同分子分数比较大小练习题

合集下载

第2讲 分数的大小比较(讲义及随堂测试)含答案

第2讲 分数的大小比较(讲义及随堂测试)含答案

第2讲分数的大小比较(讲义)➢知识点睛1.比较分数大小的方法:分母相同看分子,分子大的分数大;分子相同看分母,分母小的分数大;分子分母都不同,先通分再比较。

2.公倍数:几个数公有的倍数叫做这几个数的公倍数。

3.最小公倍数:公倍数中最小的一个叫做这几个数的最小公倍数。

4.最大公因数:几个数公有质因数的乘积。

➢课堂目标1.能够快速求出最小公倍数和最大公因数。

2.比较两个分数的大小。

➢精讲精练经典例题1经典例题2直接写出下列各组数的最大公因数和最小公倍数:3和4 4和7 3和9 8和24最大公因数:()()()()最小公倍数:()()()()经典例题3用短除法求下列每组数的最大公因数和最小公倍数。

18和24 15和35 12和28最大公因数:()()()最小公倍数:()()()经典例题4a=2×3×7,b=2×3×5,那么a和b的最小公倍数是()。

A.120 B.360 C.210经典例题5如果a和b是互质数,那么a和b的最小公倍数是()。

A.ab B.a+b C.a b经典例题6五(1)班同学排队做操,4人一排、5人一排、6人一排都余2人,已知五(1)班学生超过60人,不到70人,这个班有学生()人。

A.62 B.67 C.68经典例题7明明每6天去一次图书馆,小华每8天去一次图书馆,今天他们在图书馆相遇,至少再过()天两人在图书馆再次相遇。

A.12 B.24 C.48【参考答案】经典例题1:<>><<>= <<经典例题2:1;1;3;812;28;9;24 经典例题3:6;5;472;105;84 经典例题4:C经典例题5:A经典例题6:A经典例题7:B第2讲 分数的大小比较(随堂测试)1. 把下列每组中的两个数通分,然后比较大小。

(1)32和65(2)53和74(3)157和24112. 16和48的最大公因数是 ,最小公倍数是 。

3. 18和30的最大公因数是 ,最小公倍数是 。

五年级下册数学一课一练-1.2分数的大小比较 浙教版(含答案)

五年级下册数学一课一练-1.2分数的大小比较 浙教版(含答案)

五年级下册数学一课一练-1.2分数的大小比较【精品】一、单选题1.一堆煤两天运完,第一天运了10吨,第二天运了这堆煤的,那么()A. 第一天运的多B. 第二天运的多C. 两天运的一样多D. 无法比较2.下面的分数中,最小的是()A. B. C.3.是大于10的自然数,下列分数中分数值最小的是()。

A. B. C.4.甲乙两同学看同样一本书,甲同学看了这本书的,乙同学看了这本书的,谁剩下的多些?()A. 甲同学B. 乙同学C. 同样多D. 无法确定5.如果,那么a、b、c、d这4个数中,最大的是()A. aB. bC. cD. d二、判断题6.两根一样长的彩带,第一根用去它的,第二根用去米,剩下的一样长。

7.比小,而比大的分数只有.8.甲、乙两位师傅加工同样多的零件,甲用了小时,乙用了小时,乙师傅的工作效率高。

9.大于小于的数只有3个。

()三、填空题10.填上“>”、“<”或“=”号________ ________ ________________ 1________ ________________ ________ ________11.解决实际问题.给同样大小的菜地施肥.张大伯用了50分,李大伯用了小时.________施肥的速度快一些?12.在横线上填上>、<或=________ ________ ________13.先观察下面排列的各组数,有什么规律?你能再接着写几个吗?(1)<<<…________(2)>>>…________四、解答题14.超市有三种质量相等的水果,周末的销售情况如下:苹果售出,香蕉售出,梨子售出。

如果超市要进货,应该多进哪种水果?为什么?15.用2,3,4,6,8,12六个数字,写出3个大小相等的分数,每个数字只许用一次.五、综合题16.先通分,再比较大小.(1)和(2)和(3)和.六、应用题17.一项工程,甲队单独完成要11天,乙队单独完成要15天,两队各做5天,分别完成这件工作的几分之分?谁做得多?参考答案一、单选题1.【答案】A【解析】【解答】解:1-=<,所以第一天运的多。

