八年级数学相似图形同步测试

合集下载

2022-2023学年冀教版八年级数学上册《13-3全等三角形的判定》同步达标测试题(附答案)

2022-2023学年冀教版八年级数学上册《13-3全等三角形的判定》同步达标测试题(附答案)

2022-2023学年冀教版八年级数学上册《13.3全等三角形的判定》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.如图三角形纸片被遮住了一部分,小明根据所学知识画出了一个与原三角形完全重合的三角形,他画图的依据是()A.SSS B.AAS C.ASA D.SAS2.如图所示,△ABC≌△AEF.在下列结论中,不正确的是()A.∠EAB=∠F AC B.BC=EF C.CA平分∠BCF D.∠BAC=∠CAF 3.如图,△ABC≌△ADE,AB=3cm,AC=5cm,点B,A,E在同一条直线上,则下列说法中,正确的是()A.BE=8cm B.CD=1cm C.∠C=∠ADE D.BC=8cm4.如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去()A.①B.②C.③D.①和②5.在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.4个B.3个C.2个D.1个6.如图,OC平分∠AOB,D,F分别是OC,OB上的点,E,G在OA上,已知OF=13,OE=18,OG=10,△ODF的面积是26,则△DEG的面积是()A.14B.16C.18D.207.如图,在△ABC中,∠ABC的角平分线和∠ACB相邻的外角平分线CD交于点D,过点D作DE∥BC交AB于E,交AC于G,若EG=2,且GC=6,则BE长为()A.8B.7C.10D.98.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB.下列结论中:(1)∠1=∠EFD;(2)BE=EC;(3)BF=DF=CD;(4)FD∥BC.正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分40分)9.如图,CD是Rt△ABC的角平分线,∠A=90°,AD=4,BC=7,则△BCD的面积为.10.如图,AD是△ABC的角平分线,DF⊥AB于点F,点E,G分别是边AB,AC上的点,且DE=DG,则∠AED+∠AGD=度.11.如图,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′,BE,CD交于点F.若∠BAC=40°,则∠BFC的度数为.12.如图,CA⊥AB于点A,AB=4,AC=2,射线BM⊥AB于点B,一动点D从点A出发以2个单位/秒的速度沿射线AB运动,E为射线BM上一动点,随着点D的运动而运动,且始终保持ED=BC,若点D运动t秒(t>0),△EDB与△BCA全等,则t的值为.13.如图,已知△ABC三个内角的角平分线相交于点O,点D在CA的延长线上,且DC=BC,连接DO,若∠BAC=100°,则∠DOC的度数为.14.一个三角形的三条边的长分别是5,8,10,另一个三角形的三条边的长分别是5,4x+2,2y﹣2,若这两个三角形全等,则x+y的值是.15.若四点A(2,0),B(3,0),C(2,3),D(0,2),则∠ACD﹣∠ACB=.16.如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC,E是AB上一点,且AE=AD,连接DE,过E作EF⊥BD,垂足为F,延长EF交BC于点G.现给出以下结论:①EF =FG;②CD=DE;③∠BEG=∠BDC;④∠DEF=45°.其中正确的是.(写出所有正确结论的序号)三.解答题(共5小题,满分40分)17.如图,已知∠1=∠2,AB=AD,请添加一个条件,使△ABC≌△ADE,并加以证明.(1)你添加的条件是(只需添加一个条件);(2)写出证明过程.18.如图,AB∥CD,点E在CB的延长线上,∠A=∠E,AC=DE.(1)求证:BC=CD;(2)连接BD,求证:∠ABD=∠EBD.19.如图,在△ABC中,AB=AC,D为线段BC的延长线上一点,且DB=DA,BE⊥AD 于点E,点F为BE上一点,连接AF.(1)试说明∠BAC+∠EBD=90°;(2)过C作CG⊥BD,与AD交于点G,若∠BAC=∠DAF,则AF=AG吗?请说明理由.20.如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°,(1)试说明:AC=BD;(2)AC与BD相交于点P,求∠APB的度数.21.如图,在△ABC中,AB=AC,点D为BA延长线上一点,DE⊥BC交BC的延长线于点E,点F为AC延长线上一点,FH⊥BC交BC的延长线于点H,且FH=DE.(1)△BDE与△CFH全等吗?为什么?(2)连接DF交BH于点P,若BC=6,求PH的长.参考答案一.选择题(共8小题,满分40分)1.解:他画图的依据是ASA,即有两角和它们的夹边对应相等的两个三角形全等,故选:C.2.解:∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC﹣∠EAE=∠EAF﹣∠EAC,∴∠EAB=∠F AC,故A不符合题意;∵△ABC≌△AEF,∴BC=EF,故B不符合题意;∵△ABC≌△AEF,∴AC=AF,∠ACB=∠F,∴∠ACF=∠F=∠ACB,∴CA平分∠BCF,故C不符合题意;∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC>∠CAF,故D符合题意,故选:D.3.解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠C=∠AED,∠BAC=∠DAE,故C选项不符合题意,∵AB=3cm,AC=5cm,∴BE=AB+AC=8(cm),CD=AC﹣AD=5﹣3=2(cm),故A选项符合题意,B选项不符合题意,∵∠BAC+∠DAE=180°,∴∠BAC=90°,根据勾股定理,BC==(cm),故D选项不符合题意,故选:A.4.解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C.5.解:如图,观察图象可知满足条件的三角形有4个.故选:A.6.解:过D作DM⊥OB于M,DN⊥OA于N,∵OC平分∠AOB,∴DM=DN,∵△ODF的面积是26,OF=13,∴×13DM=2,∴DN=DM=4,∵OE=18,OG=10,∴EG=8,∴△DEG的面积=EG•DN=×4×8=16,故选:B.7.解:∵CD平分∠ACF,∴∠ACD=∠FCD,∵DE∥BF,∴∠FCD=∠EDC,∴∠ACD=∠EDC,∴GD=GC=6,∵BD平分∠ABC,∴∠ABD=∠FBD,∵DE∥BF,∴∠FBD=∠EDB,∴∠ABD=∠EDB,∴BE=DE=EG+DG=2+6=8、故选:A.8.解:(1)在△ADF和△ABF中,,∴△ADF≌△ABF(SAS),∴∠ADF=∠ABF,∵∠ABF+∠BAE=∠ADF+∠DFE=90°,∴∠BAE=∠DFE,∵∠1=∠2,∴2∠1=∠DFE,故(1)错误;(2)当△ABC不是等腰直角三角形时,∠C≠45°,则∠C≠∠CBE,此时BE≠CE,故(2)错误;(4)∵△ADF≌△ABF,∴∠ABF=∠ADF,∵AB⊥BC,BE⊥AC,∴∠ABE+∠CBE=∠BCE+∠C=90°,∴∠ABE=∠C,∴∠ADF=∠C(等量代换),∴DF∥BC(同位角相等,两直线平行),故(4)正确;(3)过D点作DM⊥BC于点M,过点F作FN⊥BC于点N,则DM=FN,∵∠C+∠CBF=∠C+∠CDM=90°,∴∠CDM=∠FBN,∴△CDM≌△FBN(AAS),∴CD=FB,∵△ADF≌△ABF,∴DF=BF.∴BF=DF=CD,故(3)正确;综上所述,正确的说法有(3)、(4)两种;故选:B.二.填空题(共8小题,满分40分)9.解:过D作DE⊥BC于E,∵CD是Rt△ABC的角平分线,∠A=90°,AD=4,∴DE=AD=4,∵BC=7,∴△BCD的面积=BC•DE=7×4=14,故答案为:14.10.解:如图,过点D作DH⊥AC于点H,∴∠DHG=90°,∵DF⊥AB,∴∠DFE=90°,∵AD是△ABC的角平分线,∴DF=DH,∵DE=DG,∴△DEF≌△DGH(HL),∴∠AGD=∠DEF,∴∠AED+∠AGD=∠AED+∠DEF=180°,故答案为:180.11.解:延长C′D交AB′于H.∵△AEB≌△AEB′,∴∠ABE=∠AB′E,∵C′H∥EB′,∴∠AHC′=∠AB′E,∴∠ABE=∠AHC′,∵△ADC≌△ADC′,∴∠C′=∠ACD,∵∠BFC=∠DBF+∠BDF,∠BDF=∠CAD+∠ACD,∴∠BFC=∠AHC′+∠C′+∠DAC,∵∠DAC=∠DAC′=∠CAB′=40°,∴∠C′AH=120°,∴∠C′+∠AHC′=60°,∴∠BFC=60°+40°=100°,故答案为:100°.12.解:∵CA⊥AB,BM⊥AB,∴∠CAB=∠DBE=90°,又∵ED=BC,∴△EDB与△BCA全等,分情况讨论:∵点D运动t秒(t>0),当点D运动到点B时,可得2t=4,解得t=2,此时不能构成△BDE,故t≠2,①△ABC≌△BED,则BD=AC,∵AB=4,AC=2,当0<t<2时,BD=4﹣2t,∴4﹣2t=2,解得t=1,当t>2时,BD=2t﹣4,∴2t﹣4=2,解得t=3;②△ABC≌△BDE,则BD=AB,当0<t<2时,4﹣2t=4,解得t=0(舍),当t>2时,2t﹣4=4,解得t=4,综上,满足条件的t=1或3或4,故答案为:1或3或4.13.解:∵△ABC三个内角的角平分线相交于点O,∴BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠CBO=∠ABC,∠ACO=∠BCO=∠ACB,∵∠BAC=100°,∴∠ABC+∠ACB=80°,∴∠OBC+∠OCB=40°,∴∠BOC=140°,在△BCO和△DCO中,,∴△BCO≌△DCO(SAS),∴∠DOC=∠BOC=140°,故答案为:140°.14.解:∵两个三角形全等,∴4x+2=8,2y﹣2=10或4x+2=10,2y﹣2=8,解得:x=,y=6或x=2,y=5,∴x+y=7.5或7,故答案为:7.5或7.15.解:如图,取OA的中点为E,连接CE、DE,过点C作CF⊥y轴于F,∵A(2,0),B(3,0),C(2,3),D(0,2),∴OE=FD=AE=AB=1,OD=CF=2,CA⊥BE,∠CFD=∠DOE=90°,∴BC=EC,∴∠ACB=∠ACE,在△CFD和△DOE中,,∴△CFD≌△DOE(SAS),∴CD=DE,∠CDF=∠DEO,∴∠ODE+∠DEO=90°,∴∠ODE+∠CDF=90°,∴∠CDE=180°﹣90°=90°,∴△CDE是等腰直角三角形,∴∠DCE=45°,∴∠ACD﹣∠ACB=∠ACD﹣∠ACE=∠DCE=45°,故答案为:45°.16.解:∵BD平分∠ABC,∴∠1=∠2,∵EF⊥BD,∴∠3=∠4=90°,∠EFD=∠DFG=90°,在△BEF和△BEG中,,∴△BEF≌△BEG,∴EF=FG,故①正确;过D作DM⊥AB,∵∠ACB=90°,∴DC⊥BC,又∵BD平分∠ABC,∴DC=DM,在Rt△EMD中:ED>MD,∴CD≠DE,故②说法错误;∵△BEF≌△BEG,在四边形CDFG中∠C+∠8+∠DFG+∠7=180°,∠C=∠DFG=90°,∴∠7+∠8=180°,∵∠7+∠6=180°,∴∠6=∠8,∴∠5=∠8,即∠BEG=∠BDC,故③正确;∴∠AEF=∠ADF,∵AE=AD,∴∠AED=∠ADE,∴∠DEF=∠EDF,∵∠DFE=90°,∴∠DEF=45°,故④正确.故答案为:①③④.三.解答题(共5小题,满分40分)17.解:(1)添加的条件是AE=AC,故答案为:AE=AC(答案不唯一);(2)证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE.18.证明:(1)∵AB∥CD,∴∠ABC=∠DCE,在△ABC和△ECD中,,∴△ABC≌△ECD(AAS),(2)如图,连接BD,∵BC=CD,∴∠CBD=∠CDB,∵AB∥CD,∴∠ABD+∠CDB=180°,又∵∠CBD+∠EBD=180°,∴∠ABD=∠EBD.19.解:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠BAC=180°﹣2∠ABC,∵DA=DB,∴∠DAB=∠DBA,∴∠BDE=180°﹣2∠ABC,∴∠BAC=∠BDE,∵BE⊥AD,∴∠BDE+∠DBE=90°,∴∠BAC+∠EBD=90°.(2)AF=AG.理由如下:∵∠BAC=∠DAF,∴∠BAF=∠CAG,∵∠BAC=∠BDE,∴∠DAF=∠BDE,∵∠CGD=90°﹣∠BDG,∠AFE=90°﹣∠DAF,∴∠AFE=∠CGD,∴∠AFB=∠AGC,又∵AB=AC,∠BAF=∠CAG,∴△ABF≌△ACG(AAS),∴AF=AG.20.(1)证明:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD;(2)解:设AC与BO交于点M,则∠AMO=∠BMP,∵△AOC≌△BOD,∴∠OAC=∠OBD,∴180°﹣∠OAC﹣∠AMO=180°﹣∠OBD﹣∠BMP,即∠MPB=∠AOM=50°,∴∠APB=50°.21.解:(1))△BDE≌△CFH,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠FCH,∴∠ABC=∠FCH,∵DE⊥BC,FH⊥BC,∴∠BED=∠CHF=90°,在△BED和△CHF中,,∴△BDE≌△CFH(AAS);(2)∵△BDE≌△CFH,∴BE=CH,∴BC=EH,∵BC=6,∴EH=6,∵DE⊥BC,∴∠DEP=90°,在△DEP和△FHP中,,∴△DEP≌△FHP(AAS),∴EP=PH=3,∴PH=3.。

