七年级(上)数学提高训练题及答案

合集下载

人教版七年级上册数学解答题专题训练50题(含答案)

人教版七年级上册数学解答题专题训练50题(含答案)

人教版七年级上册数学解答题专题训练50题含答案51.“囧”(jiong )是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x 、y ,剪去的两个小直角三角形的两直角边长也分别为x 、y .(1)用含有x 、y 的代数式表示右图中“囧”的面积;(2)当2,1x y ==时,求此时“囧”的面积.52.当x=﹣2时,代数式x 3﹣2tx 2+(1﹣t )x+t ﹣1的值是﹣6,求当x=时该代数式的值. 【答案】 【详解】试题分析:把x=﹣2代入代数式得出t 的值,然后把x=0.5代入解答即可. 解:由已知有(﹣2)3﹣2t (﹣2)2+(1﹣t )(﹣2)+t ﹣1=﹣6,解此方程得:t=﹣1,所以原代数式为x 3+2x 2+2x ﹣2,所以当x=时,原代数式为的值为.考点:代数式求值.53.结合数轴与绝对值的知识解答下列问题:(1)数轴上表示3的点和2的点两点间的距离为________;(2)如果在数轴上表示数a 的点与表示-2的点的距离是3,那么a=________(3)如果数轴上表示数a 的点位于-4与2之间,则42a a ++-=_________(4)a=_____时,514a a a ++-+-有最小值,且最小值=________________(5)直接回答:当式子9157a a a a ++++-+-取最小值时,相应的a 的取值范围是什么? 【答案】(1)1;(2)1或-5;(3)6;(4)1,9;(5)-1≤a≤5.【分析】(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式可得|a+2|=3,解方程可得答案;(3)先计算绝对值,再合并同类项即可求解;(4)根据线段上的点到线段两端点的距离的和最小,可得答案;(5)根据线段上的点到线段两端点的距离的和最小,可得答案.【详解】(1)数轴上表示3和2两点间的距离是3−2=1;(2)依题意有|a +2|=3,解得a =−5或1;(3)∵数轴上表示数a 的点位于−4和2之间,∵|a +4|+|a −2|=a +4−a +2=6;(4)当a =1时,|a +5|+|a −1|+|a −4|=6+0+3=9;(5)|a +9|+|a +1|+|a −5|+|a −7|取最小值时,相应的a 取值范围是15a -≤≤,最小值是a +9+a +1−a +5−a +7=22.【点睛】考查了绝对值的应用,利用了两点之间的距离公式,注意线段上的点与线段两端点的距离和最小.54.解方程:(1) 3﹣4x=2x ﹣21 (2)213134x x -+-= 【答案】(1)x=4;(2)x=5.【分析】(1)移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【详解】(1)移项得:﹣4x﹣2x=﹣21﹣3合并同类项得:﹣6x=﹣24化系数为1得:x=4;(2)去分母得:4(2x﹣1)﹣12=3(3+x)去括号得:8x﹣4﹣12=9+3x移项得:8x﹣3x=9+4+12合并同类项得:5x=25化系数为1得:x=5.【点睛】本题考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.55.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm,长方形的长为8cm,请计算修正后所折叠而成的长方体的表面积和体积.【答案】(1)多余一个正方形,图形见解析;(2)表面积为:210cm2;体积为:200cm3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.56.先化简,再求值:(1)-a 2b +(3ab 2-a 2b)-2(2ab 2-a 2b),其中a =1,b =-2;(2)-6x +3(3x 2-1)-(9x 2-x +3),其中x =-15.57.如图,∵AOB =110°,OD 平分∵BOC ,OE 平分∵AOC .(1)求∵EOD 的度数.(2)若∵BOC =90°,求∵AOE 的度数.58.解方程.(1)()824x x =-+,(2)12324x x +--=59.“十一”黄金周期间,园博园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)若9月30日的游客人数为8.4千人,请算出10月2日的游客人数;(2)请判断出七天内有客人数最多的一天是哪天?请说明理由;(3)若10月3日的游客人数为5千人,门票每人10元,问“十一”黄金周期间园博园的门票收入是多少元?【答案】(1)10.8千人;(2)10月3日,见解析;(3)286000【分析】(1)正数表示比前一天多的人数,10月1日+1.6,10月2日+0.8,求10月2日是以9月30日的游客人数为8.4千人为基准,列算式为8.4+1.6+0.8计算和即可,(2)从表看出10月3日之前只有增加没有减少,为此10月3日人数最多,设9月30日人数为a千人,则10月3日人数列算式为:a+1.6+0.8+0.4计算即可(3)以10月3日的游客人数为5千人为基准,求出其它六天人数,求这7天人数总和×10元计算即可.【详解】(1) 正数表示比前一天多的人数,10月1日+1.6,10月2日+0.8,10月2日人数为:8.4+1.6+0.8=10.8;(2)设9月30日的游客人数为a千人,10月3日,人数为:a+1.6+0.8+0.4=(a+2.8) 千人;10月3日之前,人数始终处于上升趋势,之后,人数逐渐减少,为此10月3日人数最多,(3)根据题意,可计算出7天的人数分别为:3.8,4.6,5,4.6,3.8,4,2.8,∵门票收入为:(3.8+4.6+5+4.6+3.8+4+2.8)×1000×10=286000元,黄金旅游周的收入为286000元.【点睛】本题考查列算式,列代数式问题,关键要读懂题目的意思,找好基准,根据条件列出算式与代数式,注意单位要统一.60.计算:()324212443⎛⎫-+--⨯- ⎪⎝⎭÷.61.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,甲车出发半小时后发现有贵重物品未带于是立刻原速返回A 地去取,再前往B 地,问经过多长时间两车相距30km ? 【答案】经过2.7小时或3小时两边相距30km.【分析】根据题意讨论辆车相遇以及未相遇时,列出方程即可.【详解】设经过x 小时两车相距30km.∵若两车未相遇由题意得:120(x -1)+80x+30=450解得:x=2.7∵若两车相遇后由题意得:120(x -1)+80x -30=450解得:x=3 .经过2.7小时或3小时两边相距30km.【点睛】本题考查的知识点是一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.62.计算(1)4028(19)(24)----+- (2)94(81)(16)49-÷⨯÷- (3)213132()(123)482834-÷--+-⨯ (4)22172(3)(6)()3-+⨯---÷-63.在图∵、∵中分别添加一个或两个小正方形,使该图形经过折叠后能围成一个以这些小正方形为面的立方体.【答案】见解析【详解】试题分析:结合正方体的平面展开图的特征,只要折叠后能围成正方体即可. 试题解析:解:(1)图∵,添加后如图所示:(2)图∵,添加后如图所示:64.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.【答案】(1)312是“好数”,675不是“好数”,理由见解析;(2)611,617,721,723,729,831,941.理由见解析.【分析】(1)根据“好数”的定义进行判断即可;(2)设十位数字为x,个位数字为y,则百位数字为(x+5).根据题意判断出x、y取值,根据“好数”定义逐一判断即可.【详解】(1)∵3,1,2都不为0,且3+1=4,4能被2整除,∵312是“好数”.∵6,7,5都不为0,且6+7=13,13不能被5整除,∵675不是“好数”;(2)设十位数字为x,个位数字为y,则百位数字为(x+5).其中x,y都是正整数,且1≤x≤4,1≤y≤9.十位数字与个位数字的和为:2x+5.当x=1时,2x+5=7,此时y=1或7,“好数”有:611,617当x=2时,2x+5=9,此时y=1或3或9,“好数”有:721,723,729当x=3时,2x+5=11,此时y=1,“好数”有:831当x=4时,2x+5=13,此时y=1,“好数”有:941所以百位数字比十位数字大5的所有“好数”的个数是7.【点睛】本题为“新定义”问题,理解好“新定义”,并根据已有数学知识和隐含条件进行分析,转化为所学数学问题是解题关键.65.计算:(1) |12||2|-++(2)5-(-5)(3)11 23 -+66.某公司今年缴税40万元,预计该公司缴税的年平均增长率为10%,则后年该公司应缴税多少?【答案】484(万元)【分析】今年缴税40万元,年平均增长率为10%所以明年的缴税为40(1+10%),则后年该公司应缴税为40(1+10%)(1+10%).【详解】解:后年该公司应缴税为240(110%)484+=(万元).