三角形中位线定理及逆定理的证明

三角形中位线定理及逆定理的证明
三角形中位线定理及逆定理的证明

定理

三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1]

三角形的中位线

2证明

如图,已知△ABC中,D,E分别是AB,AC两边中点。

求证DE平行于BC且等于BC/2

方法一:过C作AB的平行线交DE的延长线于G点。

∵CG∥AD

∴∠A=∠ACG

∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)

∴△ADE≌△CGE (A.S.A)

∴AD=CG(全等三角形对应边相等)

∵D为AB中点

∴AD=BD

∴BD=CG

又∵BD∥CG

∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)

∴DG∥BC且DG=BC

∴DE=DG/2=BC/2

∴三角形的中位线定理成立.

方法二:相似法:

∵D是AB中点

∴AD:AB=1:2

∵E是AC中点

∴AE:AC=1:2

又∵∠A=∠A

∴△ADE∽△ABC

∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C

∴BC=2DE,BC∥DE

方法三:坐标法:

设三角形三点分别为(x1,y1),(x2,y2),(x3,y3)

则一条边长为:根号(x2-x1)^2+(y2-y1)^2

另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)

这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半

方法四:

延长DE到点G,使EG=DE,连接CG

∵点E是AC中点

∴AE=CE

∵AE=CE、∠AED=∠CEF、DE=GE

∴△ADE≌△CGE (S.A.S)

∴AD=CG、∠G=∠ADE

∵D为AB中点

∴AD=BD

∴BD=CG

∵点D在边AB上

∴DB∥CG

∴BCGD是平行四边形

∴DE=DG/2=BC/2

∴三角形的中位线定理成立[2]

方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3]

∴DE//BC且DE=BC/2

3逆定理

逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。

逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

三角形的中位线

证明:取AC中点E',连接DE',则有

AD=BD,AE'=CE'

∴DE'是三角形ABC的中位线

∴DE'∥BC

又∵DE∥BC

∴DE和DE'重合(过直线外一点,有且只有一条直线与已知直线平行)∴E是中点,DE=BC/2

三角形中位线定理的证明

备课偶得—— 三角形中位线定理的再证明 王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。 已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC 且 证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC ∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF 为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形 ∴DF BC ∴DE=EF ∴DE ∥BC 且 证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD ∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE ∴DE=EF ∴D E ∥BC 且 证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则 ∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点 ∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF 即 ∴DE ∥BC 且 图1 B C A D E 图2 B C A D E F 图3 B C A D E F C 图4 B A D E F E ′ 图5 B C A D E 1 2 DE BC =1 2 DE BC =1 2DE BC =12 DE BC =1 2DE BC =

三线合一性质的逆定理

三线合一性质的逆定理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

一、等腰三角形的“三线合一”性质的逆定理 “三线合一”性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 逆定理:①如果三角形中任一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。 ②如果三角形中任一角的角平分线和它所对边的高重合,那么 这个三角形是等腰三角形。 ③如果三角形中任一边的中线和这条边上的高重合,那么这个 三角形是等腰三角形。 简言之:三角形中任意两线合一,必能推导出它是一个等腰三角形。证明①:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的中线, 求证:⊿ABC是等腰三角形。 分析:要证等腰三角形就是要证AB=AC,直接 通过证明这两条线所在的三角形全等不行,那 就换种思路,在有中点的几何证明题中常用的 添辅助线的方法是“延长加倍”,即延长AD到E 点,使AD=ED,由此问题就解决了。 证明:延长AD到E点,使AD=ED,连接CE 在⊿ABD和⊿ECD中 AD=DE ∠ADB=∠EDC ∴⊿ABD≌⊿ECD