分数的大小比较

分数的大小比较
b bm
如: 3 3 2 5 2 22 4
注意:性质2、性质3中 a区别。 b
4、如果 a ,c则 a a。 c c b d b bd d
如; 2 ,则5有 57
2 25 5 5 57 7
试一试
用性质2、3、4比较下列各组分数的大小:
① 与2 6 37
② 4与 7 36
③ 5、 与 8 13 12 15 27
那么从大到小排列,第四个数是哪一个?
g
0.51
小学数学奥林匹克辅导讲座(六上)四
分数大小的比较
比较分数大小的一般方法:
1、分母相同的两个分数 分子较大的分数也大;分子较小的分数也小。 2、分子相同的两个分数 分母较大的分数反而小;分母较小的分数反而大。 3、两个分母不同的分数 一般是通分之后再比较大小。
比较分数大小的有关性质:
1、两个分数 a、 c,如果 ad , 则cb bd 如果 ad ,c则b
分析: 30是3和5的公倍数,先将已知的两个分数化成分母为的分数,再在10与 24之间找到与30互质的数。(5个)
例7、比 分析:
2 1 大,比 小,分子为17的分数有多少个?
7
3
设要找的分数是17/x,再将它与已知分数化成分子相同的分数,从而可 确定x。(8个)
练习
1、比较下列每组分数的大小
(1) 5432789 与 3678921 (2) 555 与 5555
。a c bd 。a c bd
4 5 如:①比较 与 的大小 79
②比较 与 7的大小 9 12 13
试一试
用性质1比较下列各组分数的大小:
① 与7 6 97
② 7与 6 12 11
a
2、如果 是一个真分数,m是一个自然数(m≠0),

分数通分练习题

分数通分练习题

分数通分练习题在数学学习中,分数通分是一个重要的概念和技巧。

通过通分,可以将两个或多个分数的分母变为相同的数,便于进行分数的加减乘除运算。

以下是一些分数通分的练习题,帮助你巩固和提升这方面的能力。

练习题1:将下列分数通分,并计算出结果:1. 1/2 + 1/32. 2/5 + 3/103. 3/4 - 1/64. 5/8 - 1/4解答:1. 1/2 + 1/3通分的最小公倍数为6,因此将分数通分得到:3/6 + 2/6 = 5/62. 2/5 + 3/10通分的最小公倍数为10,因此将分数通分得到:4/10 + 3/10 =7/103. 3/4 - 1/6通分的最小公倍数为12,因此将分数通分得到:9/12 - 2/12 = 7/124. 5/8 - 1/4通分的最小公倍数为8,因此将分数通分得到:5/8 - 2/8 = 3/8练习题2:将下列分数通分,并计算出结果:1. 1/3 × 1/42. 2/5 × 3/83. 3/4 ÷ 2/54. 5/8 ÷ 1/2解答:1. 1/3 × 1/4通分的最小公倍数为12,因此将分数通分得到:4/12 × 3/12 = 12/144 = 1/122. 2/5 × 3/8通分的最小公倍数为40,因此将分数通分得到:16/40 × 15/40 = 240/1600 = 3/203. 3/4 ÷ 2/5除法可以转换为乘法求倒数,即 3/4 ÷ 2/5 = 3/4 × 5/2 = 15/84. 5/8 ÷ 1/2除法可以转换为乘法求倒数,即 5/8 ÷ 1/2 = 5/8 × 2/1 = 10/8 = 5/4通过以上练习题,我们可以发现,分数通分的过程就是将分数的分母变为相同的数,可以通过寻找最小公倍数来实现。

对于加减法,分母相同时,直接进行分子的运算;对于乘法和除法,分别将两个分数相乘或相除即可。

新西师大版五年级数学下册 2.6 分子相同的分数比较大小 教学课件

新西师大版五年级数学下册 2.6 分子相同的分数比较大小 教学课件
返回
课后作业 课本:
第26页思考题
返回
5 ( ) 4
5 ( ) 3
5 4

5 3
返回
看图填分数,再比较分数的大小。
4 ( ) 10 4 ( ) 5
4 10

4 5
返回
1 2 3 5


1 4
3 4
5 4
< <
5 3 4 5
4 10
分子相同
分子相同,分母小的分数大。
返回
课堂练习
用分数表示图中的涂色部分,再比较它们的大小。
2 ( ) 5

2 5 9 10
1 6 7 8

5 6 3 8



分母相同,分子大的分数大。
返回1 2Fra bibliotek和1 4
,哪个大?
1 2 1 2 1 4

1 4
返回
1 1 6 和 4 哪个大?
1 6
<
1 4
返回
1 2

1 4
1 6

1 4
你有什么发现?
分子是1的分数,分母小的分数大。
返回
比较

的大小

返回
看图填分数,再比较分数的大小。
2 分数
分子相同的分数比较大小
情境导入 探究新知 课堂练习 课后作业 课堂小结
情境导入 1. 一块蛋糕平均分成了10份,每份是这 块蛋糕的(
1 10
),4份是这块蛋糕的