【点睛】考点:列代数式.67.先化简,再求值:﹣a 2﹣(2a ﹣3a 2)+2(3a ﹣a 2+1),其中a =﹣2. 【答案】4a +2,-6.【分析】先去括号,然后合并同类项,最后把a 的数值代入进行计算即可.【详解】原式=﹣a 2﹣2a +3a 2+6a ﹣2a 2+2=4a +2,当a =﹣2时,原式=4×(﹣2)+2=﹣6.【点睛】本题考查了整式的加减——化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键.68.一个瓶子的容积为1L ,瓶内装着一些溶液当瓶子正放时,如图1瓶内溶液的高度为20cm ,倒放时,如图2,空余部分的高度为5cm .(1)求瓶内溶液的体积.(2)现把瓶内的溶液全部倒在一个圆柱形的杯子里,杯内溶液的高度为10cm ,求杯子的内底面半径(结果保留根号).69.已知a,b 互为相反数,c,d 互为倒数,x 的绝对值为1,求a+b﹣cdx 的值.【答案】当x=1 时,原式=﹣1;当x=﹣1 时,原式=1.【分析】根据相反数性质、倒数定义及绝对值的性质得出a+b=0、cd=1、x=1 或x=﹣1,再代入计算可得.【详解】根据题意可得a+b=0、cd=1、x=1,或x=﹣1,当x=1时,原式=0﹣1×1=0﹣1=﹣1;当x=﹣1时,原式=0﹣1×(﹣1)=0+1=1.【点睛】本题主要考查有理数的混合运算及相反数性质、倒数定义及绝对值的性质,解题的关键是掌握相反数性质、倒数定义及绝对值的性质、有理数的运算顺序和运算法则.70.某工厂计划生产一种新型豆浆机,每台豆浆机需3个甲种零件和5个乙种零件,已知车间每天能生产甲种零件450个或乙种零件300个,现要在21天中使所生产的零件刚好配套,那么应安排多少天生产甲种零件,安排多少乙天生产乙种零件恰好配套?小明在解决这个问题时设应安排x天生产甲零件.填出表格∵∵∵的表达式,并列方程解决这个问题.【答案】∵21x -,∵450x ,∵()30021x -;安排6天生产甲零件,安排15天生产乙零件.【分析】设应安排x 天生产甲零件,根据题意求得安排()21x -天生产乙种零件,共生产甲种零件450x ,生产乙种零件()30021x -,根据每台豆浆机需3个甲种零件和5个乙种零件,使得恰好配套,则甲种零件的数量乘以5等于乙种零件的数量乘以3,据此列出一元一次方程即可求解.【详解】解:设应安排x 天生产甲零件,根据题意求得安排()21x -天生产乙种零件,共生产甲种零件450x ,生产乙种零件()30021x -,依题意得方程()5450330021x x ⨯=⨯-解得:6x =答:安排6天生产甲零件,安排15天生产乙零件.故答案为:∵21x -,∵450x ,∵()30021x -【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.71.计算题:(1)3751412936⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (2)2223(3)18(4)54⎛⎫⎛⎫⎡⎤---÷-⨯-- ⎪ ⎪⎣⎦⎝⎭⎝⎭.72.如图,点P是线段AB上的一点,点M、N分别是线段AP、PB的中点.(1)如图1,若点P是线段AB的中点,且MP=4cm,则线段AB的长cm;(2)如图2,若点P是线段AB上的任一点,且AB=12cm,求线段MN的长;(3)小明由(1)(2)猜想到,若点P是直线AB上的任意一点,且AB=12cm,线段MN 的长与(2)中结果一样,你同意他的猜想吗?说明你的理由.【答案】(1)16;(2)MN=6cm;(3)同意,理由见解析【分析】(1)根据线段中点的定义可求解AP的长,进而可求解AB的长;(2)根据线段中点的定义可求得AB=2MN,即可求解MN的值;(3)可分两种情况:当P点在线段AB延长线上时,当P点在线段BA延长线上时,根据中点的定义求解M,N两点间的距离.【详解】解:(1)∵点M、N分别是线段AP、PB的中点,∵AP=2MP,BP=2PN,∵MP=4cm,∵AP=8cm,∵P为AB的中点,∵AB=2AP=16cm,故答案为:16;(2)∵点M、N分别是线段AP、PB的中点,∵AP=2MP,BP=2PN,∵AP+BP=2MP+2PN=2MN,即AB=2MN,∵AB=12cm,∵MN=6cm;(3)同意.理由:当P点在线段AB延长线上时,∵点M、N分别是线段AP、PB的中点,∵AP=2MP,BP=2PN,∵AP-BP=2MP-2PN=2MN,即AB=2MN,∵AB=12cm,∵MN=6cm;当P点在线段BA延长线上时,∵点M、N分别是线段AP、PB的中点,∵AP=2MP,BP=2PN,∵BP-AP=2PN-2MP=2MN,即AB=2MN,∵AB=12cm,∵MN=6cm.【点睛】本题主要考查了两点间的距离,线段的中点,由线段中点的定义求解两点间的距离是解题的关键.73.化简求值:5(3a2b-ab2) -(ab2+3a2b), 其中a=12,b=13.74.小明将已经到期的存了3年的3000元压岁钱取出,本利和为3247.5元,求他的存款的年利率.【答案】2.75%【分析】不用交利息税的本利和计算方法为:本利和=本金+本金⨯年利率⨯存期,利用本利和为3247.5元作为相等关系列方程求解即可.【详解】设他的存款的年利率是x,依题意有+⨯⨯=,x3000300033247.5x=.解得: 2.75%故他的存款的年利率是2.75%.【点睛】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.银行的利息问题中的相等关系一般为:本利和=本金+本金⨯年利率⨯时间.75.化简下列各数:∵+(﹣3);∵﹣(+5);∵﹣(﹣3.4);∵﹣[+(﹣8)];∵﹣[﹣(﹣9)].化简过程中,你有何发现?化简结果的符号与原式中的“﹣”号的个数有什么关系?【答案】见解析,最后结果的符号与“﹣”的个数有着密切联系,当“﹣”的个数是奇数,最后结果为负数,当“﹣”的个数是偶数,最后结果为正数【分析】根据已知数据结合去括号法则化简各数,进而得出结果的符号与原式中的“-”号的个数关系.【详解】解:∵+(﹣3)=﹣3;∵﹣(+5)=﹣5;∵﹣(﹣3.4)=3.4;∵﹣[+(﹣8)]=8;∵﹣[﹣(﹣9)]=﹣9.最后结果的符号与“﹣”的个数有着密切联系,当“﹣”的个数是奇数,最后结果为负数,当“﹣”的个数是偶数,最后结果为正数.【点睛】此题主要考查了相反数的定义,正确发现数字变化规律是解题关键.76.如图,已知A ,B 分别为数轴上的两点,点A 表示的数是﹣30,点B 表示的数是50.(1)请写出A 、B 两点间的距离是 .(2)现有一只蚂蚁P 从点B 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设两只蚂蚁在数轴上的点C 相遇.求两只蚂蚁在数轴上的点C 相遇时所用的时间.77.已知222a x y bx y x y +=-,若222A a ab b =-+,2223B a ab b =--.试求:32A B -的值.【答案】2,3a b ==-,原式= 225a b -+=41【分析】先根据2x a y+bx 2y=-x 2y 求出a ,b 的值,再根据题意列出代数式化简,再把a ,b 的值代入计算即可.【详解】∵2x a y+bx 2y=-x 2y,∵a=2,b=-3.∵3A -2B=3(a 2-2ab+b 2)-2(2a 2-3ab -b 2),=3a 2-6ab+3b 2-4a 2+6ab+2b 2,=-a 2+5b 2,=-4+45,=41.【点睛】本题考查了整式的加减-化简求值,解题的关键是熟练的掌握整式的加减-化简求值. 78.观察下表我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x +y ,回答下列问题:(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16, ∵求x ,y 的值;∵在此条件下,第n 格的特征是否有最小值?若有,求出最小值和相应的n 值,若没有,说明理由.【答案】(1)129x y +,1616x y +,24nx n y +;(2)∵3x =-,2y =;∵有最小值为-18,相应的n 值为3.【详解】试题分析:(1)仔细观察每格的特征多项式的特点,找到规律,利用规律求得答案即可;(2)∵根据题意列出二元一次方程组,求得x 、y 的值即可;∵设第n 格的“特征多项式”的值为W ,配方即可得出结论.试题解析:(1)观察图形发现:第1格的“特征多项式”为 4x+y ,第2格的“特征多项式”为 8x+4y ,第3格的“特征多项式”为 12x+9y ,第4格的“特征多项式”为16x+16y ,…第n 格的“特征多项式”为24nx n y +;(2)∵∵第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16, ∵依题意得:解之得:,∵3x =-,2y =;∵设最小值为W ,则依题意得:22241222(3)18W nx n y n n n =+=-+=--,答:有最小值为-18,相应的n 值为3.考点:1.规律型;2.二次函数的最值.79.