∴AB=CE, ∠BAD=∠CED ∵AD是∠BAC的角平分线 ∴∠BAD=∠CAD ∴∠CED=∠CAD ∴AC=CE ∴AB=AC ∴⊿ABC是等腰三角形。 三个逆定理中以逆定理②在几何证明的应用中尤为突 出。 证明②:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的高, 求证:⊿ABC是等腰三角形。 分析:通过(ASA)的方法来证明⊿ABD和⊿ACD的 全等,由此推出AB=AC得出⊿ABC是等腰三角形 证明③:已知: ⊿ABC中,AD是BC边上的中线,又是BC边上的高,求证:⊿ABC是等腰三角形。 分析:AD就是BC边上的垂直平分线,用(SAS)的方法来证明⊿ABD和⊿ACD的全等,由此推出AB=AC得出 ⊿ABC是等腰三角形。(即垂直平分线的定理) 二、“三线合一”的逆定理在辅助线教学中的应用 (1)逆定理②的简单应用 例题1

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明 以下内容作者为:青岛第四中学杨瀚书老师 一、 三角形中位线定理的几种证明方法 法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则 ,有AD FC ,所以FC BD ,则四边形BCFD 是平行四边 形,DF BC 。因为 ,所以DE BC 2 1. 法2: 如图所示,过C 作 交DE 的延长线于F ,则 , 有FC AD ,那么FC BD ,则四边形BCFD 为平行四边形,DF BC 。 因为 ,所以DE BC 2 1. 法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形 ADCF 为平行四边形,有AD CF ,所以FC BD ,那么四边形BCFD 为平 行四边形,DF BC 。因为 ,所以DE BC 2 1.

法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ???,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DE BC 21。 法5:如图所示,过三个顶点分别向中位线作垂线. 二、教学说明 1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维” 在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系? A C 图⑴: ⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗? C 图⑵: 说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜. 2、教学重点:本课重点是掌握和运用三角形中位线定理。

三角形中位线定理 知识讲解

三角形中位线定理 【学习目标】 1. 理解三角形的中位线的概念,掌握三角形的中位线定理. 2. 掌握中点四边形的形成规律. 【要点梳理】 要点一、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于第三边,并且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个 小三角形的周长为原三角形周长的1 2 ,每个小三角形的面积为原三角形 面积的1 4 . (3)三角形的中位线不同于三角形的中线. 要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形. (3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】 类型一、三角形的中位线 1、(优质试题?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.

中考复习_中位线

中位线 一、选择题 1.(2011?湘西州)如图,在△ABC中,E、F分别是AB、AC的中点,若中位线EF=2cm,则BC边的长是() A、1cm B、2cm C、3cm D、4cm 考点:三角形中位线定理。 专题:计算题。 分析:由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求BC. 解答:解:∵△ABC中,E、F分别是AB、AC的中点,EF=2cm, ∴EF是△ABC的中位线 ∴BC=2EF=2×2=4cm. 故选D. 点评:本题考查了三角形中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半. 2.(2011江苏苏州,9,3分)如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于() A.3 4B. 4 3C. 3 5D. 4 5 考点:锐角三角函数的定义;勾股定理的逆定理;三角形中位线定理. 专题:几何图形问题. 分析:根据三角形的中位线定理即可求得BD的长,然后根据勾股定理的逆定理即可证得△BCD是直角三角形,然后根据正切函数的定义即可求解. 解答:解:连接BD.

∵E、F分別是AB、AD的中点.∴BD=2EF=4 ∵BC=5,CD=3 ∴△BCD是直角三角形. ∴tanC= 4 3 故选B. 点评:本题主要考查了三角形的中位线定义,勾股定理的逆定理,和三角函数的定义,正确证明△BCD是直角三角形是解题关键. 3.(2011?贺州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的() A、错误!未找到引用源。 B、错误!未找到引用源。 C、错误!未找到引用源。 D、错误!未找到引用源。 考点:梯形中位线定理;三角形中位线定理。 分析:首先根据梯形的中位线定理,得到EF∥CD∥AB,再根据平行线等分线段定理,得到M,N分别是AD,BC的中点;然后根据三角形的中位线定理得到CD=2EM=2NF,最后根据梯形面积求法以及三角形面积公式求出,即可求得阴影部分的面积与梯形ABCD面积的面积比. 解答:解:过点D作DQ⊥AB,交EF于一点W, ∵EF是梯形的中位线, ∴EF∥CD∥AB,DW=WQ, ∴AM=CM,BN=DN. ∴EM=错误!未找到引用源。CD,NF=错误!未找到引用源。CD. ∴EM=NF, ∵AB=3CD,设CD=x,∴AB=3x,EF=2x, ∴MN=EF﹣(EM+FN)=x, ∴S△AME+S△BFN=错误!未找到引用源。×EM×WQ+错误!未找到引用源。×FN×WQ=错误!未找到引用源。(EM+FN)QW=错误!未找到引用源。x?QW, S梯形ABFE=错误!未找到引用源。(EF+AB)×WQ=错误!未找到引用源。QW, S△DOC+S△OMN=错误!未找到引用源。CD×DW=错误!未找到引用源。xQW,