2.
3 7
4 10
)。
1 ( 3 )个 7
5 9
里面有
1 9

小学四年级数学题目认识分数的比较大小

小学四年级数学题目认识分数的比较大小

小学四年级数学题目认识分数的比较大小在学习数学的过程中,四年级的小学生们会接触到一些关于分数的概念和计算。

而在认识分数的过程中,比较大小是基本的一步。

本文将从比较分数的大小出发,为四年级的小学生们介绍一些简单易懂的方法。

一、相同分母的分数比较大小当两个分数的分母相同时,我们可以通过比较它们的分子来确定它们的大小。

分子较大的分数,表示的数值也较大。

举个例子来说明这个方法。

比较分数1/4和3/4的大小。

由于两个分数的分母都是4,我们只需要比较它们的分子。

显然,3比1要大,因此3/4大于1/4。

图1:相同分母的分数比较大小1/4 <-----------> 3/4二、相同分子的分数比较大小当两个分数的分子相同时,我们可以通过比较它们的分母来确定它们的大小。

分母较小的分数,表示的数值较大。

让我们来看一个实例。

比较分数2/5和2/7的大小。

由于两个分数的分子都是2,我们只需要比较它们的分母。

显然,5比7要大,因此2/5大于2/7。

图2:相同分子的分数比较大小2/5 <-----------> 2/7三、不同分母和分子的分数比较大小当两个分数的分母和分子都不相同时,我们可以通过通分来确定它们的大小。

让我们通过一个例子来理解这个方法。

比较分数1/3和2/5的大小。

由于两个分数的分母不相同,我们需要找到它们的最小公倍数作为新的分母。

对于1/3和2/5来说,它们的最小公倍数是15。

为了将1/3和2/5转换为具有相同分母的分数,我们需要乘以适当的倍数。

1/3乘以5/5得到5/15,2/5乘以3/3得到6/15。

现在,我们可以直接比较5/15和6/15的大小了。

显然,6/15大于5/15,因此2/5大于1/3。

图3:不同分子和分母的分数比较大小1/3 <-----------> 2/5(通分后) 5/15 <-----------> 6/15综上所述,比较分数的大小并不难,只需要根据分数的特点运用相应的方法。

分数大小比较及分数的加减法

一、分数的大小1、用分数表示各图中的阴影部分,并比较大小。

()()()()()()()()()()()()()()()()2.比较下面分数的大小:3.判断题:> ()< ()> 1 ()4.比较下列各组分数的大小38781012812694916231323694915183133和 和 和 和5.先通分再比较分数大小43和32 127和154 52和946.比较大小。

1○3940 2.5○157 58 ○910 1.1○3940 0.87○58 49 ○35 0.65○14小结:1、分母相同的分数,分子越( ) ,这个分数越 ( )2、分子相同的分数,分母越( ) ,分数反而越( )。

3、分子分母都不相同,先通分,再比较。

二、同分母分数加减法1、连线19 + 49 2 145 +15 1 47 + 67 137 18 +78 2911 2411 +511 592、判断下面各题的对错,找出错误原因,并改过来.(1)47 +37 = 714 (2)6 - 57 - 37 =577 -57 -37=527 -37=517 4.计算:715 - 215 712 - 112 1 - 916 911 - 711 38 + 38 16 + 16 314 +314 34 + 34观察第二行,你发现了什么?若两个相同的分数相减结果又如何?小结:1、同分母分数相加、减,分母( ),只把分子相加、减。

(能约简的约成最简分数;分子是0的分数等于0)。

2、若两个相同的分数相减结果为( )。

三、异分母分数加减法1、在括号里填上合适的数。

51=()10 76=()18 95=()25 1513=()306349=()7 2426=()6 2515=()5 74=()284533=()11=()99=()30=()÷ ()2.列式计算.(1)27 与45 的和是多少?(2)511 减去413的差是多少?3.判断,下面的计算对吗?把不对的改正过来。

分数问题—专题01《分数的大小比较》2020年通用版小升初数学冲A提高集训(解析版)