计算与简化:(1)﹣22﹣[(1﹣1×0.6)+(﹣0.2)2﹣4](2)12(2a 2﹣9b )﹣3(﹣5a 2﹣43b )﹣3b (3)x ﹣216x +=14x -+2 (4)0.50.950.53x x +-+=0.010.020.03x +80.阅读下面“将无限循环小数化为分数”材料,并解决相应问题:我们知道分数13写为小数形式即为.0.3,反之,无限循环小数.0.3写成分数形式即13.一般地,任何一个无限循环小数都可以写成分数形式吗?如果可以,应怎样写呢?【发现】先以无限循环小数.0.7为例进行讨论.设.0.7=x,由.0.7=0.777…可知,10x=7.777…,即10x﹣x=7.解方程,得x=79.于是.0.7=79,【类比探究】再以无限循环小数..0.73为例,做进一步的讨论.无限循环小数..0.73=0.737373…,它的循环节有两位,类比上面的讨论可以想到如下做法.设..0.73=x,由..0.73=0.737373…可知,100x=73.7373…,所以100x﹣x=73.解方程,得x=7399,于是得..0.73=7399【解决问题】(1)请你把无限小数.0.4写成分数形式,即.0.4=;(2)请你把无限小数..0.75写成分数形式,即..0.75=;(3)根据以上过程比较.0.9与1的大小关系,并说明你的理由.、、、是正方形网格纸上的四个格点,根据要求在网格中画图并标注81.如图,已知A B C D相关字母.∵画线段AB;∵画直线AC;∵过点B画AD的平行线BE;∵过点D画AC的垂线,垂足为F.【答案】作图见解析【分析】∵连接AB即可;∵过点A、C作直线即可;∵作BE∵AD即可;∵过点D画AC的垂线,垂足为F即可.【详解】∵如图,线段AB即为所求;∵如图,直线AC即为所求;∵如图,直线BE即为所求;∵如图,DF即为所求.【点睛】本题考查的是作图-复杂作图,熟知直线、线段的定义及网格的特点是解答此题的关键.82.如图,数轴上点A,B表示的数分别为a,b,且2++-=.点C为数轴上一a b|10|(15)0AC=.点,且点C到A距离2a________,b=________;(1)直接写出=(2)如图1,若A,C两点同时以每秒4个单位长度的速度向右匀速运动,同时点B以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒.=);∵当t为何值时,点B到点A的距离与点B到点C的距离相等(即AB BC∵在上述运动过程中,A,C两点同时在O,B两点之间运动花了多长时间?计算并说明理由.度与时间和距离公式研究A ,C 两点同时在O ,B 两点之间运动花时间问题是解题关键. 83.关于x 的方程22(4)(2)80k x k x ---+=是一元一次方程,求关于y 的方程1k y x -=的解.84.用不等式表示下列数量之间的关系:(1)如图所示,小明和小聪玩跷跷板,大家都不用力时,跷跷板左低右高,小明的身体质量为kg p ,小聪的身体质量为kg q ,书包的重量为2kg ,怎样表示p 、q 之间的关系?(2)如图所示,天平左盘放三个乒乓球,右盘放5g 砝码,天平倾斜,设每个乒乓球的质量为g x ,怎样表示x 与5之间的关系?【答案】(1)2q p +> ;(2)35x >【分析】根据跷跷板的工作原理和各字母所表示的数量可以得到解答. 【详解】解:(1)由跷跷板的工作原理可知小聪这边的质量大,所以q+2>p ; (2)同(1)类似,乒乓球这边的质量大,所以3x>5.【点睛】本题考查跷跷板的工作原理与用字母表示数的综合应用,具有较强的符号意识是熟练解题的关键.85.先化简,再求值(a ﹣6b )﹣2(2a+3b )+b ,其中a=23,b=﹣1. 【答案】9【分析】首先去括号,进而合并同类项,再把已知代入求出答案. 【详解】原式=a ﹣6b ﹣4a ﹣6b+b =﹣3a ﹣11b ,把a=,b=﹣1代入得: 原式=﹣3×﹣11×(﹣1) =﹣2+11 =9.【点睛】本题考查了整式的加减-化简求值,解题的关键是熟练的掌握整式的加减运算法则. 86.操作与探究对数轴上的点P进行如下操作:先把点P表示的数乘以14,再把所得数对应的点向右平移1个单位,得到点P的对应点P'.如图1,点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A B'',其中点A,B的对应点分别为,A B''.(1)若点A表示的数是﹣3,点A'表示的数是;(2)若点B'表示的数是2,点B表示的数是;(3)已知线段AB上的点E经过上述操作后得到的对应点E'与点E重合,则点E表示的数是.(4)保持前两问的条件不变,点C是线段AB上的一个动点,以点C为折点,将数轴向左对折,点B的对应点落在数轴上的1B处,若12B A=,求点C表示的数.87.在数轴上,O表示原点,A、B两点分别表示﹣8和2.(1)求出线段AB的长度;(2)动点P从A出发沿数轴向右运动,速度为每秒5个单位长度;同时点Q从B出发,沿数轴向右运动,速度为每秒3个单位长度,当P、Q重合时,两点同时停止运动.设两点运动时间为t秒,用含有t的式子表示线段PQ的长;(3)在(2)的条件下,t为何值时,点P、点Q到原点O的距离相等.【答案】(1)AB=10;(2) PQ=10﹣2t且0≤t≤5;(3)为0.75、5时,点P、点Q到原点O的距离相等.【分析】(1)用点A到原点O的距离加上点B到原点O的距离,即可求出线段AB的长度.(2)用线段AB的长度减去动点P向右运动的长度,再加上动点Q向右运动的长度,用含有t的代数式表示线段PQ的长即可.(3)根据题意,分两种情况:∵点P、点Q重合时;∵点P、点Q在原点O的两侧时;求出t为何值时,点P、点Q到原点O的距离相等即可.【详解】(1)AB=OA+OB=8+2=10,(2)PQ=10﹣5t+3t=10﹣2t,由10﹣2t≥0,解得0≤t≤5.(3)∵点P、点Q重合时,由10﹣2t=0,解得t=5.∵点P、点Q在原点O的两侧时,OP=8﹣5t,OQ=2+3t,由8﹣5t=2+3t,解得t=0.75,所以t为0.75、5时,点P、点Q到原点O的距离相等.【点睛】本题考查负数的意义和应用,两点间的距离的求法,考查了分类讨论思想的应用,要熟练掌握.88.在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足2|2|(7)0a c ++-=(1)a = ,b = ,c = ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB = ,AC = ,BC = .(用含t 的代数式表示)(4)请问:3BC -2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-2,1,7 (2)4(3)3t +3,5t +9,2t +6 (4)不变,定值12【分析】(1)由绝对值和平方的非负性即可得出a 和c 的值.再由最小的正整数为1,即得出b =1;(2)由题意列出方程即可得出答案;(3)利用题意结合数轴表示出A 、B 、C 三点表示的数,进而可得AB 、AC 、BC 的长; (4)由 3BC -2AB =3(2t +6)-2(3t +3)求解即可. 【详解】(1)∵2|2|(7)0a c ++-=, ∵a +2=0,c -7=0, 解得a =-2,c =7; ∵b 是最小的正整数, ∵b =1;故答案为:-2,1,7.(2)设B 的对称点D 对应的数为x ,则线段AC 和BD 的中点重合,-表示a与b之差的绝对值,实际上也可理解为a与b两数在数轴上89.探究与发现:a bx-的几何意义是数轴上表示有理数x的点与表示有理数3所对应的两点之间的距离.如3的点之间的距离.(1)如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且20AB=,则数轴上点B表示的数;x-=,则x=.(2)若82(3)拓展与延伸:在(1)的基础上,解决下列问题:动点P从O点出发,以每秒5个单位长t t>秒.求当t为多少秒时?A,P两点之度的速度沿数轴向右匀速运动,设运动时间为()0间的距离为2;(4)数轴上还有一点C所对应的数为30,动点P和Q同时从点O和点B出发分别以每秒5个单位长度和每秒10个单位长度的速度向C点运动,点Q到达C点后,再立即以同样的t t>秒.问当t为多少秒时?P,速度返回,点P到达点C后,运动停止.设运动时间为()0Q之间的距离为4【答案】(1)12-(2)6或1090.如图1所示,在数轴上有两个边长相同的正方形.已知正方形ABCD 的顶点A ,B 分别对应43--,.正方形MNPQ 的顶点M ,N 分别对应3,4.现正方形ABCD 以每秒1个单位的速度向右运动,正方形MNPQ 以每秒0.5个单位的速度也向右运动.(1)2秒后,点B 对应的数是_______,点M 对应的数是_______.(2)设运动时间为t (秒)∵经过多少时间后正方形ABCD 刚好追上正方形MNPQ (即边BC 与边MQ 重合)? ∵正方形ABCD 从刚好赶上正方形MNPQ 到完全超过需要多少时间?(3)如图2,在运动过程中,两个正方形重合部分的面积(阴影面积)与空白部分面积的和之比为1:2,此时点B对应的数是________(直接写出答案).-+=;此时点B所对应的数为31512故答案为:10或12.【点睛】此题考查了实数与数轴,也考查了一元一次方程的应用(行程问题),根据点的远动路程确定其对应的数是解题关键,利用点的位置关系和点所对应的数相等列方程是难点.。