三角形的证明-知识点汇总

三角形的证明知识点汇总 知识点1 全等三角形的判定及性质 判定定理简称 判定定理的内容 性质 SSS 三角形分别相等的两个三角形全等 全等三角形对应边相等、对应角相等 SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等 HL (Rt △) 斜边和一条直角边分别相等的两个直角三角形全等 知识点2 等腰三角形的性质定理及推论 内容 几何语言 条件与结论 等腰三角形的性质定理 等腰三角形的两底角相等。简述为:等边对等角 在△ABC 中,若AB=AC ,则∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠ C 推论 等腰三角形顶角的平分线、 底边上的中线及底边上的 高线互相垂直,简述为:三 线合一 在△ABC ,AB=AC ,AD ⊥BC , 则AD 是BC 边上的中线,且 AD 平分∠BAC 条件:等腰三角形中已知顶点的平分线,底边上的中线、底边上的高线之一 结论:该线也是其他两线 等腰三角形中的相等线段:1、等腰三角形两底角的平分线相等;2、等腰三角形两腰上的高相等;3、两腰上的中线相等;4、底边的中点到两腰的距离相等 知识点3 等边三角形的性质定理 内容 性质定理 等边三角形的三个内角都相等,并且每个角都等于60度 解读 (1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质 (2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形 知识点4 等腰三角形的判定定理 内容 几何语言 条件与结论 等腰三角形的判定定理 有两个角相等的三角形是等腰三角形,简述为:等校对等边 在△ABC 中,若∠B=∠C 则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC 解读 对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中” 拓展 判定一个三角形是等腰三角形有两种方法:1、利用等腰三角形;2、利用等腰三角形的判定定理,即“等角对等边” 知识点5 反证法 概念 证明的一般步骤

三角形中位线定理_练习题

三角形的中位线定理 1.三角形中位线的定义: 2.三角形中位线定理的证明: 如图,在△ABC 中,D 、E 是AB 和AC 的中点,求证:DE ∥BC ,DE=2 1 BC . 方法一: 方法二: 3.归纳:(1)几何语言: (2) 条中位线, 对全等, 个平行四边形 (3)面积 4.拓展:如图,在△ABC 中,D 是AB 的中点,DE ∥BC ,求证: DE= 2 1 BC . 【巩固练习】 1.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC . 2.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF= 1 2 BD . 3.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形. 4.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC . 5.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.

求证:四边形DEFG 是平行四边形. 6.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF . 7.如图,在四边形ABCD 中,AD=BC ,点E ,F ,G 分别是AB ,CD ,AC 的中点. 求证:△EFG 是等腰三角形。 8.如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.求证:四边形EGFH 是平行四边形; 9.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点. 求证:四边形EFGH 是平行四边形. 10.已知:如图,DE 是△ABC 的中位线,AF 是BC 边上的中线, 求证:DE 与AF 互相平分 11.如图所示,在四边形ABCD 中,DC∥AB,以AD ,AC 为边作□ACED ,延长DC?交EB 于. 求证:EF=FB .(多种方法)

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

北师大版八年级数学下册6.4《三角形的中位线》知识点精讲

、定理 1.三角形的中位线平行于第三边(不与中位线接触),并且等于 第三边的一半。 2.连接三角形两边中点的线段,叫做三角形的中位线。 逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 注意:在三角形内部,经过一边中点,且等于第三边一半的线段不一定是三角形的中位线。 (微课精讲) 三角形中的三条重要线段: 中线、角平分线、高线 概念 中线

