球4次,取到白球记0分,黑球记1分,记4次取球的总分数为X ,则( )A .2~4,3XB ⎛⎫⎪⎝⎭B .8(2)81P X ==C .X 的期望8()3E X = D .X 的方差8()9D X =【答案】ACD 【详解】从袋子中有放回地随机取球4次,则每次取球互不影响, 并且每次取到的黑球概率相等,又取到黑球记1分, 取4次球的总分数,即为取到黑球的个数,所以随机变量X 服从二项分布2~4,3X B ⎛⎫⎪⎝⎭,故A 正确;2X =,记其概率为22242124(2)3381P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,故B 错误; 因为2~4,3X B ⎛⎫ ⎪⎝⎭,所以X 的期望28()433E X =⨯=,故C 正确;因为2~4,3X B ⎛⎫⎪⎝⎭,所以X 的方差218()4339D X =⨯⨯=,故D 正确.故选:ACD . 三、填空题13.(2021·全国高二课时练习)某手机经销商从已购买某品牌手机的市民中抽取20人参加宣传活动,这20人中年龄低于30岁的有5人.现从这20人中随机选取2人各赠送一部手机,记X 为选取的年龄低于30岁的人数,则P (X =1)=________. 【答案】1538【详解】X =1是指选取的人中年龄低于30岁的有1人,所以()1151522015138C C P X C ===.故答案为:1538. 14.(2021·江苏滨湖·立人高中高二期中)若一个随机变量的分布列为()r n r M N MnNC C P r C ξ--⋅==,其中0,1,2,,,min(,)r l l n M ==则称ξ服从超几何分布,记为~(,,)H n M N ξ,并将()r n r M N MnNC C P r C ξ--⋅==记为(;,,)H r n M N ,则(1;3,2,10)H =___________.【答案】715【详解】根据题意,13210r n M N ====,,, ()()1228310·71;3,2,10115C C H P C ξ∴==== 故答案为:715. 15.(2021·全国高二专题练习)某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为23,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X 的期望是________. 【答案】83【详解】在一轮投篮中,甲通过的概率为12228233339P =⨯⨯+⨯= ,未通过的概率为19.甲3个轮次通过的次数X 服从二项分布X ~83,9B ⎛⎫⎪⎝⎭,由二项分布的期望公式,得E (X )=3×83=83故答案为:8316.(2021·浙江省杭州第二中学高三开学考试)某学生在上学 路上要经过4人路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯停留的时间都是2分钟,则这名学生在上学路上因遇到红灯停留的总时间ξ的期望为__________,方差为___________. 【答案】83 329【详解】设变量η为这名学生在上学路上因遇到红灯的次数,则2ξη=, 由题意14,3B η⎛⎫ ⎪⎝⎭, 所以()14433E η=⨯=,()1284339D η=⨯⨯=,所以()()823E E ξη==,()()3249D D ξη==,故答案为:832;39四、解答题17.(2021·全国高二课时练习)一个袋中装有形状大小完全相同的8个球,其中红球2个,白球6个. (1)不放回地从袋中任取3个球,求恰有1个红球的概率;(2)有放回地每次取1球,直到取到2次红球即停止,求恰好取4次停止的概率;(3)有放回地每次取1球,共取3次,记取到红球的个数为ξ,求随机变量ξ的分布列及数学期望. 【答案】(1)1528;(2)27256;(3)分布列答案见解析,数学期望:34. 【详解】解:(1)由题意,从8个球中不放回地取3个球,有3856C =(种)不同的取法,其中恰有1个红球有122630C C ⋅=(种)不同的取法,所以恰有一个红球的概率1226381528C C P C ⋅==. (2)由题意,恰好取4次停止,即前3次中有1次取到红球, 且第4次取到红球,有放回地每次取1球,取到红球的概率为2184=, 根据独立重复试验的概率计算公式,可得所求概率213111271444256P C ⎛⎫=⋅⋅-⋅= ⎪⎝⎭.