数轴 课堂提高训练课件 2021--2022学年人教版七年级上册数学

数轴 课堂提高训练课件 2021--2022学年人教版七年级上册数学

16.(2020吉林长春中考,1,★☆☆)如图1-2-2-10,数轴上被墨水遮盖的数可 能为 ( )
图1-2-2-10
A.-1
B.-1.5
C.-3
D.-4.2
答案 C 由数轴上墨水的位置可知,该数在-4和-2之间,因此各选项中,
只有C符合题意,故选C.
17. 如图1-2-2-11,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的 数是 ( )
D.不确定
答案 C 在原点左边与原点相距2 021个单位长度的点表示的数是-2 0 21,在原点右边与原点相距2 021个单位长度的点表示的数有是2 021,故选C.
7.(2021江苏苏州期中)如图1-2-2-4,已知点A,B,C,D将周长为4的圆周4等 分,现将点A与数轴上表示-1的点重合.将圆沿数轴向右连续滚动,则点A,B, C,D中与表示2 020的点重合的是 ( )
-7所示).
操作一:
图1-2-2-7
(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-3的点与表示
的点重合;
操作二:
(2)折叠纸面,使表示-1的点与表示3的点重合,回答以下问题:
①表示5的点与表示
的点重合;
②若数轴上A、B两点之间的距离为11(A在B的左侧),且A、B两点经折叠 后重合,求A、B两点表示的数分别是多少.
14.(2020湖北黄冈期末,12,★★☆)若点A、B是数轴上的两个点,点A表示
的数是-4,点B与点A的距离是2,则点B表示的数是
.
答案 -6或-2
解析 根据题意,分两种情况:当点B在点A的左边时,点B表示的数为-6. 当点B在点A的右边时,点B表示的数为-2. 所以点B表示的数为-6或-2.

人教版七年级数学第九章第3节《一元一次不等式组》单元提高训练 (18)(含答案解析)

人教版七年级数学第九章第3节《一元一次不等式组》单元提高训练 (18)(含答案解析)
12.解不等式组 ,并求其负整数的解.
13.为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共 吨,甲物资单价为 万元/吨,乙物资单价为 万元/吨,采购两种物资共花费 万元.
(1)求甲、乙两种物资各采购了多少吨?
(2)现在计划安排 两种不同规格的卡车共 辆来运输这批物资.甲物资 吨和乙物资 吨可装满一辆 型卡车;甲物资 吨和乙物资 吨可装满一辆 型卡车.按此要求安排 两型卡车的数量,请问有哪几种运输方案?
12. ,负整数解: , , .
【解析】
分别解出两个一元一次不等式的解即可;
解: ,
解①得: ,
解②得: ,
∴ ,
负整数解为: , , .
本题主要考查了一元一次不等式组的求解,准确计算是解题的关键.
13.(1)甲物资采购了300吨,乙物质采购了240吨;(2)共有3种运输方案,方案1:安排25辆A型卡车,25辆B型卡车;方案2:安排26辆A型卡车,24辆B型卡车;方案3:安排27辆A型卡车,23辆B型卡车.
11.(1)a≥﹣1;(2)1,2,3
【解析】
(1)分别取出求出不等式①②的解集,再根据题意得到7﹣a≥5﹣3a,最后解不等式即可求出a的取值范围.
(2)两个方程相加,即可得出关于m的不等式,求出m的范围,即可得出答案.
解:(1)解不等式①x+a>7得:x>7﹣a,
解不等式② >1﹣a得:x>5﹣3a,
A. B. C. D. 或
8.不等式组 的解集在数轴上表示为().
A. B.
C. D.
二、解答题
9.解不等式组 ,并写出满足条件的正整数解.
10.解不等式组,并把解集在数轴上表示出来.
11.(1)已知关于x的不等式①x+a>7的解都能使不等式② >1﹣a成立,求a的取值范围.

苏科版七年级数学上册第四章《一元一次方程》应用题填空专项提升训练(二)

苏科版七年级数学上册第四章《一元一次方程》应用题填空专项提升训练(二)