八年级数学相似图形知识点

八年级数学相似图形知识点

八年级数学相似图形知识点八年级数学相似图形知识点一、定义表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成 = ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把表示成比值k,则 =k或AB=kCD. 四条线段a,b,c,d中,如果a与b的比等于c与d的比,即 ,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果 ,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中0.618.引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.相似多边形:对应角相等,对应边成比例的两个多边形叫做相似多边形. 相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形.相似比:相似多边形对应边的比叫做相似比.二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么 .如果(b,d都不为0),那么ad=bc.2、合比性质:如果 ,那么 .3、等比性质:如果 == (b+d++n0),那么4、更比性质:若那么 .5、反比性质:若那么三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.相似多边形的周长比等于相似比,面积比等于相似比的平方.五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL六、相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法: 对应角相等,对应边成比例的两个三角形相似.5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似.七、位似图形上任意一对对应点到位似中心的距离之比等于位似比. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比.八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质.2、相似三角形的性质及判定.相似多边形的性质.初中数学整式的乘法知识点(一)单项式与单项式相乘1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

八年级数学同步拔高第九讲《相似之类比探究》讲义

八年级数学同步拔高第九讲《相似之类比探究》讲义

相似之类比探究(讲义)一、知识点睛●类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单情形到复杂情形)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主.●解决类比探究问题的通常思路解决类比探究问题的核心思想是类比(照搬),类比上一问的思路方法(如照搬字母,照搬辅助线等).探究变化过程中的不变特征(如常见结构),是类比的前提.●类比探究中的常见结构平行结构:由比例找平行,构造A字型或X型;直角结构:由斜置的直角通过作垂线构造相似三角形.二、精讲精练1.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在□ABCD 中,点E 是BC 边的中点,点F是线段AE 上一点,BF 的延长线交射线CD 于点G ,若3AF EF=,求CD CG的值.(1)尝试探究:在图1中,过点E 作EH ∥AB 交BG 于点H ,则AB 和EH 的数量关系是_____________,CG 和EH 的数量关系是_____________,CD CG的值是_________.(2)类比延伸:如图2,在原题的条件下,若AF m EF=(m >0),则CD CG的值是_________(用含m 的代数式表示),试写出解答过程.(3)拓展迁移:如图3,在梯形ABCD 中,DC ∥AB ,点E是BC 的延长线上一点,AE 和BD 相交于点F .若AB a CD=,BC b BE =(a >0,b >0),则AF EF的值是________(用含a ,b 的代数式表示).2.数学课上,魏老师出示图1和下面框中条件:如图1,两个等腰直角三角板ABC 和DEF 有一条边在同一条直线l 上,∠ABC =∠DEF =90°,AB =1,DE =2.将直线EB 绕点E 逆时针旋转45°,交直线AD 于点M .将图1中的三角板ABC 沿直线l 向右平移,设C ,E 两点间的距离为x .(1)①当点C 与点F 重合时,如图2所示,可得AMDM的值为___________;②在平移过程中,AM DM 的值为___________(用含x 的代数式表示).(2)将图2中的三角板ABC 绕点C 逆时针旋转,原题中的其他条件保持不变.当点A 落在线段DF 上时,如图3所示,请计算AM DM 的值.(3)将图1中的三角板ABC 绕点C 逆时针旋转m 度,090m ≤,原题中的其他条件保持不变,如图4所示,请计算AM DM 的值(用含x 的代数式表示).3.如图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合,三角板的一边交CD 于点F ,另一边交CB 的延长线于点G .(1)求证:EF =EG .(2)如图2,移动三角板,使顶点E 始终在正方形ABCD的对角线AC 上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,将(2)中的“正方形ABCD ”改为“矩形ABCD ”,且使三角板的一边经过点B ,其他条件不变,若AB =a ,BC =b ,求EF EG 的值.4.如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,AC=mBC,CE=nEA(m,n为实数).试探究线段EF与EG 的数量关系.(1)如图2,当m=1,n=1时,EF与EG的数量关系是____________.(2)如图3,当m=1,n为任意实数时,EF与EG的数量关系是______________,并证明你的结论.(3)如图1,当m,n均为任意实数时,EF与EG的数量关系是______________.(写出关系式,不必证明)三、回顾与思考______________________________________________________ ______________________________________________________ ______________________________________________________。

2020-2021学年人教版八年级下册数学 18.2.3正方形 同步测试(含解析)

2020-2021学年人教版八年级下册数学 18.2.3正方形 同步测试(含解析)

