紫外可见分光光度法名词解释

合集下载

紫外可见分光光度法介绍

紫外可见分光光度法介绍

02
物质对光的吸收与其分子结构、化学键、电子能级等有关。
03
吸收光的波长与物质对光的吸收程度有关,波长越长,吸收程度越低。

吸收光的强度与物质的浓度和厚度有关,浓度越高,厚度越大,吸收程度越高。
光度计的工作原理
01
光源:提供稳定 的光源,如氙灯、
钨灯等
02
单色器:将光源 发出的复合光分
解成单色光
03
绘制曲线:根据数据绘制标 准曲线或工作曲线
04
分析结果:根据曲线进行定量 或定性分析,得出结论
紫外可见分光光度 法的应用实例
食品添加剂的检测
01
食品添加剂的种类:防腐剂、增味剂、色 素等
02
检测方法:紫外可见分光光度法
03
检测原理:利用食品添加剂对特定波长的 紫外光吸收特性进行定量分析
04
应用实例:检测食品中的防腐剂、增味剂、 色素等添加剂的含量,确保食品安全
03
样品池:放置待 测样品,吸收部
分单色光
04
检测器:检测样 品吸收后的光强 度,转换为电信

05
数据处理:将电 信号转换为吸光 度或透光率,进
行分析和计算
06
显示结果:将分 析结果以图表或 数据的形式显示
出来
紫外可见分光光度法的应用
定量分析:测定样品中特定成分
01
的含量 定性分析:鉴别样品中特定成分
02
的存在与否 结构分析:研究样品中特定成分
03
的结构和性质 动力学研究:研究样品中特定成
04
分的反应速率和机理
紫外可见分光光度 法的操作步骤
样品的制备
01 样品的采集和处理:采集
待测样品,并进行必要的 处理,如过滤、离心等。

紫外-可见分光光度法

紫外-可见分光光度法

(海量营销最新管修正理版培训资料下载)
28
3 吸收池
吸收池又称比色皿或比色杯,按材 料可分为玻璃吸收池和石英吸收池,前 者不能用于紫外区。
吸收池的种类很多,其光径可在 0.1~10cm之间,其中以1cm光径吸收池 最为常用。
(海量营销最新管修正理版培训资料下载)
11
2. d电子跃迁吸收光谱
过渡金属的电子跃迁类型为d电子在不同d轨 道间的跃迁,吸收紫外或可见光谱。这些峰 强烈受配位环境的影响。
例如 cu2+以水为配位体,吸收峰在794nm 处,而以氨为配位体,吸收峰在663nm处。此 类光谱吸收强度弱,较少用于定量分析。
最新修正版
12
3. 电荷迁移光谱 某些分子既是电子给 体,又是电子受体,当电子受辐射能激发 从给体外层轨道向受体跃迁时,就会产生 较强的吸收,这种光谱称为电荷迁移光谱。 如 苯酰基取代物在光作用下的异构反应。
(海量营销最新管修正理版培训资料下载)
8
红移和紫移
在有机化合物中,常常因取代基的变更 或溶剂的改变,使其吸收带的最大吸收波长 λmax发生移动。向长波方向移动称为红移(表33),向短波方向移动称为紫移。
(海量营销最新管修正理版培训资料下载)
热辐射光源用于可见光区,如钨灯和 卤钨灯;气体放电光源用于紫外光区,如 氢灯和氘灯。
(海量营销最新管修正理版培训资料下载)
27
2 单色器
单色器的主要组成:入射狭缝、出射狭 缝、色散元件和准直镜等部分。
单色器质量的优劣,主要决定于 色散元件的质量。色散元件常用棱镜 和光栅。
单波长单光束分光光度计还有国产 751型、XG-125型、英国SP500型和伯 克曼DU-8型等。

紫外可见分光光度法简介

紫外可见分光光度法简介

紫外-可见分光光度法简介紫外-可见分光光度法(ultraviolet-visible spectrophotometry, UV-VIS),它是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析, 所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。