《一元一次方程》应用题填空专项提升训练(二)1.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入分钟的水量后,乙的水位比甲高0.5cm.2.今年3.15期间,惠东商场为感谢新老顾客,决定对某产品实行优惠政策:购买该产品,另外赠送礼品一份.经过与该产品的供应商协调,供应商同意将该产品供货价格降低5%,同时免费为顾客提供礼品;而该产品的商场零售价保持不变.这样一来,该产品的单位利润率由原来的x%提高到(x+6)%,则x的值是.3.某公司生产一种饮料是由A,B两种原料液按一定比例配制而成,其中A原料液的成本价为15元/千克,B原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A原料液上涨20%,B原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是.4.已知AB是一段只有3米宽的窄道路,由于一辆小汽车与一辆大卡车在AB段相遇,必须倒车才能继续通过.如果小汽车在AB段正常行驶需10分钟,大卡车在AB段正常行驶需20分钟,小汽车在AB段倒车的速度是它正常行驶速度的,大卡车在AB段倒车的速度是它正常行驶的,小汽车需倒车的路程是大卡车的4倍.问两车都通过AB这段狭窄路面的最短时间是分钟.5.由于人民生活水平的不断提高,购买理财产品成为一个热门话题.某银行销售A,B,C 三种理财产品,在去年的销售中,稳健理财产品C的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A,B两种理财产品的销售金额都将比去年减少20%,因而稳健理财产品C是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年稳健理财产品C的销售金额应比去年增加%6.重庆育才中学的生活教育实践农场种了一片草莓,现在正是草莓成熟的季节,农场的草莓每天都在匀速的成熟(即每天新成熟的草莓质量相等),现在准备把成熟的草莓包装成礼盒进行销售,且每只礼盒的草莓质量相等.如果每天销售24盒,则6天可以把成熟的草莓销售完毕;如果每天销售21盒,则8天可以把成熟的草莓销售完毕;如果每天销售14盒,则天可以把成熟的草莓销售完毕.7.某房地产公司销售电梯公寓、花园洋房、别墅三种类型的房屋,在去年的销售中,花园洋房的销售金额占总销售金额的35%.由于两会召开国家对房价实施调控,今年电梯公寓和别墅的销售金额都将比去年减少15%,因而房地产商决定加大花园洋房的销售力度.若要使今年的总销售金额比去年增长5%,那么今年花园洋房销售金额应比去年增加%.(结果保留3个有效数字)8.著名瑞士数学家欧拉,曾给出这样一个问题:父亲临终时立下遗嘱,按下述方式分配遗产:老大分的100瑞士法郎和剩下的;老二分的200瑞士法郎和剩下的;老三分的300瑞士法郎和剩下的…依此类推,分给其余的孩子.最后发现,遗产全部分完后所有孩子分的遗产相等.问:这位父亲的遗产总数是瑞士法郎.9.“节能减排,低碳经济”是我国未来发展的方向,某汽车生产商生产有大、中、小三种排量的轿车,正常情况下的小排量的轿车占生产总量的30%,为了积极响应国家的号召,满足大众的消费需求准备将小排量轿车的生产量提高,受其产量结构调整的影响,大中排量汽车生产量只有正常情况下的90%,但生产总量比原来提高了7.5%,则小排量轿车生产量应比正常情况增加%.10.甲、乙、丙三人拿出同样多的钱,合伙订购同种规格的若干件商品,商品买来后,甲、乙分别比丙多拿了7、11件商品,最后结算时,甲付给丙14元,那么,乙应付给丙元.11.3月5日到3月9日重庆八中组织了初2013级全体同学到重庆通讯学院参加了国防教育活动,3月8日全体同学进行了军事拉练.拉练时全年级同学排成了1000米的队伍,在行进过程中排尾的一名同学接到教官的命令到排头,然后立即返回,当这名同学回到排尾时,全队已前进了1000米,如果队伍和这名同学行进的速度都不改变,那么这名同学所走的路程为米.12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密规则为明文x、y、z对应的密文为2x+1,3y+2,9z+3,例如:明文1,2,3对应密文3,8,30,那么,当接收方收到密文2005,2006,2010时,解密后得到的明文分别是,,.13.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有盏灯.14.第三届中国大学生方程式汽车比赛赛前,甲、乙两辆参赛小汽车在一个封闭的环形跑道内进行耐久测试.两车从同一地点沿相同方向同时起步后,乙车速超过甲车速,在第15分钟时甲车提速,在第18分钟时甲车追上乙车并且开始超过乙,在第23分钟时,甲车再次追上乙车.已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车所用的时间是分钟.15.“节能减排,低碳经济”是我国未来发展的方向,某汽车生产商生产有大、中、小三种排量的轿车,正常情况下的小排量的轿车占生产总量的40%,为了积极响应国家的号召,满足大众的消费需求准备将小排量轿车的生产量提高,受其产量结构调整的影响,大中排量汽车生产量只有正常情况下的90%,但生产总量比原来提高了7.5%,则小排量轿车生产量应比正常情况增加%.16.某工厂去年生产某种产品一件,所获取的利润率为59%,今年由于物价上涨,工厂生产这种产品的成本增加了6%,而今年与去年该产品的出厂售价一样,所以今年该工厂生产该产品一件所获取的利润率为.17.某列从永川到重庆的火车,包括起始和终点在内共有5个停靠站,小王乘坐这趟列车从永川到重庆,一路上小王在他乘坐的车厢内观测到下列情况:①在起始站(第一站)以后每一站都有车厢内人数(包括小王)的一半人下车;②又有下车人数的一半人上这节车厢;③到第五站(终点站)包括小王在内还有27人.那么起始站上车的人数是.18.从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是.19.甲乙两人骑摩托车同时从A地出发前往B地,且两人到达B地后各自按原速度返回,且不停地在AB之间往返行驶,甲的速度为32km/h,乙的速度为18km/h,当乙车由A 至B多次后,甲车两次追上乙车,且第二次追上乙时是在乙车从B地向A地行驶的途中,且他们此时距B地的距离为10km,则AB两地相距km.20.“圣诞节”将至,某商场购进了一种手套30双和一种围巾20条,围巾的售价是手套2倍,销售一段时间后,手套和围巾卖出的数量恰好相同,此时商场决定调价,把手套的售价提高48%,把围巾的售价降低40%,当商场卖完这两种商品后,发现这批围巾和手套的平均售价是一样的,那么调价前卖出的围巾和手套的数量都是.21.我市某百货公司2010年1月份前半月的销售收入达到1.18亿元,比上月同期增长了18%,预计2010年1月份后半月的销售收入比上月同期增长25%,并且预计1月份全月的销售收入比上月增长22.2%,则上月全月的销售收入为亿元.22.某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款60元和288元.如果小敏把这两次购物改为一次性购物,则应付款元.23.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.24.长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为.25.把棱长为4的正方体分割成29个棱长为整数的正方体(且没有剩余),其中棱长为1的正方体的个数为.参考答案1.解:(1)∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴得到注水1分钟,丙的水位上升cm×4=cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时;由题意得,t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向乙容器溢水,∵5÷=分钟,×=,即经过分钟时丙容器的水到达管子底部,乙的水位上升,∴+2×(t﹣)﹣1=0.5,解得:t=;②当乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;+(5﹣)÷÷2=分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入或分钟的水量后,乙的水位比甲高0.5cm.故答案为cm;或.2.解:原来的进价为a元,则现在的进价为(1﹣0.05)a元,由题意,得a(1+x%)=0.95a[1+(x+6)%],解得:x=14故答案为:143.解:原料液A的成本价为15元/千克,原料液B的成本价为10元/千克,涨价后,原A价格上涨20%,变为18元;B上涨10%,变为11元,总成本上涨12%,设每100千克成品中,二原料比例A占x千克,B占(100﹣x)千克,则涨价前每100千克成本为15x+10(100﹣x),涨价后每100千克成本为18x+11(100﹣x),18x+11(100﹣x)=[15x+10(100﹣x)]•(1+12%),18x+11(100﹣x)=1.12[15x+10(100﹣x)],7x+1100=5.6x+1120,1.4x=20,解得:x=,100﹣x=,即二者的比例是:A:B=1:6,则涨价前每千克的成本为+=元,销售价为元,利润为7.5元,原料涨价后,每千克成本变为12元,成本的25%=3元,保证利润为7.5元,则利润率为:7.5÷(12+3)=50%.故答案为:50%.4.解:小汽车X通过AB段正常行驶需要10分钟,小汽车在AB段倒车的速度是它正常行驶速度的,由此得出倒车时间AB段X=10÷=50分钟,卡车Y通过AB段正常行驶需20分钟,大卡车在AB段倒车的速度是它正常行驶速度的,由此得出倒车时间AB段Y=20÷=160分钟,又因为:小汽车需要倒车的路程是大卡车需倒车的路程的4倍,得到小车进入AB段,大车进入AB段,由此得出实际Y倒车时间=160×=32分钟,实际X倒车时间=50×=40分钟.若Y倒X进则是32+20=52分钟两车都通过AB路段,若X倒Y进则是40+10=50分钟两车都通过AB路段,所以两车都通过AB路段的最短时间是50分钟.故答案为:50.5.解:设今年产品C的销售金额应比去年增加x,根据题意得:0.4(1+x)+(1﹣40%)(1﹣20%)=1,解得x=30%.故答案为:30.6.解:设x天可以把成熟的草莓销售完毕,由题意得:24×6=144(盒),21×8=168(盒),(168﹣144)÷2=12(盒),故销售前草莓成熟了:144﹣12×6=72(盒),72+12x=14x,解得:x=36,故答案为:36.7.解:设今年花园洋房销售金额应比去年增加x,根据题意得35%x﹣(1﹣35%)×15%=5%,解得:x≈42.1%即今年花园洋房销售金额应比去年增加42.1%.8.解:设遗产总数为x法郎,则老大分得:100+(x﹣100)×;老二分得:200+(x ﹣[100+(x﹣100)]﹣200)×,100+(x﹣100)=200+{x﹣[100+(x﹣100)]﹣200},解得:x=8100.即这位父亲的遗产总数是8100瑞士法郎.故答案为:8100.9.解:设小排量轿车生产量应比正常情况增加的百分数为x,汽车原总量为a.则可得方程:30%a(1+x)+70%a×90%=(1+7.5%)a,化简得:0.3+0.3x+0.7×0.9=1+0.075,解得x≈48.3%.故填48.3.10.解:(7+11)÷3=6,甲比乙多拿了一件,所以一件是14元.14×(11﹣6)=70.乙付给丙70元.11.解:设当这个同学追到队伍头上时,队伍前进了距离为x米,队伍的速度为a,同学的速度为b.由题意,得,原方程组变形为:,∴,解得:x=500,故这名同学所走的路程为1000+2x=(1000+1000)米.故答案为:(1000+1000).12.解:根据题意有2x+1=2005,解得x=1002;3y+2=2006,解得y=668;9z+3=2010,解得z=223.故解密后得到的明文分别是1002,668,223.13.解:假设顶层的红灯有x盏,由题意得:x+2x+4x+8x+16x+32x+64x=381,127x=381,x=3;答:塔的顶层是3盏灯.故答案为:3.14.解:设甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟.那么有甲车在第15分钟时,离乙车的距离为15a.这个距离在第18分钟追回来.那么15a=(18﹣15)b.即b=5a,而且在第23分钟时,甲车比乙车多跑一圈.那么一圈的路程为(23﹣18)b=5b=25a,所以甲车不提速时,乙车首次超过甲车(即多跑一圈)所需时间为:25a÷a=25分钟,故答案为:25.15.解:设小排量轿车生产量应比正常情况增加的百分数为x,汽车原总量为a.则可得方程:40%a(1+x)+60%a×90%=(1+7.5%)a,化简得:0.4+0.4x+0.6×0.9=1+0.075,解得x≈33.75%.故填:33.75.16.解:y=×100%=50%.所以今年该工厂生产该产品一件所获取的利润率为50%.故答案为:50%.17.解:设起始站上车的人数是x人.根据题意得:()3x=27,解得:x=64.则起始站上车的人数是64人.18.解:设切下的一块重量是x千克,设10千克和15千克的合金的含铜的百分比为a,b,=,整理得(b﹣a)x=6(b﹣a),解得x=6,故答案为:6千克.19.解:设AB间的距离为s千米,第二次甲追上乙时所用的时间为t小时,第二次甲追上乙时,乙行驶的距离至少有3s+10,甲行驶的距离至少有7s+10,所以有:32t﹣18t=4s,解得:s=3.5t,但第二次甲追上乙时,他们距B地10千米,这说明s>10,于是得到:t>,以乙行驶过程计算(相比甲过程计算简单):(1)假设3s+10时与甲相遇,有3s+10=18t,解之:t=(不合题意,舍去);(2)前面不成立就假设5s+10与甲相遇,有:5s+10=18t解之:t=20;(3)继续假设7s+10与甲相遇,则有7s+10=18t解之:t=负数.以后都为负数.所以:s=×20=70.故答案为:70.20.解:设调价前卖出的围巾和手套的数量都是x,手套的售价是y元,依题意有=,即2x+2×1.48×(30﹣x)=6x+6×0.6×(20﹣x),解得x=5.故调价前卖出的围巾和手套的数量都是5.故答案为:5.21.解:上月的前半月销售收入1.18÷(1+18%)=1亿元;设上月后半月销售收入为x亿元,(1+x)(1+22.2%)=1.18+(1+25%)x解得x=∴上月总销售收入为:1+=亿元.故答案为.22.解:第一次购物显然没有超过100元,即在第二次消费60元的情况下,他的实质购物价值只能是60元.第二次购物消费288元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:他消费超过100元但不足350元,这时候他是按照9折付款的.设第二次实质购物价值为x元,那么依题意有x×0.9=288,解得:x=320.第二种情况:他消费不低于350元,这时候他是按照8折付款的.设第二次实质购物价值为a元,那么依题意有a×0.8=288,解得:a=360.即在第二次消费288元的情况下,他的实际购物价值可能是320元或360元.综上所述,他两次购物的实质价值为60+320=380或60+360=420,均超过了350元.因此均可以按照8折付款:380×0.8=304(元),420×0.8=336(元),故答案为:304元或336元.23.解:设这种电器的进价是x元,由题意得:(1+40%)x×80%=1120,解得:x=1000,故答案为:1000.24.解:由题意,可知当<a<1时,第一次操作后剩下的矩形的长为a,宽为1﹣a,所以第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1.此时,分两种情况:①如果1﹣a>2a﹣1,即a<,那么第三次操作时正方形的边长为2a﹣1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1﹣a,即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=;②如果1﹣a<2a﹣1,即a>,那么第三次操作时正方形的边长为1﹣a.则1﹣a=(2a﹣1)﹣(1﹣a),解得a=.故答案为:或.25.解:棱长为4的正方体的体积为64,如果只有棱长为1的正方体就是64个不符合题意排除;如果有一个3×3×3的立方体(体积27),有1×1×1的立方体37个,37+1>29,不符合题意排除;所以应该是有2×2×2和1×1×1两种立方体.则设棱长为1的有x个,则棱长为2的有(29﹣x)个,解方程:x+8×(29﹣x)=64,解得:x=24.所以分割的立方体应为:棱长为1的24个,棱长为2的5个.故答案为:24.。