18.2.3正方形同步测试一.选择题1.下列对正方形的描述错误的是()A.正方形的四个角都是直角B.正方形的对角线互相垂直C.对角线相等的平行四边形是正方形D.邻边相等的矩形是正方形2.如图,正方形ABCD的边长为3,点P为对角线AC上任意一点,PE⊥BC,PQ⊥AB,垂足分别是E,Q,则PE+PQ的值是()A.B.3C.D.3.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.4﹣2B.3﹣4C.1D.4.如图,在边长为12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上,若BF=3,则小正方形边长为()A.6B.5C.D.5.如图,在正方形ABCD中,AB=4,E是BC上的一点且CE=3,连接DE,动点M从点A 以每秒2个单位长度的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点M的运动时间为t秒,当△ABM和△DCE全等时,t的值是()A.3.5B.5.5C.6.5D.3.5或6.56.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.4:9B.2:3C.1:2D.1:7.如图,在正方形ABCD所在平面内求一点P,使点P与正方形ABCD的任意两个顶点构成△P AB,△PBC,△P AD,△PCD均是等腰三角形,则满足上述条件的所有点P的个数为()A.8个B.9个C.10个D.11个8.如图,正方形ABCD的边长为1,取AB中点E,取BC中点F,连接DE,AF,DE与AF交于点O.连接OC,则OC=()A.1B.C.D.9.如图,四边形ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,OE =2,若CE•DE=4,则正方形的面积为()A.5B.6C.7D.810.如图,正方形ABCD中,∠EAF=45°,有以下四个结论:①BE+DF=EF;②BM2+DN2=MN2③若AB=3,BE=1,则BN=3;④若CE=2,则DN=,其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题11.一个正方形的对角线长为2,则其面积为.12.在正方形ABCD中,AB=8,点P是正方形边上一点,若PD=3AP,则AP的长为.13.如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=5,BE=12,则阴影部分的面积是.14.如图,B、E、F、D四点在同一条直线上,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.15.如图,在边长为6的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为.三.解答题16.如图,正方形ABCD中,点E、F分别在BC、CD上,且△AEF是等边三角形.求证:CE =CF.17.如图,已知四边形ABCD和四边形EFCG都是正方形.求证:∠CBF=∠CDG.18.如图,已知△ABC中,∠BAC=90°,AB=AC=6,点D为边BC上一动点,四边形ADEG 是正方形,连接GC,正方形对角线AE交BC于点F.(1)求证:△ABD≌△ACG;(2)若BD=4,求AE的值;(3)若DF=5,求BD的值.参考答案一.选择题1.解:A、正方形的四个角都是直角,所以选项A描述正确;B、正方形的对角线互相垂直,所以选项B描述正确;C、对角线相等的平行四边形是矩形,所以选项C描述错误;D、邻边相等的矩形是正方形,所以选项D描述正确;故选:C.2.解:∵四边形ABCD是正方形,∴∠CAB=45°,∠B=90°.∵PE⊥BC,PQ⊥AB,∴∠PQB=∠PEB=90°.∴∠PQB=∠PEB=∠B=90°.∴四边形PQBE为矩形.∴PE=BQ.∵PQ⊥AB,∠CAB=45°,∴△P AQ为等腰三角形.∴PQ=AQ.∴PE+PQ=BQ+AQ=AB=3.故选:B.3.解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:A.4.解:在△BEF与△CFD中,∵∠1+∠2=∠2+∠3=90°,∴∠1=∠3,∵∠B=∠C=90°,∴△BEF∽△CFD,∴=,∵BF=3,BC=12,∴CF=BC﹣BF=12﹣3=9,又∵DF===15,∴=,∴EF=,故选:C.5.解:如图,当点M在BC上时,∵△ABM′和△DCE全等,∴BM=CE,由题意得:BM′=2t﹣4=3,所以t=3.5(秒);当点M在AD上时,∵△ABM″和△CDE全等,∴AM″=CE,由题意得:AM″=16﹣2t=3,解得t=6.5(秒).所以,当t的值为3.5秒或6.5秒时.△ABM和△DCE全等.故选:D.6.解:如图,设大正方形的边长为x,根据图形可得:∵,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9,故选:A.7.解:分为三种情况:①正方形对角线的交点P1;②作AD边的垂直平分线MN,以点D为圆心,以DC为半径画弧,交MN于点P2和P3;以点C为圆心,以DC为半径画弧,交MN于点P4和P5,如图:③同理,作AB边的垂直平分线,分别以点A和点B为圆心,AD为半径画弧,与该垂直平分线也有4个交点.综上,符合题意的所有点P的个数为:1+4+4=9(个).故选:B.8.证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠DAE=90°,在△ABF和△DAE中,,∴△ADE≌△BAF(SAS),∴∠BAF=∠ADE,∵∠BAD=∠DAF+∠DAO=90°,∴∠ADE+∠DAO=90°,∴∠AOD=90°,∵E、F分别为AB,BC的中点,∴AE=AB,BF=BC,∵AB=BC,∴AE=BF,过C作CG⊥DE于G,∵∠OAD+∠ADO=∠ADO+∠CDG=90°,∴∠OAD=∠CDG,在△ADO和△DCG中,,∴△ADO≌△DCG(AAS),∴AO=DG,∵tan∠ADE===,∴DO=2AO=2DG,∴DG=OG,∴CG为DO的垂直平分线,∴OC=DC=1,故选:A.9.解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,∵∠CED=90°,∴四边形OMEN是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM,∴∠COM=∠DON,∵四边形ABCD是正方形,∴OC=OD,在△COM和△DON中,,∴△COM≌△DON(AAS),∴OM=ON,CM=DN,∴四边形OMEN是正方形,∵OE=2,∴2NE2=OE2=(2)2=8,∴NE=ON=2,∵DE+CE=DE+EM+MC=DE+EM+DN=EN+EM=2EN=4,设DE=a,CE=b,∴a+b=4,∵CE•DE=4,CD2=a2+b2=(a+b)2﹣2ab=42﹣2×4=8,∴S正方形ABCD=8.故选:D.10.解:①延长CB,截取BI=DF,连接AI,如图,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABE=∠ADC=90°,∴∠ABI=90°,在△ADF和△ABI中,,∴△ADF≌△ABI(SAS),∴∠BAI=∠DAF,AI=AF,∵∠BAD=90°,∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠BAI+∠BAE=45°,即∠EAI=45°,∴∠EAI=∠EAF,∵AE=AE,∴△AIE≌△AFE(SAS),∴IE=FE,即DE+BF=EF,故①正确;②过B作BD的垂线,截取BH=ND,连接AH,HM,如图,∵四边形ABCD是正方形,∴AD=AB,∠ADB=∠ABD=45°,∠BAD=90°,∴∠ABH=45°=∠ADN,在△ADN和△ABH中,,∴△ADN≌△ABH(SAS),∴∠DAN=∠BAH,AN=AH,∵∠EAF=45°,∠BAD=90°,∴∠DAN+∠BAM=∠BAH+∠BAM=45°,∴∠MAN=∠HAM=45°,在△AHM和△ANM中,,∴△AHM≌△ANM(SAS),∴MH=MN,在Rt△BHM中,HM2=BH2+BM2,∴MN2=BM2+DN2,故②正确;③连接AC,过E作EH⊥AC于点H,∵四边形ABCD为正方形,AB=3,∴∠ACB=∠BAC=∠ADB=∠CAD=45°,AB=BC=3,∴∠HEC=∠HCE=45°,∵BE=1,∴CE=2,∴EH=,∴BE≠HE,∵∠BAE≠∠CAE,∵∠EAF=∠CAD=45°,∴∠BAE≠∠DAF,∴∠EAF+∠BAE≠∠ADN+∠DAF,∵∠BAN=∠EAF+∠BAE,∠BNA=≠∠ADN+∠DAF,∴∠BAN≠∠BNA,∴AB≠BN,∵AB=3,∴BN≠3,故③错误;④过点D作DG⊥BD过N作NG∥BC,与DG交于点G,连接CG,与AF的延长线交于点H,∵四边形ABCD是正方形,∴AD=CD,∠BDC=45°,∠BCD=90°∴∠CDG=∠ADC=45°,NG⊥CD,∴∠DNG=∠DGN=45°,∴DN=DG,∵∠ADN=∠CDG=45°,∴△ADN≌△CDG(SAS),∴∠DAN=∠DCG,∵∠DAN+∠AFD=90°,∠AFD=∠CFH,∴∠HCF+∠CFH=90°,∴∠CHF=90°,∵∠CBD=∠EAF=45°,∴A、B、E、N四点共圆,∴∠ABE+∠ANE=180°,∴∠ANE=90°=∠CHF,∴EN∥CG,∴四边形CENG为平行四边形,∴NG=EC=2,∴DN=CG•sin45°=2×=,故④正确,故选:C.二.填空题11.解:方法一:∵四边形ABCD是正方形,∴AO=BO=AC=1,∠AOB=90°,由勾股定理得,AB=,S正=()2=2.方法二:因为正方形的对角线长为2,所以面积为:2×2=2.故答案为:2.12.解:当点P在AD上时,∵PD=3AP,PD+AP=8,∴AP=2,当点P在AB上时,∵PD2=AP2+AD2,∴9AP2=AP2+64,∴AP=2,综上所述:AP=2或2,故答案为2或2.13.解:在Rt△AEB中,∠AEB=90°,AE=5,BE=12,由勾股定理得:AB==13,∴正方形的面积是13×13=169,∵△AEB的面积是AE×BE=×5×12=30,∴阴影部分的面积是169﹣30=139,故答案为:139.14.解:连接AC,BD交于点O,∵B、E、F、D四点在同一条直线上,∴E,F在BD上,∵正方形AECF的面积为50cm2,∴AC2=50,AC=10cm,∵菱形ABCD的面积为120cm2,∴=120,BD=24cm,所以菱形的边长AB==13cm.故答案为:13.15.解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F,∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=×6=3,∴EF的最小值为3;故答案为:3.三.解答题16.证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠B=90°,∵△AEF是等边三角形,∴AF=AE,在Rt△ADF和Rt△ABE中,,∴Rt△ADF≌Rt△ABE(HL),∴DF=BE,∴CE=CF.17.证明:∵四边形ABCD和四边形EFCG都是正方形,∴CB=CD,CF=CG,∠BCD=∠FCG=90°,∴∠BCF+∠DCF=∠DCF+∠DCG=90°,∴∠BCF=∠DCG,在△BCF和△DCG中,,∴△BCF≌△DCG(SAS),∴∠CBF=∠CDG.18.(1)证明:∵四边形ADEG是正方形,∴AD=AG,∠DAG=90°,∵∠BAC=90°,∴∠BAC=∠DAG,∴∠BAD+∠DAC=∠DAC+∠CAG,∴∠BAD=∠CAG,在△ABD和△ACG中,,∴△ABD≌△ACG(SAS).(2)∵∠BAC=90°,AB=AC=6,∴∠B=∠ACB=45°,在Rt△ABC中,∴BC===12,∵BD=4,∴DC=BC﹣BD=12﹣4=8,由(1)知△ABD≌△ACG,∴GC=BD=4,∠ACG=∠B=45°,∴∠ACB+∠ACG=45°+45°=90°,连接DG,在Rt△DCG中,DG===4,∵四边形ADEG是正方形,∴AE=DG,∴AE=4.(3)∵四边形ADEG是正方形,∴AD=DE,∠ADE=90°,∴∠DAE=∠AED=45°,∵∠BAC=90°,∴∠BAD+∠F AC=∠BAC﹣∠DAE=90°﹣45°=45°,由(1)知△ABD≌△ACG,∴∠BAD=∠CAG,AD=AG,BD=GC,∴∠CAG+∠F AC=∠BAD+∠F AC=45°,∴∠F AG=45°,∴∠F AG=∠F AD,在△DAF和△GAF中,,∴△DAF≌△GAF(SAS),∴GF=DF,∵DF=5,∴GH=5,设BD=x,则FC=12﹣5﹣x=7﹣x,由(2)知∠FCG=90°,在Rt△FCG中,GC2+FC2=FG2,∴x2+(7﹣x)2=52,∴x1=3,x2=4,∴BD的值为3或4.。