2020年通用版小升初数学冲A提高集训分数问题—专题01《分数的大小比较》一.选择题1.(2014春•肥城市期末)在20042005,20052006,20062007中,最小的分数是()A.20042005B.20052006C.20062007D.无法比较【分析】用1减去每个分数后结果分别是12005,12006,12007,根据分子相同时,分母小的分数就大可知1 2005最大,所以20042005最小,据此解答即可.【解答】解:因为:20041120052005-=20051120062006-=20061120072007-=111200520062007>>根据被减数相同,差大的,减数就小,所以:200420052006200520062007<<故选:A.2.下面算式中,()得数最大.A.2015220169⨯B.2015220169÷C.2015920164⨯【分析】先把选项B根据分数除法的计算方法:除以一个不为零的数等于乘上这个数的倒数,把除法变成乘法,再根据一个因数相同(0除外)另一个因数越大,积越大进行比较.【解答】解:2015220159 2016920162÷=⨯;这样三个算式都有一个相同的因数,299942<<所以:2015220169÷的结果最大.故选:B .3.在下面几个算式中,第( )个式子的得数最大.A .11()201719+⨯B .11()302429+⨯C .11()403137+⨯D .11()504147+⨯ 【分析】分数乘整数,分母不变,分子乘以整数.两个加数的和乘一个整数,等于每个加数分别乘这个整数,然后求和.分别计算四个算式,然后进行比较.【解答】解:(1)11()201719+⨯20201719=+3121719=++9325157=++;(2)11()302429+⨯30302429=+ 6122429=++9323687=++;(3)11()403137+⨯40403137=+9323137=++;(4)11()504147+⨯50504147=+9324147=++; 结果中都有2,只要比较分数部分即可:分子相同,分母小的分数反而大,31364151<<<,37475787<<<,可以得出(3)式最大.答:在下面四个算式中,最大的得数是C .故选:C .4.已知:5321150%653a b c d ⨯=⨯=÷=-,并且a 、b 、c 、d 都不等于0,则a 、b 、c 、d 中最小的数是( )A .aB .bC .cD .d 【分析】首先根据5321150%653a b c d ⨯=⨯=÷=-,可得:5331150%652a b c d ⨯=⨯=⨯=-,然后判断出56、315、32的大小关系,即可推出a 、b 、c 的大小关系,进而判断出a 、b 、c 、d 中最小的数是哪个即可. 【解答】解:因为5321150%653a b c d ⨯=⨯=÷=-, 所以5331150%652a b c d ⨯=⨯=⨯=-, 因为5331625<<,所以b c a <<; 因为31150%5b d d ⨯=-<,所以b d <,所以a 、b 、c 、d 中最小的数是b .故选:B .5.在2008200720092008,,,2007200820082009这四个数中,最大的数是( ) A .20072008 B .20082007 C .20092008 D .20082009【分析】首先观察这四个分数,排除掉分母比分子大的20072008和20082009,剩下20082007和20092008,它们的共同点在于都可以把它们看作“1+分数单位”的形式,如20081120072007=+,20091120082008=+,它们的不同点在于两者的分母一个大一个小,然后根据“分子相同,分母大的反而小,分母小的反而大”,做出判定. 【解答】解:因为200712008<,200812009<,200812007>,200912008>,因此20072008和20082009应排除;20081120072007=+,20091120082008=+,1120072008>,因此2008200920072008>. 最大数是20082007.故选:B .6.(2014•深圳自主招生)下面各组中的两个分数都是最简真分数,你能否在“〇”里填上“>”或“<” (a 和b 表示被墨汁盖掉了数字)310〇3a 3b 〇4(5) A .>,> B .>,< C .<,< D .无法确定【分析】两个分数都是最简真分数,那么ab 都是非0的自然数,然后根据异分母分数比较大小,先依据分数的基本性质化成同分母分数或者同分子的分数,再比较大小即可.【解答】解:(1)391030=10330a a =a 是非0的自然数,所以910a <,那么9103030a < 那么3103a <;(2)3124b b =412515= 因为3b 是最简真分数,所以4b …,4416⨯=, 4b 最小是16,1615>,所以415b > 即:345b <. 故选:C .7.若217173A <<,式中A 最多可能表示( )个不同的自然数.A .6B .7C .8D .9 【分析】把217173A <<,分成2177A <,1713A <两个不等式来解,据此解答. 【解答】解:2177A <2717A <⨯2119A <59.5A <1713A <173A >⨯51A >所以5159.5A <<在51和59.5之间的自然数有52、53、54、55、56、57、58、59共8个;故选:C .8.如果a b <,b c >,a c >,且a 、b 、c 都不等于0,那么在2a 、2b 、2c 三个分数中,最小的一个分数是( )A .2aB .2bC .2c【分析】根据分数大小比较方法,分子相同时分母大的分数反而小.