在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线(median)。三角形的三条中线交于一点,这点称为三角形的重心。 如图,AD是边BC上的中线,BE是边AC上的中线,CF是边AB上的中线 三条中线交于点O,点O称为△A BC的重心 角平分线 在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

如图,AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,三角形三条角平分线交于点O 点O称为△ABC的内心 高线 从三角形的一个顶点向它的对边所在直线作垂线,定点和垂足之间的线段叫做三角形的高线,简称三角形的高。

如图,AD⊥BC,BE⊥AC,CF⊥AB 三角形三条高线交于点O 点O称为△ABC的垂心 以上是我们在初一时所学的三角形三条重要线段,今天,我们将学习三角形中第四条重要的线段——中位线

(知识点精讲) 中位线 概念:连接三角形两边中点的线段叫做三角形的中位线 性质:三角形的中位线平行于第三边,且等于第三边的一半。 如图,E、F分别是三角形AB、AC边上的中点,所以,EF是三角形BC 边所对的中位线,则EF∥BC且EF=1/2BC 三角形的中位线衍生出很多重要的图形,其中最重要的就是中点四边形(微课堂精讲)

三角形的证明知识点汇总

百度文库- 让每个人平等地提升自我 1 三角形的证明知识点汇总 判定定理简称判定定理的内容性质SSS 三角形分别相等的两个三角形全等 全等三角形对 应边相等、对 应角相等SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等 HL(Rt△)斜边和一条直角边分别相等的两个直角三角形全等 知识点2 等腰三角形的性质定理及推论 内容几何语言条件与结论 等腰三角形的性质定理等腰三角形的两底角相等。 简述为:等边对等角 在△ABC中,若AB=AC,则 ∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠C 推论等腰三角形顶角的平分线、 底边上的中线及底边上的 高线互相垂直,简述为:三 线合一 在△ABC,AB=AC,AD⊥BC, 则AD是BC边上的中线,且 AD平分∠BAC 条件:等腰三角形中已知顶点的 平分线,底边上的中线、底边上 的高线之一 结论:该线也是其他两线 等腰三角形中的相等线段:1、等腰三角形两底角的平分线相等;2、等腰三角形两腰上的高相等;3、两腰上的中线相等;4、底边的中点到两腰的距离相等 知识点3 等边三角形的性质定理 内容 性质定理等边三角形的三个内角都相等,并且每个角都等于60度 解读(1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质 (2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形 知识点4 等腰三角形的判定定理 内容几何语言条件与结论 等腰三角形的判定定理有两个角相等的三角形是等腰 三角形,简述为:等校对等边 在△ABC中,若∠B=∠C则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC 解读对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中” 拓展判定一个三角形是等腰三角形有两种方法:1、利用等腰三角形;2、利用等腰三角形的判定定理,即“等角对等边” 知识点5 反证法 概念证明的一般步骤

证明(二)之直角三角形

第三课时:直角三角形的证明 [知识要点] 1、勾股定理:直角三角形两直角边的平方和等于斜边的平方,即2 2 2 b a c +=(c 为斜边). 2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 有关系:2 22c b a =+,那么这 个三角形是直角 三角形,且c 边所对的角为直角. 3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 4、“HL ”公理作用:判定两个直角三形全等. [典型例题] 例1 如图,在Rt △DBC 中,∠C=900,∠A=300,BD 是∠ABC 的平分线,AD=20,求BC 的长。 例2 如图所示,在ABC ?中,AD 是它的角平分线,且BD=CD ,DE ,DF 分别垂直于AB 、 AC ,垂足为 E 、 F .求证:EB=FC . 例3 如图,在等腰直角三角形ABC 中,90=∠C o,D 是斜边AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 并交CD 的延长线于F ,CH ⊥AB 于H ,交AE 于G .求证: A B C E F D A B D C

