三棱锥外接球半径常见解法

三棱锥外接球半径常见解法

特殊三棱锥外接球半径的常见求法

【法一:补形法】

外接球半径等于长方体体对角线的一半

注意:图中三棱锥的外接球与长方体外接球是同一个球。

【法二:轴截面法】

1、 寻找底面△PBC 的外心;

2、 过底面的外心作底面的垂线;

外接球的球心必在该垂线上,利用轴截面计算出球心的 图画捉迷藏 美少女2 幼儿读物少儿益智游戏 逻辑思维训练书籍

3、 位置。

【法三:向量法】

设外接球的球心坐标为:),,(z y x O .由→→→→===OC OB OA OP 可得:

【练习巩固】

【参考答案】

练习1 【补形法】

【轴截面法】

练习2 【补形法】

【轴截面法】

练习3 【补形法】

外接球半径常见的求法

多面体外接球半径常见求法 知识回顾: 定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。 定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。 球心到截面的距离d 与球半径R 及截面的半径r 有以下关系: . 球面被经过球心的平面截得的圆叫 .被不经过球心的平面截得的圆叫 球的表面积表面积S = ;球的体积V = . 球与棱柱的组合体问题 1. 正方体的内切球: 球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心。设正方体的棱长为a ,球半径为R 。 如图3,截面图为正方形EFGH 的内切圆,得2 a R =; 2. 与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆O 为正方形EFGH 的外接圆,易得a R 2 2=。 3. 正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面1AA 作截面图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 2 31==。 一、公式法 例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为 98 ,底面周长为3,则这个球的体积为 . 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 图3 图4 图5

二、多面体几何性质法 例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 A.16π B.20π C.24π D.32π 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 三、补形法 例3 ,则其外接球的表面积是 . 小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2R = 变式1:三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为( ) A .26a π B .29a π C .212a π D .2 24a π 四、寻求轴截面圆半径法 例4 正四棱锥S ABCD - S A B C D 、、、、都在同一球面上,则此球的体积为 . 而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思 想方 法值得我们学习. 变式1:求棱长为 a 的正四面体 P – ABC 的外接球的表面积 C D A B S O 1图3

四面体外接球的球心、半径求法

四面体外接球的球心、半径求法 在立体几何中,几何体外接球是一个常考的知识点,对于学生来说这是一个难点,一方面图形不会画,另一方面在画出图形的情况下无从下手,不知道球心在什么位置,半径是多少而无法解题。 本文章在给出图形的情况下解决球心位置、半径大小的问题。 一、出现“墙角”结构利用补形知识,联系长方体。 【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为 2 2 2 c b a l ++=,几何体的外接球直径R 2为体对角线长l 即2 2 22c b a R ++= 【例题】:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为3,61,,若该四面体的四个顶点在一个球面上,求这个球的表面积。 解: 因为:长方体外接球的直径为长方体的体对角线长 所以:四面体外接球的直径为AE 的长 即:22224AD AC AB R ++= 1663142 2 22=++=R 所以2=R 球的表面积为ππ1642==R S 二、出现两个垂直关系,利用直角三角形结论。 【原理】:直角三角形斜边中线等于斜边一半。球心为直角三角形斜边中点。 A C D B E

【例题】:已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且7=PA , 5=PB ,51=PC ,10=AC ,求球O 的体积。 解:BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC , 因为22 210517=+ 所以知222PC PA AC += 所以 PC PA ⊥ 所以可得图形为: 在ABC Rt ?中斜边为AC 在PAC Rt ?中斜边为AC 取斜边的中点O , 在ABC Rt ?中OC OB OA == 在PAC Rt ?中OC OB OP == 所以在几何体中OA OC OB OP ===,即O 为该四面体的外接球的球心 52 1 == AC R 所以该外接球的体积为3 500343π π==R V 【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。 三、出现多个垂直关系时建立空间直角坐标系,利用向量知识求解 【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,?=∠120BAC , 2===AC AD AB ,求该棱锥的外接球半径。 解:由已知建立空间直角坐标系 )000(,, A )002(,, B )200(,,D 由平面知识得 )031(,,-C O A B C P A B C D z x y

多面体外接球半径内切球半径的常见几种求法

多面体外接球、内切球半径常见的5种求法 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 公式法 例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98 ,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有263,1,296,84x x x h h =??=??∴??=???=?? ∴正六棱柱的底面圆的半径12r = ,球心到底面的距离2 d =. ∴外接球的半径1R ==.43 V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 多面体几何性质法 例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 A.16π B.20π C.24π D.32π 解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =. ∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 补形法 例3 若三棱锥的三个侧棱两两垂直, 则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直, ∴把这个三棱锥可以补成一个棱长为. 设其外接球的半径为R ,则有( ) 222229R = ++=.∴294R =. 故其外接球的表面积249S R ππ==. 小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2R =

三棱锥外接球问题

三棱锥外接球问题 河北师范大学实验中学 秦琳 摘要:三棱锥外接球问题是高考热点,也是难点,常见的椎体外接球问题是有固 定方法的,本文做了一些总结。 关键字:三棱柱,外接球,高考题 引入语: 近几年三棱锥外接球问题,经常出现在高考题中,本文就常见的几种题型做一些介绍,希望对同学们有所帮助。 (2011年全国高考题)(11)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ?是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为 ()A 6 ()B 6 ()C 3 ()D 2 【解析】选A ABC ?的外接圆的半径3 r =O 到面ABC 的距离3d == SC 为球O 的直径?点S 到面ABC 的距离为2d = 此棱锥的体积为11233ABC V S d ?=?==此解法充分利用了球当中的性质:每一个截面圆的圆心与球心的连线垂直于截面圆所在平面。下面就几个例题简单总结一下三棱锥外接球问题。 1.(2010辽宁11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥, 1SA AB ==,BC ,则球O 表面积等于 选A (A )4π (B )3π (C )2π (D )π 【解析】该椎体可以补成一个长方体,而长方体的体对角线就是外接圆的直径,所以可轻松

得解。 解:14 2112=++=R ππ442==R S 球 练一练:将边长为2的正ABC ?沿BC 边上的高AD 折成直二面角B AD C --,则三棱锥B ACD -的外接球的表面积为 . 答案:5π 说明:对于直角四面体和双垂四面体,都可以补成长方体或正方体,再利用体对角线是外接球直径这一性质求解。 2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为 。 解析:由于有一条棱垂直于底面,所以该棱柱可以补成一个直三棱柱,而直三棱柱的外接球的球心正好是三棱柱中截面的外接圆圆心。 答案:π332 说明:对于能补成直三棱柱的三棱锥外接球问题皆可用此法解。 3.正四面体BCD A -的边长为2,求该四面体外接球的表面积 。 解析:正四面体可以看成是有一个正方体的四条对角线构成的,所以它的外接球与正方体的外接球是同一个,从而轻松得解。 解:若对角线为2,则边长为2,体对角线为6,球半径为2 6,表面积为π6。 另解: 33 2=ED ,362344=- =AE = ?-+=OD OD AE ED OD 22)(26 =∴球S π6 此法对于顶点在底面的射影是地面三角形的外心的三棱锥外接球问题皆可用。

相关文档
最新文档