2020-2021学年北师大版八年级下册数学 3.1图形的平移 同步练习

2020-2021学年北师大版八年级下册数学 3.1图形的平移 同步练习

3.1图形的平移同步练习一.选择题1.下列哪些图形是通过平移可以得到的()A.B.C.D.2.在平面直角坐标系中,点P(﹣2,3)先向左平移3个单位,再向下平移2个单位,得到的点坐标是()A.(﹣4,1)B.(﹣4,5)C.(﹣5,1)D.(1,1)3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,点A对应点A1(3,b),点B对应点B1(a,3),则a+b的值为()A.﹣1B.1C.3D.54.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是()A.5B.4C.3D.25.如图是一段台阶的截面示意图(AH≠GH),若要沿A﹣B﹣C﹣D﹣E﹣F﹣G铺上地毯(每个台阶的宽度和高度均不同),已知图中所有拐角均为直角.须知地毯的长度,至少需要测量()A.2次B.3次C.4次D.6次6.如图,△ABC沿直线m向右平移a厘米,得到△DEF,下列说法错误的是()A.AC∥DF B.CF∥AB C.CF=a厘米D.DE=a厘米7.如图,△ABC沿AB方向向右平移后到达△A1B1C1的位置,BC与A1C1相交于点O,若∠C 的度数为x,则∠A1OC的度数为()A.x B.90°﹣x C.180°﹣x D.90°+x8.如图,甲、乙两只蚂蚁以相同的速度沿两条不同的路径,同时从点A出发爬到点B,下列判断正确的是()A.甲比乙先到B.甲和乙同时到C.乙比甲先到D.无法确定9.在平面直角坐标系中,将A(m2,1)沿着x的正方向向右平移m2+3个单位后得到B点.有四个点M(﹣m2,1)、N(m2,m2+3)、P(m2+2,1)、Q(3m2,1),一定在线段AB上的是()A.点M B.点N C.点P D.点Q10.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为()A.5B.6C.10D.4二.填空题11.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,3)的对应点为A′(3,2),点B(﹣1,1)的对应点为B′,则点B′的坐标为.12.如图,△ABC沿BC方向平移4cm得到△DEF,如果四边形ABFD的周长是32cm,则△DEF 的周长是cm.13.如图,∠1=72°,直线a平移后得到直线b,则∠2﹣∠3=.14.A,B,C三点是同一个平面直角坐标系内不同的三点,A点在坐标轴上,点A向左平移3个单位长度,再向上平移2个单位长度就到了B点;直线BC∥y轴,C点的横坐标、纵坐标互为相反数,且点B和点C到x轴的距离相等.则A点的坐标是.15.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣1,0)、(3,0),现同时将点A、B 分别向上平移2个单位,再向右平移1个单位,分别得到点A、B的对应点C、D,连接AC、BD,在y轴上存在点P,使△PCD的面积为四边形ABCD面积的一半,则点P的坐标为.三.解答题16.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上.(1)点A的坐标为;(2)将△ABC先向下平移2个单位长度,再向右平移5个单位长度得到△A1B1C1,画出△A1B1C1.(3)△A1B1C1的面积为.17.如图,在平面直角坐标系中有三个点A(﹣3,2),B(﹣5,1),C,将三角形ABC先向右平移6个单位长度,再向下平移2个单位长度后,得到三角形A1B1C1,其中C1的坐标为(4,﹣2),P(a,b)为三角形ABC内部一点,点P经平移后的对应点为P1.(1)画出平移后的三角形A1B1C1,写出点C、点B1、点P1的坐标;(2)求三角形ABC的面积.18.如图,在平面直角坐标系中,A(﹣1,4),B(1,1),C(﹣4,﹣1).(1)三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+5,y0+3),将三角形ABC 作同样的平移得到三角形A1B1C1.①画出平移后的三角形A1B1C1,写出A1B1C1的坐标;②求三角形ABC的面积;(2)若将线段AB沿水平方向平移一次,竖直方向平移一次,两次平移扫过的图形没有重叠部分.两次平移后B点的对应点B2的坐标为(1+a,1+b),已知线段AB扫过的面积为20,请直接写出a,b的数量关系:.参考答案一.选择题1.解:A、通过旋转得到,故本选项错误;B、通过平移得到,故本选项正确;C、通过轴对称得到,故本选项错误;D、通过旋转得到,故本选项错误.故选:B.2.解:点P(﹣2,3)先向左平移3个单位,再向下平移2个单位,得到的点坐标是(﹣2﹣3,3﹣2),即(﹣5,1),故选:C.3.解:∵A,B的坐标为(2,0),(0,1)平移后点A对应点A1(3,b),点B对应点B1(a,3),∴将线段AB向右平移1个单位,向上平移2个单位,∴a=0+1=1,b=0+2=2,∴a+b=1+2=3,故选:C.4.解:由平移的性质可知,AD=BE,∵BC=CE,BC=2,∴BE=4,∴AD=4,故选:B.5.解:测出a的值即为所有台阶的高的和,测出b的值,即为所有台阶的宽的和,测两次即可.故选A.6.解:∵△ABC沿直线m向右平移a厘米,得到△DEF,∴AC∥DF,CF∥AB,CF=AD=BE=a厘米.故选:D.7.解:∵△ABC沿AB方向向右平移后到达△A1B1C1的位置,BC与A1C1相交于点O,∴∠C1=∠C,BC∥B1C1,∴∠COC1=∠C1,∴∠A1OC=180°﹣x,故选:C.8.解:甲、乙两只蚂蚁以相同的速度沿两条不同的路径,同时从点A出发爬到点B,甲和乙同时到,故选:B.9.解:∵将A(m2,1)沿着x的正方向向右平移m2+3个单位后得到B点,∴B(2m2+3,1),∵m2≥0,∴2m2+3>0,∴线段AB在第一象限,点B在点A右侧,且与x轴平行,距离x轴1个单位,因为点M(﹣m2,1)在点A左侧,不在线段AB上;点N(m2,m2+3)距离x轴(m2+3)个单位,不在线段AB上;点P(m2+2,1)在点A右侧,且距离x轴1个单位,在线段AB上;点Q(3m2,1)是将A(m2,1)沿着x的正方向向右平移2m2个单位后得到的,不一定在线段AB上,有可能在线段AB延长线上.所以一定在线段AB上的是点P.故选:C.10.解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,BC∥DE,∴S△ABC=S△BCD=S△ACD=×10=5,∵DE∥BC,∴S△BCE=S△BCD=5.二.填空题11.解:由点A(﹣2,3)的对应点为A′(3,2),坐标的变化规律可知:各对应点之间的关系是横坐标加5,纵坐标减1,故点B的横坐标为﹣1+5=4;纵坐标为1﹣1=0;即所求点的坐标为(4,0),故答案为:(4,0).12.解:∵△ABC沿BC方向平移4cm得到△DEF,∴AC=DF,AD=CF=4cm,∵四边形ABFD的周长是32cm,即AB+BC+CF+DF+AD=32cm,∴AB+BC+AC+4+4=32cm,即AB+BC+AC=24cm,∴△ABC的周长为24cm.∴△DEF的周长是24cm,故答案为24.13.解:∵直线a平移后得到直线b,∴a∥b,∴∠1+∠5=180°,∵∠1=72°,∴∠5=108°,∵∠3=∠4,∠2=∠4+∠5,∴∠2﹣∠3=∠2﹣∠4=108°,故答案为:108°.14.解:当A点在x轴上时,设A(a,0),∵点A向左平移3个单位长度,再向上平移2个单位长度就到了B点,∴B(a﹣3,2),∵直线BC∥y轴,∴C点的横坐标是a﹣3,∵C点的横坐标、纵坐标互为相反数,∴C(a﹣3,3﹣a),∵点B和点C到x轴的距离相等,∴2=|3﹣a|,∴a=1或a=5,∴A(1,0)或A(5,0),当A(1,0)时,B(﹣2,2),C(﹣2,2),不合题意;当A点在y轴上时,设A(0,a),∵点A向左平移3个单位长度,再向上平移2个单位长度就到了B点,∴B(﹣3,2+a),∵直线BC∥y轴,∴C点的横坐标是﹣3,∵C点的横坐标、纵坐标互为相反数,∴C(﹣3,3),∵点B和点C到x轴的距离相等,∴|2+a|=3,∴a=1或a=﹣5,∴A(0,1)或A(0,﹣5),当A(0,1)时,B(﹣3,3),C(﹣3,3),不合题意;综上所述:A点的坐标为(5,0)或(0,﹣5).15.解:由平移可得,C(0,2),D(4,2),∴CD=AB=4,CD∥AB,∴四边形ABCD为平行四边形,∴四边形ABCD面积=4×2=8,又∵△PCD的面积为四边形ABCD面积的一半,∴△PCD的面积为4,即×CD×CP=4,∴CP=2,∴当点P在CD下方时,P(0,0);当点P在CD上方时,P(0,4),故答案为:(0,0)或(0,4).三.解答题16.解:(1)如图所示:点A的坐标为(﹣4,2);故答案为:(﹣4,2);(2)如图所示:△A1B1C1,即为所求;(3)△A1B1C1的面积为:3×4﹣×1×3﹣×2×3﹣×1×4=5.5.故答案为:5.5.17.解:(1)如图所示,A1B1C1即为所求;点C(﹣2,0)、点B1(1,﹣1)、点P1(a+6,b﹣2);(2)三角形ABC的面积为2×3﹣﹣﹣=6﹣1﹣1﹣1.5=2.5.18.解:(1)①如图,△A1B1C1即为所求;A1(4,7)、B1(6,4)、C1(1,2);②△ABC的面积=5×5﹣×5×2﹣×2×3﹣×3×5=.(2)根据题意3a+2b=20,故答案为3a+2b=20.。