2020-2021学年人教版数学七年级暑假提高训练 专题04 有理数的乘除法(解析版)

2020-2021学年人教版数学七年级暑假提高训练 专题04 有理数的乘除法(解析版)

________;(注:
…,
(4)①试比较 与 的大小: ________ (填“ ”“ ”或“=”)
②若已知
,则
________.
…)
1.【答案】D 【解答】
参考答案与试题解析 专题 04:有理数的乘除法
的倒数是 ,
【点评】
此题主要考查倒数的概念及性质,属于基础题,解题的关键是掌握倒数的定义:若两个数的乘积是 ,我 们就称这两个数互为倒数. 2.【答案】B 【解答】 解:∵ 两个非零有理数的和为零, ∴ 这两个数是一对相反数, ∴ 它们符号不同,绝对值相等, ∴ 它们的商是 . 故选 .

∴ , , 中有一个负数或三个负数,
当 , , 中有一个负数时, =
=;
当 , , 中有三个负数时, =
=.
【解答】
∵ 有理数 , , 满足

∴ , , 中有一个负数或三个负数,
当 , , 中有一个负数时, =
=;
当 , , 中有三个负数时, =
=.
【点评】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.
(秒), 设相遇后,经过 秒时间两只电子蚂蚁在数轴上相距 个单位长度,
(秒), 由上可得,经过 秒或 秒的时间两只电子蚂蚁在数轴上相距 个单位长度. 【解答】
解: ∵ , 两点在数轴上对应的数分别为 , ,
且点 在点 的左边,






即 的值是 , 的值是 ;
①由题意可得,
点 对应的数是:

即点 对应的数为: ;
解:
. 【解答】 解:
. 【点评】本题考查了有理数的乘法,读懂题目信息,利用乘法交换律和结合律进行计算是解题的关键. 23.【答案】 解: ∵ , 两点在数轴上对应的数分别为 , ,

2023学年浙江七年级数学上学期专题训练专题04一元一次方程单元综合提优(含详解)

2023学年浙江七年级数学上学期专题训练专题04一元一次方程单元综合提优(含详解)
2.(2021·山东七年级期末)设P=2y-2,Q=2y+3,且3P-Q=1,则y的值是()
A.0.4B.2.5C.-0.4D.-2.5
【答案】B
【详解】
∵P=2y-2,Q=2y+3,且3P-Q=1,
∴3(2y-2)-(2y+3)=1,
化简、整理得:4y-9=1,解得:y=2.5.
故选B.
3.(2021·山东七年级期末)某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()
(1)小海从小嘉家开车到高速路口 需要多少时间?
(2)求小海在高速上的行驶速度.
(3)在返回过程中为节省高速路费,小海从 下高速,先送小嘉回家后再返回自己家,发现整个返回过程与整个前往景区过程的时间相同,求小嘉家与小海家之间的距离.
15.(2021·浙江宁波市·七年级期末)为节约用水,宁波市居民生活用水实行按级收费,居民用水价格(含污水处理费)按用水量分为三级,下表是宁波市目前实行的水费收费标准:
(3)十二月份,小江、小北两家用水情况如下:①小江家用水量比小北家少;②两家用水量达到的级别不同;③两家用水量总共 立方米;④水费共 元.请根据以上信息,算一算:小江、小北两家用水量分别是多少立方米?
16.(2021·浙江七年级期末)某市居民生活用电峰谷电价如下表:
高峰时间段用电价格表
低谷时间段用电价格表
D.当b=-1时,方程 无解,,故此选项不正确;
故选:C
【点睛】
本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.
5.(2021·浙江九年级一模)已知 ,则()
A. 2B.
C. D.
【答案】C
【分析】

七年级数学上册题库28套试卷(含答案)