[经典练习] 1、满足下述条件的三角形中,不是直角三角形的是( ). A 、三内角之比为1:2:3 B.三边之比为 C 、三边长为41,40,9 D. ,8 2、不能判定两个直角三角形全等的方法是( ) A .两个直角边对应相等. B .斜边和一锐角对应相等 C .斜边和一条直角边对应相等 D .面积相等 3、如图1所示,ABC ?中AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于O ,AO 的延长线交 BC 于F ,则图中全等直角三角形的对数为( ) A .3对 B .4对 C .5对 D .6对 4、如图2所示,在ABC ?中,MD 垂直平分AB 于M ,交BC 于D ,N E 垂直平分AC 于N ,交BC 于E , 若θ=∠BAC ,则∠DAE 等于( ) A .2θ B .180 o-2 θ C .-θ290o D .-θ2180o o 5,、如图5, Rt △ABC 中,AC=6cm,BC=8cm,将此三角形折叠,使直角边AC 落在斜边AB 上,点C 与点D 重合, 折痕为AE,则BE 的长为( )。 6、如图7,直线L 过正方形ABCD 的顶点B,点A 、C 到直线L 的距离分别是1和2,则正方形的边长是 。 图5 图6 7、点A 、E 、F 、C 在一条直线上,AE=CF ,过点E 、F 分别作DE ⊥AC ,BF ⊥AC ,若AB=CD 。 (1)求证:BD 平分EF A B C E F D 图1 A B C 图2 A D C E D L A C B M N B A C E F G

三角形中位线定理证明

三角形中位线定理证明 性质1中位线平行于第三边 性质2等于第三边的一半 1定理 2证明 3逆定理 1定理三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法4: 延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEG、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。 证明:∵DE∥BC ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 三角形的中位线 证明:取AC中点E',连接DE',则有 AD=BD,AE'=CE' ∴DE'是三角形ABC的中位线 ∴DE'∥BC 又∵DE∥BC

三角形的重心定理及其证明

三角形的重心定理及其证明 积石中学王有华 同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好. 已知:(如图)设ABC V 中,L 、M 、N 分 别是BC 、CA 、AB 的中点. 求证:AL 、BM 、CN 相交于一点G ,且 AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中 线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点. 现在,延长GL ,并在延长线上取点D ,使GL=LD 。因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点. 另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点. 另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1. 这个点G 被叫做ABC V 的重心. 证明2(向量法):(如图2)在ABC V 中,设AB 边上的中B C

线为CN ,AC 边上的中线为BM ,其交点为 G ,边BC 的中点为L ,连接AG 和GL ,因 为B 、G 、M 三点共线,且M 是AC 的中点, 所以向量BG u u u r ∥BM u u u u r ,所以,存在实数1λ ,使得 1BG BM λ=uuu r uuu u r ,即 1()AG AB AM AB λ-=-u u u r u u u r u u u u r u u u r 所以,11(1)AG AM AB λλ=+-u u u r u u u u r u u u r =111(1)2 AC AB λλ+-u u u r u u u r 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-u u u r u u u r u u u r = 221(1)2 AB AC λλ+-uu u r uuu r 所以 111(1)2AC AB λλ+-u u u r u u u r = 221(1)2 AB AC λλ+-u u u r u u u r 又因为 AB uuu r 、 AC u u u r 不共线,所以 1221112112λλλλ=-=-??? 所以 1223λλ== ,所以 1133AG AB AC =+uuu r uu u r uuu r . 因为L 是BC 的中点,所以GL GA AC CL =++u u u r u u u r u u u r u u r =111()332AB AC AC CB -+++u u u r u u u r u u u r u u u r =121()332AB AC AB AC -++-uuu r uuu r uuu r uuu r =1166 AB AC +uuu r uuu r ,即2AG GL =u u u r u u u r ,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1 C

直角三角形的定理及规律(新)

直角三角形的定理及知识要点 一、补充定理 直角三角形的定理 1、直角三角形两锐角互余。 2、直角三角形斜边上的中线等于斜边的一半。 3、勾股定理:直角三角形两直角边的平方和等于斜边的平方。 30角所对的直角边等于斜边的一半。 4、直角三角形中0 直角三角形的逆定理 1、两锐角互余的三角形是直角三角形。 2、一条边上的中线等于这边的一半的三角形是直角三角形。 3、勾股定理的逆定理:两边的平方和等于第三边的平方的三角形是直角三角形。 30。 4、直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边的对角为0 等腰三角形的定理 1、三角形中等边对等角。 2、三线合一:等腰三角形底边的中线、底边的高、顶角的平分线三线合为一线。 60。 3、等边三角形三内角都是0 逆定理 1、三角形中等角对等边。 等边三角形的判定 60的三角形是等边三角形。 1、有两个角等于0 2、三个角相等的三角形是等边三角形。 60的等腰三角形是等边三角形。 3、有一个角是0