【解答】解:因为a b <,b c >,a c >,且a 、b 、c 都不等于0,所以a ,b ,c 中,c 最小,其次是a ,最大是b ,所以b a c >>,然后根据分子大小比较的方法即可得:222c a b >>; 故选:B .9.(2019•长沙)已知a 、b 、c 三个数均大于0,且a b c >>,下列式子正确的是( )A .1a b c >+B .1a b c >-C .1a b c <⨯D .1a b c<+ 【分析】观察选项,发现是一些分数与1比较大小,如果是一个分子大于分母的假分数,那么这个数就大于1,如果是分子小于分母的真分数这个数就小于1,所以只要比较每个分数的分子与分母的大小关系即可判断.【解答】解:因为只知道a b c >>,所以无法比较a 与b c +的大小;即:选项A 、D 中a b c +与1的大小关系无法比较; 同理也无法得出a 与b c ⨯的大小关系;选项C 中ab c ⨯与1的大小关系无法比较;a 最大,那么a 一定大于bc -的差;即:a b c -的分子大于分母,1a b c >-是正确的.故选:B .二.填空题10.(2014•郑州)有一个算式: 1.372511++≈W W W 算式左边的□里都是整数,右边答案只写出了四舍五入的近似值,则算式□中的数依次分别是 1,3,3 .【分析】因为算式的值为近似值,且其介于1.365和1.374之间,又因□里的数是整数,从而可推算□的值. 【解答】解: 1.372511++≈W W W , 所以1.365 1.3742511++W W W 剟, 通分得1.365… 1.374…,于是有150.1555⨯…□22+⨯□10+⨯□151.14…,由于□里的数是整数,所以,55⨯□22+⨯□10+⨯□151=,只有551223103151⨯+⨯+⨯=,故□里数字依次填1,3,3.11.(2013•长沙模拟)把下列分数按大小顺序排列:23,58,1523,1017,1219 2151251032319817>>>> . 【分析】把分数的分子都化为相同的数,而2,5,15,10,12的最小公倍数是60,根据分数的基本性质,分子扩大多少倍,分母就扩大多少倍,再利用分子相同时,分母大的分数反而小即可.【解答】解:因为:223060333090⨯==⨯551260881296⨯==⨯15154602323492⨯==⨯101066017176102⨯==⨯12125601919595⨯==⨯且90929596102<<<< 所以:2151251032319817>>>> 故答案为:2151251032319817>>>>. 12.(1)717105()7<< (2)3()754010<<. 【分析】(1)分子通分,可得11901190119085070()833<<⨯,依此可得( )为12; (2)分母通分,可得24()28404040<<,依此可得( )的取值范围,从而求解. 【解答】解:(1)717105()7<< 则11901190119085070()833<<⨯, 则( )为12;(2)3()754010<<, 则24()28404040<<, 24(< )28<,则( )为27,26,25中任选一个.13.三个分数244245,344345,544545按从大到小的顺序排列为 544344244545345245>> . 【分析】根据这三个分数的特点先求出1与这三个分数的差,再比较差的大小,根据差大原分数就小,进而解答. 【解答】解:34411345345-=,24411245245-=,54411545545-=, 因为111245345545>>, 所以544344244545345245>>. 故答案为:544344244545345245>>. 14.6181.4160739A B C D E ⨯=⨯=÷=⨯=÷把A ,B ,C ,D ,E 按从大到小的顺序排列是 E C B D A >>>> . 【分析】令6181.41601739A B C D E ⨯=⨯=÷=⨯=÷=,分别求出A ,B ,C ,D ,E 的值,比较大小后,即可按从大到小的顺序排列. 【解答】解:令6181.41601739A B C D E ⨯=⨯=÷=⨯=÷=, 则57A =,76B =,113C =,98D =,60E =, 因为17956013687>>>>, 所以E C B D A >>>>.故答案为:E C B D A >>>>.15.(2012秋•慈溪市期末)比较大小:998875998877 > 889975889977;100201 150301. 【分析】(1)把两个分数通过变形,即998875998877221998877998877998877-==-,889975889977221889977889977889977-==-,因为减号后面的数越大这个数就越小,反之越大,据此解答;(2)100201和150301可化成小数,再进行比较. 【解答】解:(1)998875998877221998877998877998877-==-, 889975889977221889977889977889977-==-, 因为22998877889977<,所以998875889975998877889977>. (2)因为1000.4975201≈,1500.49833301≈, 因此100150201301<. 故答案为:>,<.16.(2013秋•贵阳校级期中)在 上填上“<”、“ =”、“ >”:5157⨯< 15 317⨯ 37 2167÷ 16. 【分析】(1)一个因数57比1小,积比另一个因数15小; (2)一个因数等于1,积就等于另一个因数37;(3)除数27小于1,商大于被除数16;由此做出选择. 