按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外-可见分光光度法。

紫外--可见分光光度法:是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。

操作简单、准确度高、重现性好。

波长长(频率小)的光线能量小,波长短(频率大)的光线能量大。

分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。

吸收光谱描述物质分子对辐射吸收的程度随波长而变的函数关系曲线,称为吸收光谱或吸收曲线。

紫外-可见吸收光谱通常由一个或几个宽吸收谱带组成。

最大吸收波长(λmax)表示物质对辐射的特征吸收或选择吸收,它与分子中外层电子或价电子的结构(或成键、非键和反键电子)有关。

朗伯-比尔定律是分光光度法和比色法的基础。

这个定律表示:当一束具有I0强度的单色辐射照射到吸收层厚度为b,浓度为c的吸光物质时,辐射能的吸收依赖于该物质的浓度与吸收层的厚度。

其数学表达式为:式中的A 叫做吸光度;I0为入射辐射强度;I为透过吸收层的辐射强度;(I/I0)称紫藤为透射率T;ε是一个常数,叫做摩尔吸光系数,ε值愈大,分光光度法测定的灵敏度愈高。

紫外-可见分光光度计有稳定的、有足够输出功率的、能提供仪器使用波段的连续光谱,如钨灯、卤钨灯(波长范围350~2500纳米),氘灯或氢灯(180~460纳米),或可调谐染料激光光源等。

②单色器[1]。

它由入射、出射狭缝、透镜系统和色散元件(棱镜或光栅)组成,是用以产生高纯度单色光束的装置,其功能包括将光源产生的复合光分解为单色光和分出所需的单色光束。

紫外可见分光光度法在化学分析中的应用

紫外可见分光光度法在化学分析中的应用

紫外可见分光光度法在化学分析中的应用概述紫外可见分光光度法(UV-Vis)是一种重要的分析技术,广泛应用于化学分析领域。

通过测量物质在紫外和可见光区域的吸收和透射特性,可以得到目标物质的浓度、纯度以及反应动力学等相关信息。

本文将从理论背景、仪器原理、应用实例等方面探讨紫外可见分光光度法在化学分析中的应用。

一、理论背景紫外可见分光光度法基于光与物质相互作用的原理。

物质会吸收特定波长的光线,吸收光线的强度与物质的浓度成正比关系。

当物质溶液中有多种物质存在时,它们的光线吸收能力会相互影响,因此需要进行光谱分离和定量。

二、仪器原理紫外可见分光光度法的仪器主要由光源、光解析系统和光度计三部分组成。

1. 光源:常用光源包括汞灯、氘灯、钨灯等。

它们能发出紫外和可见光,提供光照射样品的能量。

2. 光解析系统:该部分包括进光设备(光栅、光纤等)和出光设备(单色器、滤光片等)。

进光设备用于区分不同波长的入射光,而出光设备用于选择特定波长的光作为检测信号。

3. 光度计:光度计是紫外可见分光光度法的核心组件,用于测量样品的吸收光强度。

常见的光度计包括双光束光度计和单光束光度计。

三、应用实例1. 离子浓度测定:紫外可见分光光度法常被用于测定溶液中金属离子的浓度。

通过比较标准曲线,可以确定待测溶液中金属离子的浓度,如钙、镁、铁等。

2. 有机物定量分析:紫外可见分光光度法在有机物定量分析中也得到广泛应用。

例如,通过测量有机物溶液的吸光度,可以确定有机物的浓度,如蛋白质浓度的测定、核酸浓度的测定等。

3. 反应动力学研究:紫外可见分光光度法可以用于研究化学反应的动力学过程。

通过测量反应溶液中吸光度的变化,可以获得反应速率常数等相关参数。

4. 药物分析:药物分析中,紫外可见分光光度法常被用于测定药物的含量和纯度。

通过把目标药物与特定试剂反应后,测量光谱吸光度的变化,可以计算出药物的含量和纯度。

四、优势与前景紫外可见分光光度法具有分析简便、操作方便、灵敏度高等优点,因此在化学分析中得到了广泛应用。

紫外可见分光光度法

紫外可见分光光度法

AsO3H2
OH OH
H2O3As
NN
NN
HO3S
SO3H
可用于测定铀、钍、锆等,
三 显色条件的选择:
显色条件主要包括显色剂用量、 显色反应的酸度、显色温度和显 色时间等,
1 显色剂用量:
显色反应就是将待测组分转变成有 色化合物的反应,其反应一般可用下式 代表:
1 显色剂用量:
显色反应一般可用下式代表: M+R = MR