湘教版八年级下册数学直角三角形全等的判定21同步测试题

湘教版八年级下册数学直角三角形全等的判定21同步测试题

1.3 直角三角形全等的判定要点感知斜边、直角边定理:斜边和__________条直角边对应相等的两个直角三角形全等.简称“斜边、直角边”或“HL”.预习练习如图,AB=CD,AE⊥BC于点E,DF⊥BC于点F,若BE=CF,则△ABE≌△__________,其依据是________.知识点1 直角三角形全等的判定1.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的依据是( )A.HLB.ASAC.AASD.SAS第1题图第3题图第4题图2.在下列条件中,不能判定两个直角三角形全等的是( )A.两条直角边对应相等B.两个锐角对应相等C.一个锐角和它所对的直角边对应相等D.一条斜边和一条直角边对应相等3.如图所示,AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,则图中全等的三角形有( )A.1对B.2对C.3对D.4对4.已知:如图,AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,AB=DC,则△ABE≌△__________.5.如图,已知BD⊥AE于点B,C是BD上一点,且BC=BE,要使Rt△ABC ≌Rt△DBE,应补充的条件是∠A=∠D或__________或__________或__________.第5题图第6题图第7题图6.已知:如图,BE、CD为△ABC的高,且BE=CD,BE、CD交于点P,若BD=2,则CE=__________.7.已知:如图,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF,∠D=60°,则∠A=__________.8.已知:如图,点B、F、C、E在同一直线上,BF=CE,AB⊥BE,DE⊥BE,垂足分别为B、E且AC=DF,连接AC、DF.求证:∠A=∠D.9.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.求证:AB∥CD.知识点2 作直角三角形10.已知一条斜边和一条直角边,求作直角三角形,作图的依据是__________.11.已知Rt△ABC,∠ACB=90°,请利用直角三角形全等的判定HL,求作三角形Rt△DEF,使Rt△DEF≌Rt△ABC.12.用三角尺可按下面方法画角平分线:如图,在已知∠AOB两边上分别取OM=ON,再分别过点M、N作OA、OB的垂线,两垂线交于点P,画射线OP,则OP平分∠AOB.作图过程用到了△OPM≌△OPN,那么△OPM≌△OPN的依据是__________.第12题图第13题图第14题图13.如图,△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要加一个条件__________.14.如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,则有( )A.DE=DBB.DE=AEC.AE=BED.AE=BD15.如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.求证:△ADE≌△BEC.16.如图,AD是△ABC的高,E为AC上一点,BE交AD于点F,若有BF=AC,FD=CD,试探究BE与AC的位置关系.17.用尺规作一个直角三角形,使其中一条边长为a,这条边所对的角为30°.18.已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB =OC.(1)如图1,若点O在边BC上,求证:∠ABO=∠ACO;(2)如图2,若点O在△ABC的内部,求证:∠ABO=∠ACO.参考答案要点感知一预习练习DCF HL1.A2.B3.C4.DCF5.AB=DB AC=DE ∠ACB=∠DEB6.27.30°8.证明:∵BF=CE,∴BF+FC=CE+FC.即BC=EF.∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°.在Rt△ABC与Rt△DEF中,∵AC=DF,BC=EF,∴Rt△ABC≌Rt△DEF(HL).∴∠A=∠D.9.证明:∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°.在Rt△ABF和Rt△CDE中,AB=CD,DE=BF,∴Rt△ABF≌Rt△CDE(HL).∴∠ACD=∠CAB.∴AB∥CD.10.HL11.作法:(1)作∠MFN=90°.(2)在FM上截取FD,使FD=CA.(3)以D为圆心,以AB为半径画弧,交FN于点E,连接DE.则△DEF为所求作的直角三角形.12.HL 13.AB=AC 14.B15.证明:∵∠1=∠2,∴DE=CE.∵AD∥BC,∠A=90°,∴∠B=90°.∴△ADE和△EBC是直角三角形.而AD=BE,DE=CE,∴△ADE≌△BEC(HL).16.BE与AC垂直.理由:∵AD是△ABC的高,∴∠BDF=∠ADC=90°.∴在Rt△BDF和Rt△ADC中,BF=AC,FD=CD.∴Rt△BDF≌△Rt△ADC(HL).∴∠DBF=∠DAC.∵∠ADC=90°,∴∠DAC+∠ACD=90°.∴∠DBF+∠ACD=90°.∴∠BEC=90°.∴BE⊥AC.17.已知:线段a,求作:Rt△ABC,使BC=a,∠ACB=90°,∠A=30°.作法:(1)作∠MCN=90°.(2)在CN上截取CB,使CB=a.(3)以B为圆心,以2a为半径画弧,交CM于点A,连接AB.则△ABC为所求作的直角三角形.18.证明:(1)过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,再利用“HL”证明Rt△OEB≌Rt△OFC.∴∠ABO=∠ACO.(2)过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,再利用“HL”证明Rt△OEB≌Rt△OFC.∴∠ABO=∠ACO.八年级下册数学期末测试卷一、选择题(本大题共8个小题,每小题3分,满分24分.请将正确答案的字母代号填在下表中.)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)以下列各组数为边长能构成直角三角形的是()A.1,1,B.2,3,4 C.4,5,6 D.6,8,113.(3分)在下列所给出坐标的点中,在第三象限的是()A.(2,3)B.(﹣2,﹣3) C.(﹣2,3)D.(2,﹣3)4.(3分)如图,在△ABC中,∠C=90°,∠A=30°,BC=4cm,点D 为AB的中点,则CD=()A.3cm B.4cm C.5cm D.6cm5.(3分)已知▱ABCD的周长是26cm,其中△ABC的周长是18cm,则AC的长为()A.12cm B.10cm C.8cm D.5cm6.(3分)菱形的两条对角线长为6cm 和8cm,那么这个菱形的周长为()A.40 cm B.20 cm C.10 cm D.5 cm7.(3分)正方形具有而菱形不一定具有的性质是()A.对角线平分一组对角B.对角线互相垂直平分C.对角线相等D.四条边相等8.(3分)汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t (小时)的函数关系用图象表示为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,满分24分)9.(3分)已知点P(3,2)在一次函数y=x+b的图象上,则b= .10.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.11.(3分)已知y与x成正比例,且当x=1时,y=2,则当x=4时,y= .12.(3分)如图,AC⊥BC,AD⊥BD,垂足分别是C、D,若要用“HL”得到Rt△ABC≌Rt△BAD,则你添加的条件是.(写一种即可)13.(3分)将点P (﹣3,4)先向下平移3个单位,再向右平移2个单位后得到点Q,则点Q的坐标是.14.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=2,则菱形ABCD的周长是.15.(3分)如图,矩形ABCD中,对角线AC、BD交于点O,过O 的直线分别交AD、BC于点E、F,已知AD=4cm,图中阴影部分的面积总和为6cm2,对角线AC长为cm.16.(3分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).三、解答题(本大题共8个小题,共计72分)17.(6分)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.18.(8分)已知:如图,AC平分∠BAD,CE⊥AB于E CF⊥AD于F,且BC=DC.求证:BE=DF.19.(8分)已知一次函数y=(2m+1)x+m﹣3.(1)若这个函数的图象经过原点,求m的值;(2)若这个函数的图象经过一、三、四象限,求m的取值范围.20.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.21.(10分)为了进一步了解某校八年级学生的身体素质情况,体育老师对该校八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下所示:组别次数x 频数(人数)第1组80≤x<100 6第2组100≤x<120 8第3组120≤x<140 a第4组140≤x<160 18第5组160≤x<180 6请结合图表完成下列问题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若在一分钟内跳绳次数少于120次的为测试不合格,则该校八年级共1000人中,一分钟跳绳不合格的人数大约有多少?22.(10分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是32cm.求:(1)两条对角线的长度;(2)菱形的面积.23.(10分)甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系.请根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了h;(2)货车的平均速度是km/h;(3)求线段DE对应的函数解析式.24.(12分)如图,在矩形ABCD中,AB=1cm,AD=3cm,点Q 从A点出发,以1cm/s的速度沿AD向终点D运动,点P从点C出发,以1cm/s的速度沿CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动,两点同时出发,运动了t秒.(1)当0<t<3,判断四边形BQDP的形状,并说明理由;(2)求四边形BQDP的面积S与运动时间t的函数关系式;(3)求当t为何值时,四边形BQDP为菱形.2016-2017学年湖南省张家界市永定区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分.请将正确答案的字母代号填在下表中.)1.(3分)(2017春•永定区期末)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2017春•永定区期末)以下列各组数为边长能构成直角三角形的是()A.1,1,B.2,3,4 C.4,5,6 D.6,8,11【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【解答】解:A、∵12+12=2=()2,∴能构成直角三角形,故本选项正确;B、∵22+32=25≠42,∴不能构成直角三角形,故本选项错误;C、∵42+52=41≠62,∴不能构成直角三角形,故本选项错误;D、∵62+82=100≠112,∴不能构成直角三角形,故本选项错误.故选A.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.(3分)(2017春•永定区期末)在下列所给出坐标的点中,在第三象限的是()A.(2,3)B.(﹣2,﹣3) C.(﹣2,3)D.(2,﹣3)【分析】根据各象限内点的坐标特征解答即可.【解答】解:A、(2,3)第一象限,B、(﹣2,﹣3)第三象限,C、(﹣2,3)第二象限,D、(2,﹣3)第四象限,故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(3分)(2017春•永定区期末)如图,在△ABC中,∠C=90°,∠A=30°,BC=4cm,点D为AB的中点,则CD=()A.3cm B.4cm C.5cm D.6cm【分析】根据直角三角形的性质得到AB=2BC=8cm,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.【解答】解:∵∠C=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,∵点D为AB的中点,∴CD=4cm,故选:B.【点评】本题考查的是直角三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半、斜边上的中线等于斜边的一半是解题的关键.5.(3分)(2017春•永定区期末)已知▱ABCD的周长是26cm,其中△ABC的周长是18cm,则AC的长为()A.12cm B.10cm C.8cm D.5cm【分析】根据题意得出平行四边形的邻边长的和为13cm,进而利用△ABC的周长是18cm求出AC即可.【解答】解:如图所示:∵▱ABCD的周长是26cm,∴AB+BC=13cm,∵△ABC的周长是18cm,∴AC=18﹣13=5(cm).故选:D.【点评】此题主要考查了平行四边形的性质,得出AB+BC=13cm是解题关键.6.(3分)(2017春•永定区期末)菱形的两条对角线长为6cm 和8cm,那么这个菱形的周长为()A.40 cm B.20 cm C.10 cm D.5 cm【分析】首先根据题意画出图形,由菱形ABCD中,AC=6,BD=8,即可得AC⊥BD,OA=AC=3,OB=BD=4,然后利用勾股定理求得这个菱形的边长.