【解答】解:515()157⨯<;331()77⨯=;216()167÷>.故答案为:<,=,>.17.(2011•高阳县)在56%、311、58、513这四个数中,大于12的数是 58和56% . 【分析】几个不同形式的数比较大小,一般把这些数都化成小数再比较.【解答】解:56%0.56=,30.27311≈,50.6258=,50.38513≈,10.52=, 所以大于12的数是58和56%. 故答案为:58和56%.18.比较大小.38613862 > 59715974. 【分析】因为13861138623862-=,35971159745974-=,所以要比较比较38613862与59715974的大小,只比较13862与35974的大小即可. 【解答】解:因为13861138623862-=,35971159745974-=, 而133********= 33115865974< 所以3311115865974->- 所以3861597138625974> 故答案为:>.19.(2018•长沙)若11333a =,1113333b =,111133333c =,则a 、b 、c 中最大的是 c ,最小的是 . 【分析】求出这三个数的倒数,然后比较这三个数的倒数,倒数越大,原来分数就越小,由此求解. 【解答】解:11333的倒数是330111113333的倒数是330111111133333的倒数是3301111333303030111111111>>, 那么111111111333333333333<<,即最大数是c ,最小的数是a .故答案为:c ,a .20.(2014秋•海安县期末)比较大小.33338888 < 22225555. 【分析】观察两个分数发现分子分母都含有公因数1111,所以先把两个分数约分成最简分数,再化成小数比较大小即可 【解答】解:333330.37588888==,222220.455555==,0.3750.4<,所以3333222288885555<. 故答案为:<.三.应用题21.快乐提升 比较1415、1516、1617的大小. 【分析】观察1415、1516、1617这三个数,它们的分子和分母相差1,只要用1减去这三个分数,求出差,差越大,那么这个数就越小,由此求解, 【解答】解:14111515-= 15111616-= 16111717-= 111151617>> 所以:141516151617<<. 四.解答题22.(2012•郑州模拟)已知1234731511515.214.89934574A B C D ⨯⨯=⨯÷⨯=⨯÷=⨯⨯.A 、B 、C 、D 四个数中最大的是 B .【分析】利用分数大小的比较方法即可求解.先将题目中的分数化为同分母分数,分子大的分数值就大,则字母的值就越小. 【解答】解:1234731511515.214.89934574A B C D ⨯⨯=⨯÷⨯=⨯÷=⨯⨯, 100245151515.214.699334A B C D ⨯⨯=⨯⨯⨯=⨯⨯=⨯, 5004073193335A B C D ⨯=⨯=⨯=⨯, 2500220031352409165165165165A B C D ⨯=⨯=⨯=⨯, 由此可知:31352500240922001165165165165>>>>, 则C A D B <<<.故答案为:B .23.比一比,1a a +与12a a ++哪个大? 12a a ++ > . 【分析】将1a a +与12a a ++进行变形,1111a a a =-++,11122a a a +=-++,因为12a a +<+,所以1112a a >++,111112a a -<-++,所以112a a a a +<++. 【解答】解:,1111a a a =-++,11122a a a +=-++ 因为12a a +<+ 所以1112a a >++,111112a a -<-++, 所以112a a a a +<++. 故答案为:12a a ++,1a a +.24.已知20032008a =,20042009b =,是比较a 与b 的大小. 【分析】两个分数分母进行通分数字太大,不利于比较;那么通过观察发现,两个分数都比1少一个自身的分数单位,那么我们就可以通过比较它们与1之间的差的方法进行比较,哪个与1的差大,这个数就越小.通过比较发现20032008与1的差数小,所以较大的数字就是20042009. 【解答】解:20035120082008-=,20045120092009-=, 分子相同时,分母越大,分子越小, 所以5520082009>, 所以2003200420082009<.答:a b <.25.1357992468100⨯⨯⨯⨯⋯⨯与110相比,哪个更大?为什么? 【分析】相乘的这些分数的特点是分母都是偶数,分子都是奇数;再写出一道分数相乘,使它们分子都是偶数,分母都是奇数(1100)-,把这两道算式相乘,得出积为1100,由此进一步再做比较. 【解答】解:假设1357992468100A =⨯⨯⨯⨯⋯⨯,24681003579101B =⨯⨯⨯⨯⋯⨯, 因为1223<、3445<、5667<⋯,99100100101<, 所以A B <, 又因为1100A B ⨯=,1100A A ⨯<, 所以110A <. 答:110大一些.26.你会用简单的方法比较2653、1735、111223的大小吗? 【分析】根据题意,2653、1735、111223这三个分数的分子都接近分母的一半,分别用12减去这三个分数,可得1106、170、1446,根据同分子分数分母大的反而小,可得11170106446>>,再根据被除数相同,除数大的差就小,可得11126172235335>>. 