(3)随机变量ξ的可能取值为0,1,2,3,则()30312701464P C ξ⎛⎫==-= ⎪⎝⎭, ()2131127114464P C ξ⎛⎫==⋅⋅-=⎪⎝⎭, ()223119214464P C ξ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭, ()333113464P C ξ⎛⎫===⎪⎝⎭, ξ的分布列如表所示因为13,4B ξ⎛⎫~ ⎪⎝⎭,所以数学期望13344E ξ=⨯=.18.(2021·全国高二课时练习)某商场为刺激消费,拟按以下方案进行促销:顾客消费每满500元便得到奖券1张,每张奖券的中奖概率为12,且每张奖券是否中奖是相互独立的,若中奖,则商场返回顾客现金100元某顾客现购买单价为2300元的台式电脑一台,得到奖券4张. (1)设4张奖券中中奖的张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(单位:元),用ξ表示η,并求η的数学期望和方差. 【答案】(1)答案见解析 ;(2) 2300100ηξ=-, ()2100E η=,()10000D η=. 【详解】解:(1)每张奖券是否中奖是相互独立的,∴14,2B ξ⎛⎫⎪⎝⎭, ∴441()C 2i P i ξ⎛⎫== ⎪⎝⎭(0,1,2,3,4)i = ∴ξ的分布列为(2)14,2B ξ⎛⎫⎪⎝⎭,∴()422E ξ=⨯=,()4122D ξ=⨯⨯=.又由题意可知2300100ηξ=-,∴()(2300100)2300100()230010022100E E E ηξξ=-=-=-⨯=,2()100()10000D D ηξ==.19.(2021·全国高二单元测试)为了解甲、乙两厂的产品质量,采用分层抽样的方法,从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x ,y 的含量(单位:mg ),已知甲厂生产的产品共有98件,下表是抽取的乙厂的5件产品的测量数据.(2)当产品中微量元素x ,y 满足175x ≥,75y ≥时,该产品为优质品,试估计乙厂生产的优质品的数量;(3)在(2)的条件下,若从乙厂抽出的5件产品中任取3件,求抽取的3件产品中优质品数ξ的分布列.【答案】(1)35m =;(2)14件;(3)分布列见解析. 【详解】(1)设乙厂生产的产品为m 件,依题意得14598m=,所以35m =. (2)由题意,知从乙厂抽取的5件产品中,优质品有2件, 所以估计乙厂生产的优质品有235145⨯=(件). (3)依题意,知ξ的取值为0,1,2,由超几何分布,则()33351010C P C ξ===,()213235315C C P C ξ===,()1232353210C C P C ξ===.所以ξ的分布列为:n 位优秀毕业生(包括x 位女学生,3位男学生)中选派2位学生到某贫困山区的一所中学担任第三批顶岗实习教师.每一位学生被派的机会是相同的. (1)若选派的2位学生中恰有1位女学生的概率为35,试求出n 与x 的值;(2)在(1)的条件下,记X 为选派的2位学生中女学生的人数,写出X 的分布列. 【答案】(1)n =5,x =2或n =6,x =3;(2)答案见解析. 【详解】(1)从n 位优秀毕业学生中选派2位学生担任第三批顶岗实习教师的总结果数为2(1)2n n n C -=, 2位学生中恰有1位女生的结果数为()113333n C C n -=-⨯依题意可得13213n n C C C -=(3)3(1)2n n n -⨯-=35, 化简得n 2-11n +30=0, 解得n 1=5,n 2=6. 当n =5时,x =5-3=2; 当n =6时,x =6-3=3,故所求的值为n=5,x=2或n=6,x=3;(2)①当n=5,x=2时,X可能的取值为0,1,2,P(X=0)=022325C CC=310,P(X=1)=112325C CC=35,P(X=2)=CC2225=110.故X的分布列为0,1,2.P(X=0)=023326C CC=15,P(X=1)=133261C CC=35,P(X=2)=23326C CC=15.故X的分布列为。