【解答】解:∵菱形ABCD中,AC=6,BD=8,∴AC⊥BD,OA=AC=3,OB=BD=4,∴AB==5.即这个菱形的周长为:20.故选B.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的对角线互相平分且垂直.7.(3分)(2017春•博兴县期末)正方形具有而菱形不一定具有的性质是()A.对角线平分一组对角B.对角线互相垂直平分C.对角线相等D.四条边相等【分析】根据正方形和菱形的性质容易得出结论.【解答】解:正方形的性质:正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等,并且每一条对角线平分一组对角;菱形的性质:菱形的四条边相等,对角线互相垂直平分,并且每一条对角线平分一组对角;因此正方形具有而菱形不一定具有的性质是:对角线相等;故选:C.【点评】本题考查了正方形和菱形的性质;熟练掌握正方形和菱形的性质是解题的关键;注意区别.8.(3分)(2004•四川)汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.【分析】先根据题意列出s、t之间的函数关系式,再根据函数图象的性质和实际生活意义进行选择即可.【解答】解:根据题意可知s=400﹣100t(0≤t≤4),∴与坐标轴的交点坐标为(0,400),(4,0).要注意x、y的取值范围(0≤t≤4,0≤y≤400).故选C.【点评】主要考查了一次函数的图象性质,首先确定此函数为一次函数,然后根据实际意义,函数图象为一条线段,再确定选项即可.二、填空题(本大题共8小题,每小题3分,满分24分)9.(3分)(2017春•永定区期末)已知点P(3,2)在一次函数y=x+b 的图象上,则b= ﹣1 .【分析】直接把点P(3,2)代入一次函数y=x+b即可.【解答】解:∵P(3,2)在一次函数y=x+b的图象上,∴3+b=2,解得b=﹣1.故答案为:﹣1.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.(3分)(2016•乌鲁木齐)一个多边形的内角和是外角和的2倍,则这个多边形的边数为 6 .【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.11.(3分)(2017春•永定区期末)已知y与x成正比例,且当x=1时,y=2,则当x=4时,y= 8 .【分析】首先根据y与x成正比例列出函数关系式,然后代入x、y的值即可求解.【解答】解:∵y与x成正比例,∴y=kx(k≠0).∵当x=1时,y=2,∴k=2,∴y与x之间的函数解析式是y=2x,∴当x=4时,y=8.故答案为:8.【点评】本题考查的是利用待定系数法求一次函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将一对未知数的值代入解析式,利用方程解决问题.12.(3分)(2017春•永定区期末)如图,AC⊥BC,AD⊥BD,垂足分别是C、D,若要用“HL”得到Rt△ABC≌Rt△BAD,则你添加的条件是AC=BD .(写一种即可)【分析】根据“HL”添加AC=BD或BC=AD均可.【解答】解:可添加AC=BD,∵AC⊥BC,AD⊥BD,∴∠C=∠D=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),故答案为:AC=BD.【点评】本题主要考查全等三角形的判定,熟练掌握直角三角形全等的判定是解题的关键.13.(3分)(2017春•永定区期末)将点P (﹣3,4)先向下平移3个单位,再向右平移2个单位后得到点Q,则点Q的坐标是(﹣1,1).【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:根据题意,知点Q的坐标是(﹣3+2,4﹣3),即(﹣1,1),故答案为:(﹣1,1).【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.14.(3分)(2017春•永定区期末)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=2,则菱形ABCD的周长是16 .【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×2=4,∴菱形ABCD的周长=4BC=4×4=16.故答案为16.【点评】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.15.(3分)(2017春•永定区期末)如图,矩形ABCD中,对角线AC、BD交于点O,过O的直线分别交AD、BC于点E、F,已知AD=4cm,图中阴影部分的面积总和为6cm2,对角线AC长为 5 cm.【分析】根据矩形的性质,采用勾股定理求解即可.【解答】解:∵图中阴影部分的面积总和为6cm2,AD=4cm,则AD ×CD=×4×CD=6,CD=3,在直角三角形ACD中AD=4,CD=3,由勾股定理得AC=5,∴对角线AC长为5cm.故答案为5.【点评】本题主要考查矩形的性质、勾股定理,是基础知识比较简单.16.(3分)(2013•聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(2n,1)(用n 表示).【分析】根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可.【解答】解:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),所以,点A4n+1(2n,1).故答案为:(2n,1).【点评】本题考查了点的坐标的变化规律,仔细观察图形,分别求出n=1、2、3时对应的点A4n+1的对应的坐标是解题的关键.三、解答题(本大题共8个小题,共计72分)17.(6分)(2014•湘潭)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).【分析】(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A、O、B向左平移后的对应点A1、O1、B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可.【解答】解:(1)B点关于y轴的对称点坐标为(﹣3,2);(2)△A1O1B1如图所示;(3)A1的坐标为(﹣2,3).故答案为:(1)(﹣3,2);(3)(﹣2,3).【点评】本题考查了利用平移变换作图,关于y轴对称点的坐标,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.(8分)(2017春•永定区期末)已知:如图,AC平分∠BAD,CE⊥AB于E CF⊥AD于F,且BC=DC.求证:BE=DF.【分析】根据角平分线的性质就可以得出CE=CF,再由HL证明△CEB ≌△CFD就可以得出结论.【解答】证明:∵AC平分∠BAD,CE⊥AB于E CF⊥AD于F,∴∠F=∠CEB=90°,CE=CF.在Rt△CEB和Rt△CFD中,∴△CEB≌△CFD(HL),∴BE=DF.【点评】本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明△CEB≌△CFD是关键.19.(8分)(2017春•永定区期末)已知一次函数y=(2m+1)x+m ﹣3.(1)若这个函数的图象经过原点,求m的值;(2)若这个函数的图象经过一、三、四象限,求m的取值范围.【分析】(1)由一次函数图象经过原点,可得出m﹣3=0,解之即可得出结论;(2)由一次函数图象经过一、三、四象限,即可得出关于m的一元一次不等式组,解之即可得出结论.【解答】解:(1)∵一次函数y=(2m+1)x+m﹣3的图象经过原点,∴m﹣3=0,解得:m=3.(2)∵一次函数y=(2m+1)x+m﹣3的图象经过一、三、四象限,∴,解得:﹣<m<3.【点评】本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次函数图象上点的坐标特征,找出m﹣3=0;(2)根据一次函数图象与系数的关系,找出关于m的一元一次不等式组.20.(8分)(2017春•永定区期末)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.【分析】先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.【解答】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.【点评】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.21.(10分)(2017春•永定区期末)为了进一步了解某校八年级学生的身体素质情况,体育老师对该校八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下所示:组别次数x 频数(人数)第1组80≤x<100 6第2组100≤x<120 8第3组120≤x<140 a第4组140≤x<160 18第5组160≤x<180 6请结合图表完成下列问题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若在一分钟内跳绳次数少于120次的为测试不合格,则该校八年级共1000人中,一分钟跳绳不合格的人数大约有多少?【分析】(1)本题需先根据表中所给的数据以及频数与频率之间的关系即可求出答案;(2)本题需根据频数分布表中的数据即可将直方图补充完整;(3)从表格中可以知道在一分钟内跳绳次数少于120次的有两个小组,共6+8=14人,然后除以总人数即可求出该校九年级(1)班学生进行一分钟跳绳不合格的概率,然后即可得出人数;【解答】解:(1)a=50﹣(6+8+18+6)=12;(2)频数分布直方图如图所示:(3)抽样调查中不合格的频率为:=0.28,估计该年级学生不合格的人数大约有1000×0.28=280(个)答:估计该年级学生不合格的人数大约有280个人.【点评】此题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)(2017春•永定区期末)如图,在菱形ABCD中,∠ABC 与∠BAD的度数比为1:2,周长是32cm.求:(1)两条对角线的长度;(2)菱形的面积.【分析】(1)首先证明△ABC是等边三角形,解直角三角形OAB即可解决问题;(2)菱形的面积等于对角线乘积的一半;【解答】解:(1)菱形ABCD的周长为32cm,∴菱形的边长为32÷4=8cm∵∠ABC:∠BAD=1:2,∠ABC+∠BAD=180°(菱形的邻角互补),∴∠ABC=60°,∠BCD=120°,∴△ABC是等边三角形,∴AC=AB=8cm,∵菱形ABCD对角线AC、BD相交于点O,∴AO=CO,BO=DO且AC⊥BD,∴BO=4cm,∴BD=8cm;(2)菱形的面积=AC•BD=×8×8=32(cm2).【点评】本题考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是证明△ABC是等边三角形,属于中考常考题型.23.(10分)(2017春•永定区期末)甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系.请根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了0.5 h;(2)货车的平均速度是60 km/h;(3)求线段DE对应的函数解析式.【分析】(1)根据点C、D的横坐标,即可求出轿车在途中停留的时间;(2)根据速度=路程÷时间,即可求出货车的平均速度;(3)观察函数图象,找出点的坐标,利用待定系数法即可求出线段DE对应的函数解析式.【解答】解:(1)2.5﹣2=0.5(h).故答案为:0.5.(2)300÷5=60(km/h).故答案为:60.(3)设线段DE对应的函数解析式为y=kx+b(2.5≤x≤4.5),将点D(2.5,80)、点E(4.5,300)代入y=kx+b,,解得:.∴线段DE对应的函数解析式为y=110x﹣195(2.5≤x≤4.5).【点评】本题考查了一次函数的应用以及待定系数法求一次函数解析式,解题的关键是:(1)利用点D的横坐标﹣点C的横坐标,求出停留时间;(2)根据数量关系,列式计算;(3)根据点的坐标,利用待定系数法求出线段DE的函数解析式.24.(12分)(2017春•永定区期末)如图,在矩形ABCD中,AB=1cm,AD=3cm,点Q从A点出发,以1cm/s的速度沿AD向终点D运动,点P从点C出发,以1cm/s的速度沿CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动,两点同时出发,运动了t秒.(1)当0<t<3,判断四边形BQDP的形状,并说明理由;(2)求四边形BQDP的面积S与运动时间t的函数关系式;(3)求当t为何值时,四边形BQDP为菱形.【分析】(1)先判断出AD∥BC,AD=BC=3,再由运动知,AQ=PC=t,即可得出结论;(2)利用平行四边形的面积公式即可得出结论;(3)利用勾股定理表示出BQ,再由BQ=BP建立方程求解即可得出结论.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,AD=BC=3,由运动知,AQ=t,PC=t,∴AQ=PC,∴AD﹣AQ=BC﹣PC,∴DQ=BP,∵AD∥BC,∴四边形BQDP为平行四边形,(2)由(1)知,四边形BQDP是平行四边形,∵PC=t,∴BP=BC﹣PC=3﹣t,∴S=BP×AB=(3﹣t)×1=﹣t+3(3)如图,在Rt△ABQ中,AQ=t,AB=1,根据勾股定理得,BQ==,由运动知,CP=t,∴BP=3﹣t,∵平行四边形BQDP是菱形,∴BQ=BP,∴=3﹣t,∴t=,当时,四边形BQDP为菱形.【点评】此题是四边形综合题,主要考查了矩形的性质,平行四边形的判定和性质,菱形的性质,解(1)的关键是得出AQ=PC,解(2)的关键是利用平行四边形的面积公式求解,解(3)的关键是表示出BQ,用BQ=BP建立方程求解,是一道中等难度的题目.厚薄读书法:复习课本要厚薄结合著名数学家华罗庚先生说:“书要能从薄读到厚,还要能从厚读到薄。