TiO H2O2 2+

VO H2O2 3+ Nb2O3 SO4 2 H2O2
红橙 黄
λmax /nm 480 460
405 420 670~820 670~820 660 420
620 500 580 420
400~450 360
2.有机显色剂:
显色剂
测定元素
反应介质
λmax /nm
ε
/ L/ mol·cm
其不足之处是价格昂贵,
第四节 紫外可见分光光度法条件选 择
一、显色条件的选择 一 显色反应 在光度分析中将试样中的待测组分转 变成有色化合物的反应叫显色反应,
显色反应常用的有两大类: 一类是配位反应; Fe3++3SCN-=Fe SCN 3; 另一类是氧化还原反应, Mn2++S2O82-= MnO4-+SO42在这两类反应中,用得较多的是配 位反应, 此外还有:吸附显色反应、多元配 合物显色体系
透镜或凹面反射镜 、色散元件、聚焦
元件和出射狭缝,
800
λ1
600
500 白光
入射狭缝 准光器
λ
400
棱镜 聚焦元件2 出射狭缝
单色器的核心部分是色散元件, 色散元件主要是棱镜和光栅,

紫外可见分光光度法

紫外可见分光光度法

❖ 分光光Байду номын сангаас计工作原理:
❖ 采用一个可以产生多个波长的装置,通 过系列分光装置,得到一束平行的波长范围 很窄的单色光,透过一定厚度的试样溶液后, 部分光被吸收,剩余的光照射到光电元件上, 产生光电流,在仪器上可读取相应的吸光度 或透光率,完成测定。
.
6
一.紫外可见分光光度计的基本组成
光源
单色器
吸收池
一般不能作全波段光谱扫描,要求光源和检测器具有
很高的稳定性,且操作麻烦,任一波长的光均要用参
比调T=100﹪后,再测样品
.
22
仪器
可见分光光度计
.
23
双光束分光光度计

单色器 光源
光束分器
比值
显示
吸收池
检测器
自动记录,快速全波段扫描。可消除光源不稳定、检测器灵
敏度变化等因素的影响,特别适合于结构分析。仪器复杂,
.
18
光电倍增管是由光电管改进而成的,管中有若 干个称为倍增极的附加电极。因此,可使光激发的 电流得以放大,一个光子约产生106~107个电子。 它的灵敏度比光电管高200多倍。适用波长范围为 160~700 nm。光电倍增管在现代的分光光度计中 被广泛采用。
5.显示装置
显示装置的作用是把放大的信号以吸光度A或透
I0 = Ia + It + Ir 被测溶液和参比溶液的
吸收池同样材料和厚度,反
射光强度影响相互抵消,上
式简化为
I0 = Ia + It .
42
透射光的强度 It与入射光的强度I0的
比值称为透光率(T)
T
It
I0
透光率愈大,溶液对光的吸收愈少。

紫外可见分光光度法

案例导入
在夏天参加户外活动时,假如天气晴朗,就应该注 意保护皮肤,不然,暴露在火辣辣太阳之下旳皮肤, 数小时后就会出现红肿、瘙痒、发烧、刺痛症状,数 后来出现蜕皮现象,这表白太阳光中有一种光线能伤 害生物细胞。科学家研究证明,这种光线是紫外线。
根据可见光、紫外光与物质分子旳相互作用建立了 紫外-可见分光光度法,
仪器简朴
操作简便
价格低廉
测定迅速
第一节 概述
课堂活动
1.紫外-可见光旳波长范围是
A.200~400nm
B.400~760nm
C.200~760nm
D.360~800nm
2.下列论述错误旳是
A.光旳能量与其波长成反比
B.有色溶液越浓,对光旳吸收也越强烈
C.物质对光旳吸收有选择性 D.光旳能量与其频率成反比
第一节 概述
一、物质对光旳选择性吸收
单色光: 单一波长旳光束 复合光: 具有多种波长旳光束 电磁波谱: 以波长大小顺序排列旳电磁波谱图
波长 10pm 300pm 200nm 400nm 800nm 500mm 1cm 1m
光谱 射线 X射线 紫外光 可见光 红外光 微波 无线电波
措施 光谱法
分光光度法 光谱法
第三节 紫外-可见分光光度计
二、紫外-可见分光光度计旳光学性能
1.测光方式 3.狭缝或光谱带宽 5.波长精确度 7.波长反复性 9.光度反复性
2.波长范围 4.杂散光 6.吸光度范围 8.测光精确度 10.辨别率
第三节 紫外-可见分光光度计
三、紫外-可见分光光度计旳类型 1.可见分光光度计 721型
0.7范围内。若吸光度读数不在此范围,可 采用哪些措施进行调整?
第四节 分析条件旳选择