数学寒假作业第一天一、(-1275420361-+-)×(-15×4)=10+9-48+35=6二、()⨯⨯-73187(-2.4) =52 三、721231x x -=++3-=x四、322331=-++x x 2=x五、化简: 7-3x-4x 2+4x-8x 2-15(1) -12x 2+x-8六、某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场? 设胜了x 场,可列方程:2x+(8-x)=13,解之得x=5七、一批树苗按下列方法依次由各班领取:第一班取100棵和余下的 ,第二班取200棵和余下的 ,第三班取300棵和余下的 ,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.树苗共8100棵,有9个班级(提示:本题的设元列方程有多种方法,可以设树苗总数x 棵,由第一、第二两个班级的树苗数相等可列方程:100+ (x -100)=200+ 〔x -200-100- ·(x -100)〕,也可设有x 个班级,则最后一个班级取树苗100x 棵,倒数第二个班级先取100(x -1)棵,又取“余下的 ”也是最后一个班级的树苗数的 ,由最后两班的树苗相等,可得方程:100(x -1)+ x=100x 若注意到倒数第二个班级先取的100(x -1)棵比100x 棵少100棵,即得 =100,还可以设每班级取树苗x 棵,得 =100.八、32. 如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若AB=18cm,求DE 的长;(2)若CE=5cm,求DB 的长.32. (1)∵C 是AB 的中点, ∴AC=BC=12AB=9(cm). ∵D 是AC 的中点, ∴AD=DC=12AC=92(cm). ∵E 是BC 的中点, ∴CE=BE=12BC=92(cm) 又∵DE=DC+CE, ∴DE=92+92=9(cm). (2)由(1)知AD=DC=CE=BE, ∴CE=13BD. ∵CE=5cm, ∴BD=15(cm)九、33.如图3-12,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE, ∠COF=34°,求∠BOD 的度数.33.解:如答图,∵∠COE=90°,∠COF=34°, ∴∠EOF=90°-34°=56°.∵OF 平分∠AOE, ∴∠AOE=∠EOF=56°.∴∠AOC=∠AOF-∠COF=56°-34°=22°.∵∠AOC=∠BOD(对顶角相等), ∴∠BOD=22°. B C B A E O D F十、一次远足活动中,一部分人步行,速度为5公里/小时,另一部分乘一辆汽车,两部分人同地出发。

2020-2021学年人教版数学七年级暑假提高训练 专题05 有理数的乘方(解析版)


【解答】
∵ =,

==



=.
【点评】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.
22.【答案】 【解答】
∵ 、 互为相反数, 、 互为倒数,

=, =,

= =


=,
【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
23.【答案】 【解答】

=,
=,

11. 若 是有理数,则
一定是( )
A.等于
B.大于
C.不小于
12. 近似数
是精确到( )
A.百分位
B.百位
C.个位
13. 已知

,则
()
A.
B.
C.
D.不大于 D.十分位 D.
14. 已知 , 互为相反数, , 互为倒数, 等于 的 次方,则式子
A.
B.
C.
D.
的值为
15. 一根 长的绳子,第一次剪去绳子的 ,第二次剪去剩下绳子的 ,如此剪下去,第 次剪完后剩下 绳子的长度是( )
变,各变成 个孙悟空,一共有 个孙悟空;这 个孙悟空再变,变成 个孙悟空…假设孙悟空一共变了 次. (1)一共有多少个孙悟空?
(2)若已知地球重约
,假设每个孙悟空的体重为 ,请你列出算式来估计一下:这些孙悟
空体重总和相当于地球重量的多少倍?
35. 现定义新运算“ ”,对任意有理数 、 ,规定 =

例如: =
的形式,其中
, 为整数,
故随机抽取一张,则抽到得卡片上算式正确的概率是 ,
【点评】本题考查的是概率的求法.如果一个事件有 种可能,而且这些事件的可能性相同,其中事件 出

部编版七年级数学(上册)期末强化训练及答案

部编版七年级数学(上册)期末强化训练及答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.在平面直角坐标系的第二象限内有一点, 点到轴的距离为3, 到轴的距离为4, 则点的坐标是()A. B. C. D.2. 如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A. 48B. 60C. 76D. 803.如图, P是直线l外一点, A, B, C三点在直线l上, 且PB⊥l于点B, ∠APC=90°, 则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA, PB, PC三条线段中, PB最短;④线段PC的长是点P到直线l的距离, 其中, 正确的是( )A. ②③B. ①②③C. ③④D. ①②③④4.已知5x=3, 5y=2, 则52x﹣3y=()A. B. 1 C. D.5.实效m, n在数轴上的对应点如图所示, 则下列各式子正确的是()A. B. C. D.6.如图, 要把河中的水引到水池A中, 应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短, 这样做依据的几何学原理是()A. 两点之间线段最短B. 点到直线的距离C. 两点确定一条直线D. 垂线段最短7.如图, 由5个完全相同的小正方体组合成一个立体图形, 它的左视图是()A. B. C. D.8.在平面直角坐标系中, 点P(-2, +1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.设的整数部分为a, 小数部分为b, 则的值为()A. B. C. D.10.如图, 在菱形ABCD中, AC=6 , BD=6, E是BC边的中点, P, M分别是AC, AB上的动点, 连接PE, PM, 则PE+PM的最小值是()A. 6B. 3C. 2D. 4.5二、填空题(本大题共6小题, 每小题3分, 共18分)1. 已知, 则=________.2.通过计算几何图形的面积, 可表示一些代数恒等式, 如图所示, 我们可以得到恒等式:________.3. 如图, 五边形是正五边形, 若, 则__________.4. 如图, 圆柱形玻璃杯高为14cm, 底面周长为32cm, 在杯内壁离杯底5cm 的点B 处有一滴蜂蜜, 此时一只蚂蚁正好在杯外壁, 离杯上沿3cm 与蜂蜜相对的点A 处, 则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5. 若一个数的平方等于5, 则这个数等于________.6. 已知|x|=3, 则x 的值是________.三、解答题(本大题共6小题, 共72分)1. 解下列方程:(1)()()64233x x -+=- (2)2134134x x ---=2. 解不等式组 并在数轴上表示出不等式组的解集.3. 如图, 直线CD 与直线AB 相交于C, 根据下列语句画图、解答.(1)过点P 作PQ ∥CD, 交AB 于点Q ;(2)过点P 作PR ⊥CD, 垂足为R ;(3)若∠DCB=120°, 猜想∠PQC 是多少度?并说明理由4. 如图, 已知A.O、B三点共线, ∠AOD=42°, ∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD, 求∠COE的度数.5. 小颖同学学完统计知识后, 随机调查了她所在辖区若干名居民的年龄, 将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息, 解答下列问题:(1)小颖同学共调查了多少名居民的年龄, 扇形统计图中a, b各等于多少?(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有1500人, 请估计年龄在15~59岁的居民的人数.6. 某中学为了表彰在书法比赛中成绩突出的学生, 购买了钢笔30支, 毛笔45支, 共用了1755元, 其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变). 陈老师做完预算后, 向财务处王老师说:“我这次买这两种笔需支领2447元. ”王老师算了一下, 说:“如果你用这些钱只买这两种笔, 那么帐肯定算错了. ”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起, 所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数, 请通过计算, 直接写出签字笔的单价可能为元.参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、B4、D5、C6、D7、B8、B9、D10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.1002、()()2a b a b++.3、724、205、6、±3三、解答题(本大题共6小题, 共72分)1、;.2.-1≤x<23.(1)略;(2)略;(3)∠PQC=60°, 理由略4.(1)∠BOD =138°;(2)∠COE=21°.5、(1)300, a=20%, b=12%;(2)答案见解析;(3)5100.6、(1) 钢笔的单价为21元, 毛笔的单价为25元;(2)①见解析;②签字笔的单价可能为2元或6元.。

七年级上_数学题(附答案)