八年级数学暑假专题 图形的相似 北师大版

初二数学暑假专题 图形的相似北师大版【本讲教育信息】一.教学内容:暑假专题——图形的相似二.教学目标:1.了解线段的比、成比例线段、黄金分割.2.了解相似多边形的性质,掌握两个三角形相似的条件.3.了解图形的位似,能够利用作位似图形等方法将一个图形放大或缩小,利用图形的相似解决一些实际问题.三.知识要点分析: 1.线段的比(1)比例的性质:①a b =c d ⇔ad =bc ;②a b =c d ⇒b a =d c ;③a b =c d ⇒a ±b b =c ±d d ;④a b =cd=e f =…=mn (b +d +f +…+n ≠0)⇒a +c +e +…+m b +d +f +…+n =a b. (2)点C 把线段AB 分成AC 和BC 两条线段.如果AC AB =BCAC ,那么称线段AB 被点C黄金分割.点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 2.相似三角形的判定、性质(1)相似三角形的对应角相等,对应边成比例.(2)两个三角形相似的条件:①两角对应相等的两个三角形相似;②三边对应成比例的两个三角形相似;③两边对应成比例且夹角相等的两个三角形相似. 3.相似多边形的性质(1)相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比. (2)相似多边形的周长比等于相似比,面积比等于相似比的平方.4.位似图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点.位似图形上任意一对对应点到位似中心的距离之比等于位似比. 5.本讲内容结构如下:线段的比黄金分割形状相同的图形相似多边形的概念相似三角形及其判定条件的探索相似的综合应用,测量旗杆的高度相似多边形的性质图形的放大与缩小【典型例题】知识点1:线段的比例1.已知a 2=b 3=c 4=d5≠0,求a +b +c +d b +c的值.题意分析:本例考查比例的性质,从已知和所求来看不能直接利用比例的性质解题. 思路分析:根据已知比例式的特点,设一个参数表示出a 、b 、c 、d ,再代入所求代数式求解.或利用比例的性质把已知和所求变形,以寻求中间比. 解:∵a 2=b 3=c 4=d5≠0,∴a +b +c +d 2+3+4+5=a 2,b +c 3+4=b 3=a 2, ∴a +b +c +d 14=b +c 7,∴a +b +c +d b +c=147=2.解题后的思考:本例是等比性质与反比性质的综合运用.例2.已知线段AB =6,C 为AB 的黄金分割点,求AC -BC 的值.题意分析:黄金分割点把已知线段分成的较长线段与原线段的比是黄金比.思路分析:由黄金比和AB 的长度可求出AC 、BC 的长度,再求差即可.但应注意点C 的位置有两个.解:(1)若AC >BC ,如图所示:AB C∵点C 是线段AB 的黄金分割点,∴AC =5-12·AB =5-12×6=35-3,BC =AB -AC =6-(35-3)=9-35. ∴AC -BC =(35-3)-(9-35)=65-12. (2)若AC <BC ,如图所示:ABC则BC =5-12·AB =35-3. ∴AC =AB -BC =6-(35-3)=9-35, ∴AC -BC =(9-35)-(35-3)=12-65. 综上所述,AC -BC 的值为65-12或12-65.解题后的思考:本例极容易忽视一条线段上有两个黄金分割点,即AC 不一定是较长线段,应分情况计算.注意,本例两种情况下的结果可分析出是互为相反数,因此可先计算其中一种的结果,另一种取其相反数即可.小结:解决比例问题除了要熟练掌握比例的性质,还有一种重要方法,那就是引入比值k 的方法.利用这种方法可以很方便地推导出比例的性质、解决比例式求值问题.知识点2:相似图形例3.如图所示,△ABC ∽△DBA ,∠BAC =80°,∠C =70°,AB =5cm ,AC =3cm ,BC =6cm ,求∠BDA 、∠BAD 、∠DAC 、BD 、AD 、DC .BCD题意分析:本题根据相似三角形的性质求相似三角形的对应角的度数和对应边的长度. 思路分析:把已知的角、线段和所求的角、线段分类,化归到相应的相似三角形中,其中∠DAC 和DC 不能转化为相似三角形的角和边,应利用求差的方法来解.解:∵△ABC ∽△DBA ,∴∠BDA =∠BAC =80°,∠BAD =∠C =70°. ∴∠DAC =∠BAC -∠BAD =80°-70°=10°.∵△ABC ∽△DBA ,∴AB DB =BC BA =ACDA.即5BD =65=3AD ,解得BD =256,AD =52, ∴DC =BC -BD =6-256=116.解题后的思考:解决相似三角形的性质问题时,注意对应位置上的字母必须对应,这样才能保证其中的角、线段的对应关系.例4.如图所示,在矩形ABCD 中,E 在AD 上,EF ⊥BE ,交CD 于F ,连接BF ,则图中与△ABE 一定相似的三角形是( )A .△EFBB .△DEFC .△CFBD .△EFB 与△DEFAB CDEF题意分析:要判定两个三角形是否相似,只需看这两个三角形是否具备相似条件,另外还要注意矩形的四个角都是直角这一隐含条件.思路分析:由题中给的已知条件可知,∠EAB =∠FDE =90°,∠DEF +∠EFD =∠DEF +∠BEA =90°,故∠EFD =∠BEA ,所以△ABE 与△DEF 相似,选项A 、C 中均没有△DEF ,故可排除,而我们又无法找到△EFB 与△ABE 相似所具备的条件,因此选项B 是正确的.解:B解题后的思考:一般情况下,在判断两个三角形是否相似时,若不知道两个三角形各边长度关系时,应考虑两角是否对应相等.小结:判断两三角形相似的方法有三种,其中“两角对应相等,两三角形相似”最简单,也最常用.知识点3:相似图形的应用例5.有一块三角形形状的铁板,如图所示,其中,AB =90cm ,AC =60cm ,BC =45cm ,现要在AB 、AC 上确定两点D 、E ,然后沿DE 将上面部分剪去,使剩下的四边形部分BDEC 为梯形,且DE =15cm ,如何确定点D 和点E 的位置?B CDE题意分析:欲确定点D 、E 的位置,只要求出AD 、AE 的长即可.思路分析:由已知条件,较易推出△ADE ∽△ABC ,利用其对应边成比例,即可求出AD 、AE 的长.解:由四边形BDEC 为梯形,得DE ∥BC ,所以∠ADE =∠B ,∠AED =∠C ,△ADE ∽△ABC .所以DE BC =AD AB =AE AC ,即1545=AD 90=AE 60.因此AD =30(cm ),AE =20(cm ).即点D 应距顶点A30cm ,点E 应距顶点A20cm .解题后的思考:本题利用相似三角形的性质求出AD 、AE 的长,进而确定点D 和点E 的位置.题中要求“使剩下的四边形部分BDEC 为梯形”,如果将这一要求去掉,又该如何剪呢?例6.如图,电影胶片上每一个图片的规格为cm ×cm ,放映银幕的规格为2m ×2m ,若放映机的光源S 距胶片20cm 时,问银幕应在离镜头多远的地方才能使放映的图像刚好布满整个银幕?S题意分析:如图所示,可以看作一个正四棱锥.光源S 到胶片的距离正好是点S 到胶片中心的距离,光源S 到银幕的距离正好是点S 到银幕中心的距离.思路分析:设胶片和银幕两个正方形的中心(对角线交点)分别为O 2、O 1.则SO 1SO 2=SD 1SD 2=A 1D 1A 2D 2. B 1C 1D 1SA 1O 1O 2B 2A 2C 2D 2解:设银幕距镜头xcm ,根据题意,得2m =200cm . x 20=200,解得x =80007. 80007cm =807m . 答:银幕距镜头807m 时,放映的图像刚好布满整个银幕.解题后的思考:解决此类问题首先应建立数学模型,把实物立体图形转化为平面几何图形,从而构造出相似三角形.小结:图形相似与现实世界有着密切的联系,常见的应用问题有两类:一是阳光下测量物体的高度.二是从某一点观测物体.总结:学习本讲应注意两点:一是利用比例的性质、相似图形的性质解决一些计算类的题目;二是在判断三角形相似或说明角相等、线段之间的关系时逐步加强逻辑推理的力度,认识和把握更为复杂的图形,提高研究“空间与图形”的水平.【预习导学案】(暑假专题——证明)一.预习前知1.什么是定义、命题、定理、公理、推论、证明?2.平行线的性质有哪些?如何判定两直线平行?3.三角形内角和定理及其推论是什么?二.预习导学1.下列语句中不是命题的是()A.相等的角不是对顶角B.两直线平行,内错角相等C.两点之间线段最短D.过点O作线段MN的垂线2.地理老师在黑板上画了一幅世界五大洲的图形,并给每个洲都写上了代号,然后,他请5个同学每人认出2个洲来,5个同学的回答是:甲:3号是欧洲,2号是美洲乙:4号是亚洲,2号是大洋洲丙:1号是亚洲,5号是非洲丁:4号是非洲,3号是大洋洲戊:2号是欧洲,5号是美洲地理老师说:“你们每个人都认对了一半。

2021-2022学年基础强化沪教版(上海)八年级数学第二学期第二十二章四边形同步测试试题(含详解)