4紫外-可见分光光度法

在进行光度测量时,调节仪器的零点,消除由于吸收池壁及溶剂对 入射光的反射和吸收带来的误差,有时还可以扣除干扰的影响
• 2.参比溶液的选择原则:
• (1)溶剂参比:试样组成简单、共存组份少(基体干扰少)、显色剂 不吸收时,直接采用溶剂(多为蒸馏水)为参比;
• (2) 试样参比:如试样基体在测定波长处有吸收,但不与显色剂反 应时,可以试样作参比(不能加显色剂)。
紫外-可见分光光度法
紫外-可见分光光度法
一、紫外-可见分光光度法原理 二、紫外-可见分光光度计 三、紫外-可见分光光度法应用
紫外-可见分光光度法
分子的能量变化E为各种形式能量变化的总和:
ΔΕ ΔΕe ΔΕv ΔΕr
电子能级间隔比振动能级和转 动能级间隔大1~2个数量级, 在发生电子能级跃迁时,伴有 振-转能级的跃迁,形成所谓的 带状光谱。
第一节 基本原理
二 Lambert- Beer 定律
Lambert-Beer 定律适用范围: ①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。
吸光度具有加和性:
不仅适用于紫外光、可见光,也适用红外光;在同一波长下, 各组分吸光度具有加和性
A=A1+A2++An
(1)入射光必须为单色光 (2)被测样品必须是均匀介质 (3)在吸收过程中吸收物质之间不能发生相
偏离Lambert-Beer 定律的因素 1. 样品性质影响
1)待测物高浓度--吸收质点间隔变小—质点间相互作用—对特定辐射的吸收 能力发生变化--- 变化;
2)溶剂的影响:对待测物生色团吸收峰强度及位置产生影响; 3)被测溶液不均匀导致的偏离
第一节 基本原理
二 Lambert- Beer 定律

分析化学:第十一章 紫外-可见分光光度法


2、吸收光谱 M h 吸收辐射能量 M * 吸收光谱
基态 光
激发态
✓例:原子吸收光谱,分子吸收光谱
* 原子吸收光谱 Atomic absorption spectrum
当辐射光通过原子蒸汽时,若入射辐射的频率等于原子中的电子由基
态跃迁到激发态的能量,就可能被基态原子所吸收。为线状光谱(Line spectrum,狭窄谱线组成 )。
特性而建立的分析方法。
可见分光光度法
根据测定时所选用的光源 紫外分光光度法
红外分光光度法
目视比色法
系列标样 Cs
C2s
C3s
C4s
C5s
Cx 比较颜色深浅
三、目视比色法(colorimetry)和吸光光度法的特点
1、灵敏度高。常用于测定试样中质量分数为1%~10-5的微量组 分,甚至可测定低至质量分数为10-6~10-8的痕量组分。 2、 准确度较高。目视比色法的相对误差为5%~10%,吸光光度 法为2%~5%。 3、应用广泛。几乎所有的无机离子和许多有机化合物都可以直接或 间接地用目视比色法或吸光光度法进行测定。
5
4
1——末断吸收 4——波谷
2——最大吸收峰 5——次吸收峰

3——肩峰
吸收曲线的讨论:
①同一种物质对不同波 长光的吸光度不同。吸光 度最大处对应的波长称为
最大吸收波长λmax
②不同浓度的同一种物 质,其吸收曲线形状相似
λmax不变。而对于不同
物质,它们的吸收曲线形
状和λmax则不同。
Cr2O72-、MnO4-的吸收光谱
ca:g·L-1
Molar Absorptivity A c b
K a 吸光系数, L ·g –1 ·cm -1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

紫外可见分光光度法名词解释
紫外-可见分光光度法(UV-Vis)是一种测试物质吸收、透射和反射光的方法,它包括紫外光(200-400纳米波长)和可见光(400-800纳米波长)范围。

这项技术用于定量分析物质的浓度,因为物质特定波长的吸收特性可以与其浓度成正比。

吸收光谱由吸光度(A)表示,其中A与光通过溶液时被吸收的光量成正比。

紫外-可见分光光度法可以广泛应用于许多领域,如生物化学、生物医学、环境科学、食品和饮料分析等。

它可以用于定量分析和质量控制,检测溶液中的有机和无机物质,分析颜料和染料的浓度,以及研究溶液中的化学反应和光化学过程。

在实验中,通常使用紫外-可见分光光度计来测量样品溶液在不同波长的吸光度。

通过与空白溶液进行比较,可以确定吸光度与浓度之间的关系,并计算出样品的浓度。

相关文档
最新文档