高中数学抽样方法.ppt

当nn不是整数时通过从总体中剔除一些个体使剩下的总体中个体的个数n?能被n整除这时4按照事先确定的规则抽取样本通常是将l加上间隔k得到第2个编号lk第3个编号l2k这样继续下去直到获取整个样本
2.1 抽样方法
统计学的研究对象是客观事物的数量特征和数量关系,它 是关于数据的搜集、整理、归纳和分析的方法和科学.
2.1 抽样方法
系统抽样的步骤:
(1)采用随机的方式将总体中的个体编号。为简便起见, 有时可直接采用个体所带有的号码,如考生的准考证号、 街道上各户的门牌号,等等;
(2)整个的编号分段(即分成几个部分),要确定分段的 间隔k.当N/n(N为总体中的个体的个数,n为样本容量) 是整数时,k=N/n;当N/n不是整数时,通过从总体中剔除 一些个体使剩下的总体中个体的个数N'能被n整除,这时 k=N'/n;
苏教版高中数学教材必修3 第2章 统计
2.1 抽样方法 如果问题6中,学生人数是1003,如何进行系统抽样?
解:(1)随机将这1003个个体进行编号1,2,3,……1003; (2)利用简单随机抽样,先从总体中剔除3个个体(可以随
机数表法),将剩下的个体重新编号然后按系统抽样的方法进 行.
苏教版高中数学教材必修3 第2章 统计
第二步,在附录1随机数表中任选一个数作为开始.
第三步,获取样本号码.
为了保证所选定数字的随机性,应在面对 随机数表之前就指出开始数字的纵横位置
苏教版高中数学教材必修3 第2章 统计
2.1 抽样方法 问题4.为了检验某种产品的质量,决定从40件产品中抽取10件 进行检查,如何抽样? 例如选取第8行第9列开始.
方案:通常将各班同学平均分成5组,再在第一组用抽签法确 定一个学号的学生,按每组逐次加10的原则抽取5名代表, 例:抽取学号为02,12,22,32,42等5位代表.

考点29 三种抽样方法 ——2021年高考数学专题复习讲义

考点29 三种抽样方法【思维导图】【常见考法】考法一简单随机抽样1.总体由编号为01,02,…,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()50 44 66 44 21 66 06 58 05 62 61 65 54 35 02 42 35 48 96 32 14 52 41 52 4822 66 22 15 86 26 63 75 41 99 58 42 36 72 24 58 37 52 18 51 03 37 18 39 11A.23 B.21 C.35 D.322.某口罩生产工厂为了了解口罩的质量,现将生产的50个口罩编号为01,02,…,50,利用如下随机数表从中抽取10个进行检测.若从下表中第1行第7列的数字开始向右依次读取2个数据作为1个编号,则被抽取的第8个个体的编号为()A.18 B.50 C.11 D.17考法二系统抽样1.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生2.某班有学生60人,现将所有学生按1,2,3,…,60随机编号,若采用系统抽样的方法抽取一个容量为5的样本(等距抽样),已知编号为4,,28,,52a b 号学生在样本中,则a b +=( ) A .42 B .45 C .52 D .563.从编号0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是10的样本,若编号为58的产品在样本中,则该样本中产品的最大编号为( )A .72B .74C .76D .78考法三 分层抽样1.某高中学校三个年级共有学生2800名,需要用分层抽样的方法抽取一个容量为40的样本,已知高一年级有学生910名,高二年级抽出的样本人数占样本总数的310,则抽出的样本中有高三年级学生人数为( ) A .14B .15C .16D .17 2.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .2503.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从乙车间的产品中抽取了4件,则n ()A.9 B.10 C.12 D.134.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7 C.8,15,12,5 D.8,16,10,6如何学好数学1.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。

高中数学知识点总结概率与统计的抽样方法

高中数学知识点总结概率与统计的抽样方法在概率与统计学中,抽样方法是一种收集数据并进行分析的重要手段。

通过抽样,我们可以从总体中选择一部分样本,以此来了解和推断整体的特征和规律。

本文将对高中数学中与概率与统计相关的抽样方法进行总结。

一、简单随机抽样(Simple Random Sampling)简单随机抽样是指从总体中以随机的方式抽取样本,使得各个样本具有相同的机会被抽到,且各个样本之间是相互独立的。

简单随机抽样通常采用以下几种方式实施:1. 纸箱抽样法:将总体中的每个个体写在纸片上,放入一个装有纸片的纸箱中,然后用手在纸箱中摇晃,最后从中抽取所需的样本。

2. 随机数表法:通过使用随机数表,将总体中的个体与表中的随机数对应,然后按照表中的数值顺序抽取样本。

简单随机抽样的特点是简单易行,并且能够较好地反映总体的特征。

但是在总体较大时,抽样工作会比较繁琐,且可能出现样本偏差的情况。

二、系统抽样(Systematic Sampling)系统抽样是按照一定的规则从总体中抽取样本,通常是从第一个个体开始,每隔一定的间隔抽取一个样本,直到达到所需样本数量为止。