【解答】解:1261253106-=;117123570-=;111112223446-=; 因为11170106446>>; 所以,11712611112352532223->->-; 因此,11126172235335>>. 27.四个连续自然数的倒数之和等于1920,求这四个自然数的两两乘积之和. 【分析】设这四个连续自然数分别为a ,1a +,2a +,3a +,则11111912320a a a a +++=+++,所以1911111111420123a a a a a a a a a =+++<+++=+++,4419a <.1a =,2,4都不合题意,所以3a =,这四个自然数为3,4,5,6,其两两乘积之和为343536454656119⨯+⨯+⨯+⨯+⨯+⨯=.【解答】解:设这四个连续自然数分别为a ,1a +,2a +,3a +,则11111912320a a a a +++=+++, 所以1911111111420123a a a a a a a a a =+++<+++=+++,4419a <. 易知1a =,2,4均不合题意,故3a =,这四个自然数为3,4,5,6其两两乘积之和为:343536454656119⨯+⨯+⨯+⨯+⨯+⨯=.答:这四个自然数的两两乘积之和是119.28.(2015春•大同期末)李晓在比较分数大小时发现这样一条规律:一个真分数的分子与分母加上相同的数,(0除外)这个新分数大于原来的真分数.你认为这条规律正确吗?(1)举例:在横线上填上>、<、或=.34 < 45,512 118,59 37 你的例子: ⋯(2)思考:34 和45相比, 更接近1; 和 相比, 更接近1;⋯ (3)你的结论:(4)联想:假分数符合这个规律吗?有理有据的思考并简要写出你的推想过程.【分析】(1)根据题干中的规律比较两个真分数的大小,真分数与假分数比较大小,真分数小于假分数,并举出例子;(2)根据分数的意义可知,分数的分子分母相差1时,分子分母大的更接近1;(3)根据前两题的解答得出结论;(4)假分数不符合这个规律,举例解答即可.【解答】解:(1)3445<,511128<,5397> 再如:4556<,6778<,⋯(2)思考:34 和45相比,45更接近1;67和78相比,78更接近1;⋯(3)我的结论:一个真分数的分子与分母加上相同的数(0除外),这个新分数大于原来的真分数.(4)联想:假分数不符合这个规律, 假设这个假分数是11,分子和分母同时加上1是22,分数值相等于原分数;假设这个假分数是32,分子和分母同时加上1是43,4332<,分数值小于原分数; 综上可知:一个假分数的分子与分母加上相同的数(0除外),则分数值不大于原分数.故答案为:<、<、>,4556<、6778<,45、67、78、78,一个真分数的分子与分母加上相同的数(0除外),这个新分数大于原来的真分数.29.(2014•台湾模拟)在1618[]4n <<的[]中,可以填入的整数有多少个? 【分析】设中间数的分母为x ,然后进行通分,再根据分子的大小确定x 的值.【解答】解:设中间数的分母为x ,则通分后最小公倍数为8x ,那么三个分数的关系通分后可以化为482888x x x x x <<因为分母相同,所以482x x <<,可知x 最大整数是47,最小整数是25,共23个.故答案为:23.30.(1)四个数:20112010,20102011,20122011,20112012,其中最大的数是 20112010,最小的数是 . (2)一个分数,分子加上分母等于168;分子,分母都减去6,分数变成57,原来的分数是 . 【分析】(1)首先判断出201112010>,201012011<,201212011>,201112012<,然后判断出20112010,20122011的大小关系,即可判断出最大的数是多少;最后判断出20102011,20112012的大小关系,即可判断出最小的数是多少. (2)首先设这个分数的分母是x ,则分子是168x -,然后根据分子,分母都减去6,分数变成57,可得1686567x x --=-;然后解方程,求出x 的值是多少,即可判断出原来的分数是多少. 【解答】解:20111)12010>,201012011<,201212011>,201112012<,因为2011201120102012⨯>⨯, 所以2011201220102011>, 所以最大的数是20112010;因为2010201220112011⨯<⨯, 所以2010201120112012<, 所以最小的数是20102011.综上,可得 最大的数是20112010,最小的数是20102011.(2)设这个分数的分母是x ,则分子是168x -, 所以1686567x x --=- 5(6)7(1686)x x -=--53011347x x -=-121164x =1212116412x ÷=÷97x =1689771-=, 所以原来的分数是7197. 故答案为:20112010;20102011;7197. 31.比较下面这组分数的大小.553555 和442444. 【分析】根据题意,5535552=-,所以,553555221555555555-==-,同理44221444444=-,然后再比较2555与2444的大小,然后再进一步解答即可. 【解答】解:553555221555555555-==-; 442444221444444444-==-; 2555与2444的分子都是2,由于555444>,所以,22555444<; 因此,2211555444->-; 由此,553442555444>.。