二、常见的图形及规律 1、Rt△ABC中,若∠A=30°, ∠C=90°, 则 BC:AC:AB=2。 2、Rt△ABC中,若∠A=45°, ∠C=90°, 则 BC:AC:AB= 三、常见的勾股数 (一)3、4、5序列 6.8.10 5 12 13 三、最短路线问题 1、在圆柱体(底面半径为r,高为h)中,从A到B的最短路线为AB 2、在长方体(长为a,宽为b,高为h)中, (1)当a=h时,A到D的最短路线为AD=

(2)当a ≠ h 时,若a>h ,则A 到D 的最短路线为 AD = 若a

“三线合一”性质的逆定理

一、等腰三角形的“三线合一”性质的逆定理 “三线合一”性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 逆定理:①如果三角形中任一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。 ②如果三角形中任一角的角平分线和它所对边的高重合,那么 这个三角形是等腰三角形。 ③如果三角形中任一边的中线和这条边上的高重合,那么这个 三角形是等腰三角形。 简言之:三角形中任意两线合一,必能推导出它是一个等腰三角形。证明①:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的中线, 求证:⊿ABC是等腰三角形。 分析:要证等腰三角形就是要证AB=AC,直接通过证明这两条线所在的三角形全等不行,那就换种思路,在有中点的几何证明题中常用的添辅助线 的方法是“延长加倍”,即延长AD到E点,使AD=ED, 由此问题就解决了。 证明:延长AD到E点,使AD=ED,连接CE 在⊿ABD和⊿ECD中 AD=DE ∠ADB=∠EDC BD=CD ∴⊿ABD≌⊿ECD ∴AB=CE, ∠BAD=∠CED ∵AD是∠BAC的角平分线 ∴∠BAD=∠CAD ∴∠CED=∠CAD ∴AC=CE ∴AB=AC ∴⊿ABC是等腰三角形。 三个逆定理中以逆定理②在几何证明的应用中尤为突出。 证明②:已知: ⊿ABC中,AD是∠BAC的角平分线,AD是BC边 上的高, 求证:⊿ABC是等腰三角形。 分析:通过(ASA)的方法来证明⊿ABD和⊿ACD的全等,由此 推出AB=AC得出⊿ABC是等腰三角形 证明③:已知: ⊿ABC中,AD是BC边上的中线,又是BC边上 的高,

求证:⊿ABC是等腰三角形。 分析:AD就是BC边上的垂直平分线,用(SAS)的方法来 证明⊿ABD和⊿ACD的全等,由此推出AB=AC得出 ⊿ABC是等腰三角形。(即垂直平分线的定理) 二、“三线合一”的逆定理在辅助线教学中的应用 (1)逆定理②的简单应用 例题1 已知:如图,在⊿ABC中,AD平分∠BAC,CD⊥AD,D 为垂足,AB>AC。 求证:∠2=∠1+∠B 分析:由“AD平分∠BAC,CD⊥AD”推出AD所在的 三角形是等腰三角形,所以延长CD交AB于点E, 由逆定理②得出⊿AEC是等腰三角形由此就可得出 ∠2=∠AEC,又∠AEC=∠1+∠B,所以结论得证。 (2)逆定理②与中位线综合应用 例题1 已知:如图,在⊿ABC中,AD平分∠BAC,交BC于点D,过点C作AD的垂线,交AD的延长线于点E,F为BC的中点,连结EF。 求证: EF∥AB, EF=(AC-AB) 分析:由已知可知,线段AE既是∠BAC的角平分 线又是EC边上的高,就想到把AE所在的等腰三角形构造出 来,因而就可添辅助线“分别延长CE、AB交于点G”。 简单证明:由逆定理②得出⊿AGC是等腰三角形, ∴点E是GC的中点 ∴EF是⊿BGC的中位线 ∴得证。 例题2 如图,已知:在⊿ABC中,BD、CE分别平分∠ABC, ∠ACB,AG⊥BD于G,AF⊥CE于F,AB=14cm,AC=9cm,BC=18cm. 求: FG的长。 分析:通过已知条件可以知道线段CF和BG满足逆 定理②的条件,因此就想到了分别延长AG、A F来构造等腰三角形。 简单证明:分别延长AG、AF交BC于点K、H由逆定理②得出⊿ABK是等腰三角形 ∴点G是AK的中点 同理可得点F是AH的中点 ∴FG是⊿AHK的中位线 由此就可解出FG的长。