系统抽样的具体步骤如下:1. 确定总体大小 N 和所需样本数量 n。

2. 计算步长 k = N/n。

3. 随机确定一个起始值 r,保证 r 小于 k。

4. 以步长为间隔,从第 r 个个体开始进行抽样。

系统抽样相对于简单随机抽样而言,其抽样过程相对简单且精确。

但是需要注意,若总体的顺序具有某种规律或周期性,可能会导致样本的偏差。

三、整群抽样(Cluster Sampling)整群抽样是将总体划分为若干个互不重叠的群组,然后从中随机选择一部分群组作为样本,进行数据收集和分析。

整群抽样的步骤如下:1. 将总体划分为若干个群组,确保群组之间的相似度较高,群组内的差异较小。

2. 使用随机抽样技术,从划分好的群组中随机选择一定数量的群组作为样本。

3. 对所选的群组进行全员调查,或者从每个群组中再进行其他抽样方法的抽样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

艺术生高考数学专题讲义考点46抽样方法
一、基本概念
在实际问题中,由于无法对全部样本进行观测或测量,所以我们往往
需要通过对部分样本的研究,来推断总体的性质和规律。

这就是统计学中
的抽样方法。

抽样方法是一种重要的数据收集方式,也是统计推断的基础。

在抽样方法中,我们首先要明确两个概念,即总体和样本。

总体是我
们要研究的对象的全体,而样本是从总体中抽取的部分个体,用来代表总体。

二、抽样的方法
根据抽样的方法可以分为以下几种:
1.简单随机抽样:从总体中随机地抽取n个样本,要求每个样本被选
中的概率相等。

简单随机抽样是最基本的抽样方法,简单随机抽样得到的
样本具有代表性,可以很好地代表总体。

2.分层抽样:将总体划分为若干个相似的层,然后从每一层中进行简
单随机抽样。

分层抽样可以保证样本更好地代表总体,特别是当总体的差
异比较大时,分层抽样能更好地反映出各个层的特征。

3.整群抽样:将总体划分为若干个互不相交的群,然后从每一群中进
行简单随机抽样。

整群抽样适用于总体的群体结构比较明显的情况下,可
以减小样本误差,提高效率。

4.系统抽样:将总体的N个个体按照其中一顺序编号,确定一个固定
的间隔K,然后从第一个个体开始,每隔K个个体选择一个。

系统抽样是
一种简单而高效的抽样方法。

5.多阶段抽样:将总体分为若干个阶段,先抽取一部分阶段,再从每
个抽取的阶段中进行抽样。

多阶段抽样适用于总体的结构复杂的情况,可
以降低抽样的难度。

三、抽样误差
在进行抽样调查时,由于样本是从总体中抽取的部分个体,样本的结
果和总体的真实情况往往会有一定的差异,这个差异称为抽样误差。

抽样
误差可以分为抽样误差和非抽样误差。

抽样误差是由于样本的随机性引起的,可以通过增加样本容量来减小。

当样本容量足够大时,抽样误差可以忽略不计。

非抽样误差是由于抽样方法、调查方法等原因引起的误差,不可避免。

减小非抽样误差的方法包括设计合理的抽样方案、严格执行抽样过程、控
制调查中的偏差等。

四、抽样调查的应用
抽样调查在各个领域中都有广泛的应用,特别是在社会调查、市场调
查和科学研究等方面。

社会调查中,通过抽样调查可以了解人口、就业、教育等方面的情况,为社会政策的制定提供依据。

市场调查中,通过抽样调查可以了解消费者的需求、购买行为等,为
企业的市场开拓和产品设计提供参考。

科学研究中,通过抽样调查可以进行实验观测、数据采集等,为研究
者提供数据分析的基础。

总之,抽样方法是进行统计推断的基础,可以从抽样的样本中推断总体的性质和规律。

在进行抽样调查时,需要注意抽样的方法选择以及抽样误差的控制,从而得出准确、可靠的结论。

相关文档
最新文档