三年级下册北师大版数学课件 比大小 同分母(或同分子)分数的大小比较


(2)因为 3<5,所以13<15。
()
辨析:分子是 1,分母越小,分数越大,所以31>51。
提升点 1 利用数形结合思想比较分数的大小
6.用分数表示阴影部分,再按从小到大的顺序排列。
1
1
1
1
2
4
6
3
(
1 6
)<(
1 4
)<(
1 3
)<(
1 2
)
提升点 2 运用比大小的方法解决问题
7.工人修一段公路,第一天修了全长的19,第二天修了全长 的17。哪一天修的多?
小学三年级数学下册 (北师大版)
6 认识分数
第5课时 比大小 同分母(或同分子)分数的大小比较
BS 三年级下册
提示:点击 进入习题
1
2
3
4
5
6
7
8
知识点 1 同分母分数大小的比较方法
1.涂一涂,比一比,填一填。


结论:当分母相同时,分子越大,这个分数就 ( 越大 );分子越小,这个分数就( 越小)。
4.在 里填上“>”或“<”。
1>1 89
1< 1 பைடு நூலகம்5
1> 1 38
1> 1 5 10
1< 1 76
1< 1 64
易错辨析
5.判断。(对的画“√”,错的画“×”) (1)因为 9>6,所以19>16。
()
辨析:没有掌握分子是 1 的分数比较大小的方法。 分子是 1,分母越大,分数越小,所以19<16。
17>19 第二天修的多。
8.画一画,哪张纸条长些?
画图略 白色纸条一共有这样的( 2 )份,蓝色纸条一共有 这样的( 3 )份,( 蓝 )色纸条长一些。

三上数学每日一练:分子为1的分数大小比较练习题及答案_2020年填空题版

三上数学每日一练:分子为1的分数大小比较练习题及答案_2020年填空题版答案解析答案解析答案解析答案解析答案解析答案解析2020年三上数学:数的认识及运算_分数的认识与运算_分子为1的分数大小比较练习题1.(2020官渡.三上期末) 填上“>”“<”或“=”。

________ 1- ________ 100秒________2分 3800米________4千米考点: 分子为1的分数大小比较;分母在10以内的同分母分数大小比较;分母在10以内的同分母分数加减运算;2.(2020景.三上期末) 在横线上填上“>”“<”或“=”。

________ ________ 200秒________3分600千克________5吨 1时________100分 3千米-2000米________1千米考点: 分子为1的分数大小比较;分母在10以内的同分母分数大小比较; 3.(2020尖草坪.三上期末) 在横线上填上“>”“<”或“=”________ ________848÷4÷2________848÷8 5999克________6千克考点: 用连除解决实际问题;分子为1的分数大小比较;分母在10以内的同分母分数大小比较;千克与克之间的换算与比较;4.(2019红山.三上期末) 在横线上填上>、<成=。

1分25秒________80秒 6000米________3千米600米________100毫米________10厘米 4吨50千克________5000千克 ________考点: 分子为1的分数大小比较;分母在10以内的同分母分数大小比较;吨与千克之间的换算与比较;米、分米、厘米、毫米之间的换算与比较;千米与米之间的换算与比较;5.(2019盐都.三上期末) 在横线上填“>”、“<”或“=”.140×5________150×4 360÷6________360÷3÷2 ________0÷80________0+100 4千克________4900克 ________考点: 三位数乘一位数的进位乘法;用连除解决实际问题;分子为1的分数大小比较;同分子分数大小比较;质量单位的换算;6.(2017周口.三上期末) 在横线上填上“>”“<”或“=”.8000米________9千米 2小时________100分________ ________考点: 分子为1的分数大小比较;同分母的大小比较;千米与米之间的换算与比较;7.(2020十堰.三上期末) 在横线上填上“>、<或= ”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

---------------------------------------------------------------最新资料推荐------------------------------------------------------
1 / 2
同分子分数比较大小练习题

同分子分数比较大小练习题 一、化同分子法:
比较和 和的大小 化同分母法:
二、化成小数法:
三、搭桥法:
四、等差规律法:
五、交叉相乘法:
六、比较倒数法:
七、相除法:
八、约分法:
九、扩倍法:
比较 193 和 8 比较和的大小 比较和 比较和
比较 71 和比较和的大小 比较和 比较和
比较 195 3 和 的大小 91 和 12
的大小 194 3 和 的大小和的大小 97
16 和 12 的大小 91 和 12 的大小
7272735353 和 99997 388885 的大小 编写时
间 11.0 执行时间 11.主备人 执教者 总序第个教案 五
年级数学分数的大小比较练习题 一、在○里填上>、<或=。
二、判断 1、比较分数大小看分子,分子大的就
大。
2、 的分数单位大于 的分数单位。
3、 ,则 x>y. 4、,,则 y<x. 三、
选择。
1、要使 成立,x 是。
A、3B、8 2、已知则下列正确的是 A、m、
n 的大小无法比较 B、m>n C、m<n 四、应用题。
小明把一块蛋糕平均切成 4 块,小亮把同样大小的蛋
糕平均切成 6 块,他们俩每人吃了 3 块,谁吃得多?为什么?
五、思考题。
1、比较两个分数和 的大小。
2、两根同样长的绳子,一根剪去 m,另一根剪去全长
的,哪一根绳子剩下的部分长?

相关文档
最新文档