相似三角形预备定理证明

课题:相似三角形的判定(预备定理) 教学目标:1 ?掌握预备定理以及用相似三角形的定义判断两三角形相似; 2 ?在探索相似三角形预备定理过程中,感受特殊到一般的思想方法,体验 分析解决 问题的方法; 3?通过思考交流与教师启发,获得探索问题的乐趣,增强数学学习的信心 与原动力。 教学重点: 预备定理的证明与应用。 教学难点: 预备定理的证明。 教学方法: 启发+探究+讲授 教学手段: 常规教学用具,计算机及课件 教学过程: 教学过程 教师活动 学生活动 设计意图 出示情境问题: 1、 什么叫相似三角形?什么叫相似比? 2、 如图,矩形草坪长20m 宽10m 沿草坪四 周有1m 宽的小路。小路的内外边缘所围成的 矩形相似吗? □—''~:—:—A ?—'—>:—?—A 3、 如图两个三角形相似吗?若相似,你是若 何判 断的,相似比是多少?若不相似,也请说 明。 4、 思考:如图:在AA BC 与厶DEF 中,/ A= / D, Z B=Z E ,请问 AA BC 与△ DEF 是否相似? 明确指出: 本节课将研究如何用相似三角形的定义判断 两三角形相似。 板书课题:相似三角形的判定 创 设 情 境 复习相似形 的有关概 思考回答问题: 念,明确否 1、2 口答 定两图形相 3题可能的方法: 似,指出一 ⑴直觉(引导有理有 个不满足的 据); 条件即可, ⑵度量角与边,再计 而冃疋两图 算(指引这种方法简 形相似,则 单易于操作,但有时 需要所有对 会对结果的精确程度 应角相等, 质疑) 对边成比 ⑶根据格点特性计算 例。 (积极鼓励) 而随后的思 考,是为了 给学生点引 一下,预备 定理为什么 叫预备定 理,后继学

直角三角形的判定定理“HL”