1.下列结论中,正确的是( D ).A.若一个数是整数,则这个数一定是有理数B.若一个数是有理数,则这个数一定是整数C.若一个数是有理数,则这个数一定是负数D.若一个数是有理数,则这个数一定是正数2.若一个数的相反数的倒数是自然数,则这个数是( ).A.15B.-13C.3 D.-53.若a〃b<|a〃b|,则下列正确结论是( ).A.a<0,b<0 B.a>0,b<0C.a<0,b>0 D.a〃b<04.a为任意有理数,则下列四组数中的数字都不可能是a2的末位数字的应是( ).A.3 4 9 0 B.2 3 7 8C.4 5 6 7 D.1 5 6 95.若(a+3)2与|b-1|互为相反数,则( ).A.a= -3,b= -1 B.a= -3,b=lC.a=3,b=1 D.a=3.b= -16.甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需要从乙队抽调到甲队的人数是( ).A.8 B.9 C.10 D.11 7.洗衣机每台原价为a元,在第一次降价20%的基础上,再降价15%,则洗衣机现价为( ).A.65%a元B.(8%a+75%a)元C.77%a元D.68%a8.一列长200 m的火车以20 m/s的速度通过1 000 m的隧道,这列火车完全通过隧道需要( ).A.70 s B.60 s C.50 s D.30 s 9.图中经过折叠后围成一个立方体的是( ).10.如图M-1所示,直线l上有四点A、B、C、D,则射线共有( ).A .2条B .4条C .6条D .8条11.∠α的补角是142°,∠β的余角是52°,则∠α和∠β的大小关系是( ).A .∠α>∠βB .∠α<∠βC .∠α=∠βD .不能确定12.如图M-2所示,OB 、OC 是∠AOD 内的任意两条射线,OM 平分∠AOB ,ON 平分∠COD ,若∠MON =α,∠BOC =β,则表示∠AOD 为( ).A .2α-βB .α-βC .α+βD .以上都不正确13.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,所以就按销售价的70% 售,那么每台实际售价为( ).A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元14.一艘潜水艇正在水下-50 m 处执行任务,距它正上方30 m 处有一条鲨鱼正好游过,这条鲨鱼的高度为 m .15.地球的表面积是514 000 000 km 2,用科学记数法表示是 km 2.16. 展开后侧面是扇形, 展开后侧面是长方形.17.时钟1点50分时,时针和分针夹角是 .18.如果2x =43与3(x +a )=a -5x 是同解方程,那么a -1= . 19.长方形一边长为2a +b ,周长是6a +5b ,当a =3,b =2时,这个长方形的面积为 .(1)22831210.52;552142⎛⎫⎛⎫÷--⨯--÷⨯ ⎪ ⎪⎝⎭⎝⎭ (2)-43×0.01+(-3)3×0.01-23×0.01-0.01; (3)4211311.73146⎛⎫⎛⎫⎛⎫-÷-÷-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 21. 解下列方程:(1)112(1)(1);223x x x ⎡⎤--=-⎢⎥⎣⎦ (2)1111164 1.2345x ⎧⎫⎡⎤⎪⎛⎫--+=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎪⎭⎩22.已知y=1是方程2-13(m-y)=2y的解,那么求关于x的方程m(x-3)-2=m(2x-5)的解.23.关于x的方程kx=4的解为自然数,求k所能取的整数值.24.如图M-3所示,O是直线AB上的一点,OE平分∠BOC,若∠BOC=40°43′,求∠AOE的度数.25.某工人原计划13小时生产一批零件,后因每小时多生产10件,用12小时不但完成了任务,而且比原计划多生产了60件,问原计划生产了多少个零件?26.一个三角形3条边长的比是2∶4∶5,最长的一条边比最短的一条边长6 cm,求这个三角形的周长.27.某学校计划向山区同学捐增3 500册图书,实际共捐赠了4 125册,其中初中学生捐赠了原计划的120%,高中学生捐赠了原计划的115%,问初中学生和高中学生原计划分别捐赠了多少册?28.某种商品的出厂价是每件a元,商店按出厂价进货后,另加10%的利润销售.(1)写出销售x(件)商品的收款金额y(元)的售价公式;(2)计算当x=12,a=250时,求y的值.一、1.A 分析:根据有理数的意义,整数、分数统称为有理数,故B、C、D三个选项都不完全,应选择A.2.B 分析:因为这个数的相反数的倒数是自然数,所以这个数一定是负数且是分数,应选择B.3.D 分析:因为a〃b<|a〃b|,所以a、b中任一个都不为零,所以a、b同正或同负,或一正一负,而同正时或同负时,a〃b=|a〃b|,所以只有一正一负,即a〃b<0,应选择D.4.B 分析:因a是整数,所以a2也是整数,而a2代表两个相同整数相乘,所以a2的末位数字是0~9这十个数字中相同两个数字乘积的末位数,而这十个数字中任一个数的平方,末位数字只能是O、1、4、5、6、9中的一个,所以A、C、D三个选项都可能出现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
数学提高训练试题二
一、选择题
1、若的值是,则aaa12( )

A、1 B、-1 C、1或-1 D、以上都不对
2、方程132xx的解的个数是( ) (第四届祖冲之杯数学邀请赛试题)
A、0 B、1 C、2 D、3 E、多于3个
3、下面有4个命题:
①存在并且只存在一个正整数和它的相反数相同。
②存在并且只存在一个有理数和它的相反数相同。
③存在并且只存在一个正整数和它的倒数相同。
④存在并且只存在一个有理数和它的倒数相同。
其中正确的命题是:( )
(A)①和② (B)②和③
(C)③和④ (D)④和①
4、两个质数的和是49,则这两个质数的倒数和是( )

A、4994 B、9449 C、4586 D、8645
5、设y=ax15+bx13+cx11-5(a、b、c为常数),已知当x=7时,y=7,则x= -7时,y的值等于( )
A、-7 B、-17 C、17 D、不确定
6、若a、c、d是整数,b是正整数,且满足a+b=c,b+c=d,c+d=a,则a+b+c+d的最大值
是( )
A、-1 B、0 C、1 D、-5
二、填空题

7、计算:

10032113211321121

1


8、若a是有理数,则|)|(||||)(aaaa的最小值是___.
9、有理数cba,,在数轴上的位置如图所示,化简
._____|1||||1|||ccabba
三、解答题
10、X是有理数,求22195221100xx的最小值。

11、已知a、b互为相反数,c、d互为倒数,x的绝对值为1,求a+b+x 2-cdx的值。
- 2 -

12、求满足1baab的所有整数对(a,b).
13、若631542xxx的值恒为常数,求x的取值范围及此常数的值。
- 3 -

答案
选择题C E B B B D
1、选C

2、132xx表示x到2与3的距离和等于1,可见x在这两点之间(包括这两点),
所以方程的解是2≤x≤3的所有数,故应选E
3、既然只有零和它的相反数相同,所以①不正确,②是正确的,另外1与-1都等于其倒
数,因此④不正确,③是正确的。所以选择B。

4、两个质数的和是49,则这两个质数必是2和47,944947121 选B
5、∵x=7时,y=7,∴a715+b713+c711-5=7,∴a715+b713+c711=12
则x= -7时,y=a (-7)15+b (-7)13+c (-7)11-5= -( a715+b713+c711)-5= -12-5= -17,选B
6、∵a+b=c,c+d=a,∴b=c-a,d=a-c,∴d= -b
∵b+c=d,∴c=d-b=-2b,由c+d=a,∴a=-3b
∴a+b+c+d= a+c=-3b-2b=-5b,∵b是正整数 ,∴-5b的最大值是-5,选D

7、原式=


210010011233112
2211

101991012110112
1
2101110014131312121011002432322









8、若,0a则|)|(||||)(aaaa=0
若a<0,则aaaaa2|)|(||||)(>0.所以|)|(||||)(aaaa的
最小值是0.
9、由图可见,,)(||,00,0babababa
又 )1(|1|0110bbbb;)(||00cacacaca
由图可知 .1|1|011cccc 所以:

)1()()1()(|1||||1|||ccabbaccabba

.211)1()()1()(ccabbaccabba
10、分三种情况讨论:
(1) 当22195x时,|22195||221100|xx

.17152211952215)22195()2(22152)2295()221100(xxx
(2) 当22110022195x时,|22195||221100|xx
.1715221195)22195()221100(xx
- 4 -

(3)当221100x时,
.17152211952215221100222152)22195()221100(|22195||221100|xxxxx
综合(1),(2),(3),可得,最小值是.1715
11、∵a、b互为相反数,c、d互为倒数,x的绝对值为1
∴a+b=0,cd=1,x=±1
∴当x=1时,原式=0+1-11=0
当x= -1时,原式=0+1-1(-1)=2

12、∵ab≥0,ba≥0,且a,b为整数,

∴ab=0 且ba=1 ①,或ab=1 且ba=0 ②,

由①得10 10 10 10ababbaba或或或
由②得11 11baba或
所以,满足条件的所有整数对是(0,1)、(0,-1)、(1,0)、(-1,0)、(1,-1)、(-1,1).
13、要使631542xxx的值恒为常数,必须使得631542xxx
的值与x无关,即要使得去掉绝对值后的x项相互合并为0,所以应该有
4-5x≥0,1-3x≤0, ∴5431x,此时

631542xxx
=2x+4-5x+3x-1+6=9。

http://www.czsx.com.cn

相关文档
最新文档