1 / 2 第2课时 直角三角形的判定定理“HL ” (参考用时:30分钟 ) 1. 如图所示,∠C=∠D=90°,添加一个条件,可使用“HL ”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件: ①∠ABC=∠ABD;②AC=AD; ③BC=BD;④∠BAC=∠BAD. 适合的有( B ) (A)1个 (B)2个 (C)3个 (D)4个 2. 如图,△ABC 中,AB=AC,BD ⊥AC 于D,CE ⊥AB 于E,BD 和CE 交于O,AO 的延长线交BC 于F,则图中全等的直角三角形有( D ) (A)3对 (B)4对 (C)5对 (D)6对 3. 如图,在△ABC 中,∠BAC=90°,AB=AC,AE 是经过A 点的一条直线,且B,C 在AE 的两侧,BD ⊥AE 于D,CE ⊥AE 于E,CE=2,BD=6,则DE 的长为( D ) (A)2 (B)3 (C)5 (D)4 4.已知:如图,AE ⊥BC,DF ⊥BC,垂足分别为 E,F,AE=DF,AB=DC,则△ ABE ≌△ DCF (HL). 第4题图 5.如图,MN ∥PQ,AB ⊥PQ,点A,D,B,C 分别在直线MN 与PQ 上,点E 在AB 上,AD+BC=7, AD=EB,DE=EC,则AB= 7 . 第5题图 6. 如图,在△ABC 和△DCB 中,∠A=∠D=90°,AC=BD,AC 与BD 相交于点 O. (1)求证:△ABC ≌△DCB; (2)△OBC 是何种三角形?证明你的结论. (1)证明:在△ABC 和△DCB 中,∠A=∠D=90°, AC=BD,BC=CB.所以Rt △ABC ≌Rt △DCB(HL). (2)解:△OBC 是等腰三角形. 因为Rt △ABC ≌Rt △DCB,所以∠ACB=∠DBC, 所以OB=OC,所以△OBC 是等腰三角形. 7. 如图,已知Rt △ABC 中,∠ ACB=90°,CA=CB,D 是AC 上一点,E 在BC 的延长线上,且AE=BD,BD 的延长线与AE 交于点F.试通过观察、测量、猜想等方法来探索BF 与AE 有何特殊的位置关系,并说明你猜想的正确性 . 解:猜想:BF ⊥AE. 理由:因为∠ACB=90°,所以∠ACE=∠BCD=90°. 又BC=AC,BD=AE,所以△BDC ≌△AEC(HL). 所以∠CBD=∠CAE. 又因为∠CAE+∠E=90°,所以∠EBF+∠E=90°. 所以∠BFE=90°,即BF ⊥AE. 8.(1)如图1,点A,E,F,C 在一条直线 上,AE=CF,过点E,F 分别作DE ⊥AC,BF ⊥AC,若AB=CD,试证明BD 平分线段EF; (2)若将图1变为图2,其余条件不变时,上述结论是否仍然成立?请说明理由 . (1)证明:因为DE ⊥AC,BF ⊥AC, 所以∠DEC=∠BFA=90°. 因为AE=CF, 所以 AE+EF=CF+EF,

八年级数学三角形中位线培优专题训练

八年级数学三角形中位线培优专题训练 一、内容提要 1. 三角形中位线平行于第三边,并且等于第三边的一半。 梯形中位线平行于两底,并且等于两底和的一半。 2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度, 确定线段的和、差、倍关系。 3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。 4. 中位线性质定理,常与它的逆定理结合起来用。它的逆定理就是平行线截比例线段定理 及推论, ①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等 ②经过三角形一边中点而平行于另一边的直线,必平分第三边 ③经过梯形一腰中点而平行于两底的直线,必平分另一腰 5. 有关线段中点的其他定理还有: ①直角三角形斜边中线等于斜边的一半 ②等腰三角形底边中线和底上的高,顶角平分线互相重合 ③对角线互相平分的四边形是平行四边形 ④线段中垂线上的点到线段两端的距离相等 因此如何发挥中点作用必须全面考虑。 二、例题 例1. 已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中 点。求证:PM =PN 证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F ∵△ABM 、△CAN 是等腰直角三角形 ∴AE =EB =ME ,AF =FC =NF , 根据三角形中位线性质 PE = 21AC =NF ,PF =2 1 AB =ME P

PE ∥AC ,PF ∥AB ∴∠PEB =∠BAC =∠PFC 即∠PEM =∠PFN ∴△PEM ≌△PFN ∴PM =PN 例2.已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC 的中点。求MN 的长。 分析:N 是BC 的中点,若M 是另一边中点, 则可运用中位线的性质求MN 的长, 根据轴称性质作出△AMC 的全等三角形即可。 辅助线是:延长CM 交AB 于E (证明略 例3.如图已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点 求证:MN ∥AD 证明一:连结EC ,取EC 的中点P ,连结PM 、PN MP ∥AB ,MP = 21AB ,NP ∥AC ,NP =2 1 AC ∵BE =CF ,∴MP =NP ∴∠3=∠4=2 MPN -180∠ ∠MPN +∠BAC =180 (两边分平行的两个角相等或互补) ∴∠1=∠2=2 MPN -180∠ , ∠2=∠3 ∴NP ∥AC ∴MN ∥AD 证明二:连结并延长EM 到G ,使MG =ME 连结CG ,FG 则MN ∥FG ,△MCG ≌△MBE ∴CG =BE =CF ∠B =∠BCG ∴AB ∥CG ,∠BAC +∠FCG =180 N C

相关文档
最新文档