八年级数学第二学期第二十二章四边形同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平行四边形ABCD 中,AE BC ⊥于点E ,把BAE 以点B 为中心顺时针旋转一定角度后,得到BFG ,已知点F 在BC 上,连接DF .若70ADC ∠=︒,15CDF ∠=︒,则DFG ∠的大小为( )A .140°B .155°C .145°D .135°2、下列正多边形中,能够铺满地面的是( )A .正方形B .正五边形C .正七边形D .正九边形3、下列命题是真命题的是( )A .五边形的内角和是720°B .三角形的任意两边之和大于第三边C .内错角相等D .对角线互相垂直的四边形是菱形4、在□ABCD中,AC=24,BD=38,AB=m,则m的取值范围是()A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<125、四边形的内角和与外角和的数量关系,正确的是()A.内角和比外角和大180°B.外角和比内角和大180°C.内角和比外角和大360°D.内角和与外角和相等6、如图,点E在边长为5的正方形ABCD的边CD上,将ADE绕点A顺时针旋转90︒到ABF的位置,连接EF,过点A作FE的垂线,垂足为点H,与BC交于点.G若2CG=,则CE的长为()A.54B.154C.4D.9 27、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是()A.12 B.15 C.18 D.248、欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,长度恰好是方程x2+x﹣1=0的一个正根的线段为()A.线段BF B.线段DG C.线段CG D.线段GF9、将一块三角尺和一张矩形纸片如图排放,若∠1=25°,则∠2的大小为()A.55°B.65°C.45°D.75°10、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是().A.1,1,2,B.1,1,1 C.1,2,2 D.1,1,6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,已知反比例函数1(0)y xx=>,有若干个正方形如图依次叠放,双曲线经过正方形的一个顶点(A1,A2,A3在反比例函数图象上),以此作图,我们可以建立了一个“凡尔赛阶梯”,那么A2的坐标为 _____.2、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.3、已知一个多边形内角和1800度,则这个多边形的边数_____.4、如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB上,将△ABC沿DE对折,恰好能使点A和点C重合.若x轴上有一点P,使△AEP为等腰三角形,则点P的坐标为________.5、在平行四边形ABCD中,若∠A=130°,则∠B=______,∠C=______,∠D=______.三、解答题(5小题,每小题10分,共计50分)1、已知:在ABC∆中,点D、点E、点F分别是AB、AC、BC的中点,连接DE、DF.=,求证:四边形DECF为菱形;(1)如图1,若AC BC∥交DE延长线于点G,连接EF,AG,在不添加任何辅助线的情况(2)如图2,过C作CG AB∆面积相等的平行四边形.下,请直接写出图中所有与ADG2、(1)如图a,矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如图b,如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如图c,如果题目中的矩形变为正方形,结论又应变为什么?说明理由.3、如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为对角线的正方形AEBF,点E、F在小正方形的顶点上;(2)在方格纸中画出以CD 为斜边的等腰直角三角形CDM ,连接BM ,并直接写出BM 的长.4、如图,在平行四边形ABCD 中,8cm AB =,16cm BC =.30B ∠=︒.点P 在BC 上由点B 向点C 出发,速度为每秒2cm ;点Q 在边AD 上,同时由点D 向点A 运动,速度为每秒1cm .当点P 运动到点C 时,点P ,Q 同时停止运动.连接PQ ,设运动时间为t 秒.(1)当t 为何值时,四边形ABPO 为平行四边形?(2)设四边形ABPQ 的面积为y ,求y 与t 之间的函数关系式.(3)当t 为何值时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三?求出此时PQD ∠的度数.(4)连接AP ,是否存在某一时刻t ,使ABP △为等腰三角形?若存在,请求出此刻t 的值;若不存在,请说明理由.5、如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,点F 在线段BD 上,且DE =BF .求证:AE ∥CF .-参考答案-一、单选题1、C【分析】根据题意求出∠ADF,根据平行四边形的性质求出∠ABC、∠BAE,根据旋转变换的性质、结合图形计算即可.【详解】解:∵∠ADC=70°,∠CDF=15°,∴∠ADF=55°,∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=70°,AD∥BC,∴∠BFD=125°,∵AE⊥BC,∴∠BAE=20°,由旋转变换的性质可知,∠BFG=∠BAE=20°,∴∠DFG=∠DFB+∠BFG=145°,故选:C.【点睛】本题考查的是平行四边形的性质、旋转变换的性质,掌握旋转前、后的图形全等是解题的关键.2、A【分析】根据使用给定的某种正多边形,当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就可以铺满地面,即可求解.【详解】解:A、∵正方形的内角和为360 ,∴正方形的每个内角为90°,而904=360︒⨯︒,∴正方形能够铺满地面,故本选项符合题意;B、正五边形的每个内角为()521801085-⨯︒=︒,不能被360°整除,所以不能够铺满地面,故本选项不符合题意;C、正七边形的每个内角为()7218090077-⨯︒⎛⎫=︒⎪⎝⎭,不能被360°整除,所以不能够铺满地面,故本选项不符合题意;D、正九边形的每个内角为()921801409-⨯︒=︒,不能被360°整除,所以不能够铺满地面,故本选项不符合题意;故选:A【点睛】本题主要考查了用正多边形铺设地面,熟练掌握给定的某种正多边形,当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就可以铺满地面是解题的关键.3、B【分析】利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.【详解】解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,故选:B.本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.4、C【分析】 作出平行四边形,根据平行四边形的性质可得1122AE CE AC ===,1192BE DE BD ===,然后在ABE ∆中,利用三角形三边的关系即可确定m 的取值范围.【详解】解:如图所示:∵四边形ABCD 为平行四边形, ∴1122AE CE AC ===,1192BE DE BD ===, 在ABE ∆中,AB m =,∴19121912m -<<+,即731m <<,故选:C .【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键.5、D直接利用多边形内角和定理分别分析得出答案.【详解】解:A .四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B .四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C .六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D .四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D .【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.6、B【分析】连接EG ,根据AG 垂直平分EF ,即可得出EG FG =,设CE x =,则5DE x BF =-=,8FG EG x ==-,再根据Rt CEG △中,222CE CG EG +=,即可得到CE 的长.【详解】解:如图所示,连接EG ,由旋转可得,ADE ≌ABF ,AE AF ∴=,DE BF =,又AG EF ⊥,H ∴为EF 的中点,AG ∴垂直平分EF ,EG FG ∴=,设CE x =,则5DE x BF =-=,8FG x =-,8EG x ∴=-,90C ∠=︒,Rt CEG ∴中,222CE CG EG +=,即2222(8)x x +=-, 解得154x =, CE ∴的长为154, 故选:B .【点睛】本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7、B【分析】根据平行四边形的对边相等和对角线互相平分可得,OB =OD ,又因为E 点是CD 的中点,可得OE 是△BCD 的中位线,可得OE =12BC ,所以易求△DOE 的周长.【详解】解:∵▱ABCD 的周长为36,∴2(BC +CD )=36,则BC +CD =18.∵四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,BD =12,∴OD =OB =12BD =6.又∵点E 是CD 的中点,∴OE 是△BCD 的中位线,DE =12CD ,∴OE =12BC ,∴△DOE 的周长=OD +OE +DE =12BD +12(BC +CD )=6+9=15,故选:B .【点睛】本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.8、B【分析】首先根据方程x 2+x -1=0,再判断这个数值和题目中的哪条线段接近.线段BF =0.5排除,其余三条线段可以通过设未知数找到等量关系.利用正方形的面积等于图中各个三角形的面积和,列等量关系.设DG =m ,则GC =1-m ,从而可以用m 表示等式.【详解】解:设DG =m ,则GC =1-m .由题意可知:△ADG ≌△AHG ,F 是BC 的中点,∴DG =GH =m ,FC =0.5.∵S 正方形=S △ABF +S △ADG +S △CGF +S AGF ,∴1×1=12×1×12+12×1×m +12×12×(1-m )+12×m ,∴m .∵x2+x-1=0的解为:x∴取正值为x.∴这条线段是线段DG.故选:B.【点睛】此题考查的是一元二次方程的解法,运用勾股定理和面积法找到线段的关系是解题的关键.9、B【分析】延长CE,交矩形边于点B,利用三角形外角性质,平行线的性质计算.【详解】延长CE,交矩形边于点B,∴∠ABE=90°-∠1=65°,∵纸片是矩形,∴AB∥CD,∴∠ABE=∠2=65°,故选B.【点睛】本题考查了矩形的性质,平行线的性质,三角形外角的性质,三角板的特点,熟练掌握平行线的性质是解题的关键.10、C【分析】将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答.【详解】解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;B、因为1+1+1<4,所以不能构成四边形,故该项不符合题意;C、因为1+2+2>4,所以能构成四边形,故该项符合题意;D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;故选:C.【点睛】此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键.二、填空题1、【分析】根据题意求得A3(1,1),设A2所在的正方形的边长为m,则A2(m,m+1),由图象上点的坐标特征得到k=m(m+1)=1,解得m A2的坐标为.【详解】解:∵反比例函数的解析式为1(0)y xx=>,∴A3所在的正方形的边长为1,∴A 3(1,1),设A 2所在的正方形的边长为m ,则A 2(m ,m +1),∴m (m +1)=1,解得m ,∴A 2的坐标为,故答案为:. 【点睛】 本题主要考查了反比例函数的图象性质,正方形的性质,一元二次方程的计算,准确计算是解题的关键.2、6【分析】根据多边形内角和公式及多边形外角和可直接进行求解.【详解】解:由题意得:()18022360n ︒⨯-=⨯︒,解得:6n =,∴该多边形的边数为6;故答案为6.【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键. 3、12【分析】n-⨯︒=︒,然后解方程即可.设这个多边形的边数为n,根据多边形的内角和定理得到()21801800【详解】解:设这个多边形的边数是n,n-⨯︒=︒,依题意得()21801800n-=,∴210n=.∴12故答案为:12.【点睛】n-⨯︒解答.考查了多边形的内角和定理,关键是根据n边形的内角和为()21804、(8,0)或(-2,0)-2,0)或(8,0)【分析】由矩形的性质可得BC=OA =3,AB=OC=9,∠B=90°=∠OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解.【详解】解:∵四边形OABC矩形,且点A(3,0),点C(0,9),∴BC=OA =3,AB=OC=9,∠B=90°=∠OAE,∵将△ABC沿DE对折,恰好能使点A与点C重合.∴AE=CE,∵CE2=BC2+BE2,∴CE2=9+(9-CE)2,∴CE=5,∵△AEP 为等腰三角形,且∠EAP =90°,∴AE =AP =5,∴点E 坐标(8,0)或(-2,0)故答案为:(8,0)或(-2,0)【点睛】本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE 的长是本题的关键.5、50︒ 130︒ 50︒【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案.【详解】解:在平行四边形ABCD 中,B 、D ∠是A ∠的邻角,C ∠是A ∠的对角,∴50∠=∠=︒B D ,130C ∠=︒,故答案为:50︒ ,130︒,50︒.【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键.三、解答题1、(1)证明见详解;(2)与ADG 面积相等的平行四边形有ADFE 、DEFB 、DECF 、EFCG .【分析】(1)根据三角形中位线定理可得:∥DE BC ,DF AC ∥,12DE BC =,12DF AC =,依据平行四边形的判定定理可得四边形DECF 为平行四边形,再由BC AC =,可得DE DF =,依据菱形的判定定理(2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFB 、DECF 、ADFE 是平行四边形,根据平行四边形的性质得出ADE 与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF 是平行四边形,根据其性质得到EG FC DE ==,根据等底同高可得2=ADG ADE S S ,据此即可得出与ADG 面积相等的平行四边形.【详解】解:(1)∵D 、E 、F 分别是AB 、AC 、BC 的中点,∴∥DE BC ,DF AC ∥,12DE BC =,12DF AC =,∴四边形DECF 为平行四边形,∵BC AC =,DE DF ∴=,∴四边形DECF 为菱形;(2)∵D 、E 、F 分别是AB 、AC 、BC 的中点,∴∥DE BC ,DF AC ∥,EF AB ∥,12DE BC =,12DF AC =,12EF AB =, 且AD BD =,AE CE =,BF CF =,∴四边形DEFB 、DECF 、ADFE 是平行四边形, ∴111222======ADE DEF EFC DBF ADFE DEFB DECF S S S S S S S ,∵∥DE BC ,∥∥CG EF AB ,∴四边形EGCF 是平行四边形,∴EG FC DE ==,∴2=ADG ADE S S ,S S S S S∴====ADG ADFE DEFB DECF EFCG∴与ADG面积相等的平行四边形有ADFE、DEFB、DECF、EFCG.【点睛】题目主要考查菱形及平行四边形的判定定理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键.2、(1)四边形CODP是菱形,理由见解析;(2)四边形CODP是矩形,理由见解析;(3)四边形CODP 是正方形,理由见解析【分析】(1)先证明四边形CODP是平行四边形,再由矩形的性质可得OD=OC,即可证明平行四边形OCDP是菱形;(2)先证明四边形CODP是平行四边形,再由菱形的性质可得∠DOC=90°,即可证明平行四边形OCDP是矩形;(3)先证明四边形CODP是平行四边形,再由正方形的性质可得BD⊥AC,DO=OC,即可证明平行四边形OCDP是正方形;【详解】解:(1)四边形CODP是菱形,理由如下:∵DP∥OC,且DP=OC,∴四边形CODP是平行四边形,又∵四边形ABCD是矩形,∴OD=OC,∴平行四边形OCDP是菱形;(2)四边形CODP是矩形,理由如下:∵DP∥OC,且DP=OC,∴四边形CODP是平行四边形,又∵四边形ABCD是菱形,∴BD⊥AC,∴∠DOC=90°,∴平行四边形OCDP是矩形;(3)四边形CODP是正方形,理由如下:∵DP∥OC,且DP=OC,∴四边形CODP是平行四边形,又∵四边形ABCD是正方形,∴BD⊥AC,DO=OC,∴∠DOC=90°,平行四边形CODP是菱形,∴菱形OCDP是正方形.【点睛】本题主要考查了矩形的性质与判定,菱形的性质与判定,正方形的性质与判定,解题的关键在于能够熟练掌握特殊平行四边形的性质与判定条件.3、(1)见详解;(2)见详解.【分析】(1)根据勾股定理求出AB的长,以AB为对角线的正方形AEBF,根据正方形的性质求出正方形边长AE,根据勾股定理构造直角三角形横1竖3,或横3竖1,利用点A平移找到点E,点F即可完成求解;(2)根据勾股定理求出CD的长,△CDM为等腰直角三角形,设CM=DM=x,再利用勾股定理x=根据勾股定理构造横1竖2,或横2竖1直角三角形,利用点C平移得到点M,即可得到答案.【详解】(1)根据勾股定理AB=∵以AB 为对角线的正方形AEBF ,∴S 正方形=(22111022AB =⨯=,∵正方形AEBF 的边长为AE ,∴AE 2=10,∴AE根据勾股定理可知构造横1竖3或横3竖1的直角三角形作线段AE 、AF ,点A 向下平移1格,再向左平移3格得点E ,点A 向右平移1格,再向下平移3格得点F , ∴连结AE ,BE ,BF ,AF ,则正方形ABEF 作图如下:(2)根据勾股定理CD ,∵△CDM 为等腰直角三角形,设CM =DM =x ,根据勾股定理222CD CM DM =+,即222x x =+,解得x =∴CM =DM根据勾股定理构造横1竖2,或横2竖1直角三角形作线段CM 、DM ,点C 向右移动2格,再向上移动1格得点M ,连结CM ,DM ,则△CDM 为所求如图.【点睛】本题考查了正方形性质、正方形面积,边长,等腰直角三角形、腰长,勾股定理,一元二次方程,平移;解题的关键是熟练掌握正方形性质、等腰直角三角形性质,勾股定理,一元二次方程,平移,从而完成求解.4、(1)163;(2)y =S 四边形ABPQ =2t +32(0<t ≤8);(3)t =8,75PQD ∠=;(4)当t =4或或ABP △为等腰三角形,理由见解析.【分析】(1)利用平行四边形的对边相等AQ =BP 建立方程求解即可;(2)先构造直角三角形,求出AE ,再用梯形的面积公式即可得出结论;(3)利用面积关系求出t ,即可求出DQ ,进而判断出DQ =PQ ,即可得出结论;(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.【详解】解:(1)∵在平行四边形ABCD 中,8cm AB =,16cm BC =,由运动知,AQ =16−t ,BP =2t ,∵四边形ABPQ 为平行四边形,∴AQ =BP ,∴16−t =2t∴t=163,即:t=163s时,四边形ABPQ是平行四边形;(2)过点A作AE⊥BC于E,如图,在Rt△ABE中,∠B=30°,AB=8,∴AE=4,由运动知,BP=2t,DQ=t,∵四边形ABCD是平行四边形,∴AD=BC=16,∴AQ=16−t,∴y=S四边形ABPQ=12(BP+AQ)•AE=12(2t+16−t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,∵BC=16,∴S四边形ABCD=16×4=64,由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),∵四边形ABPQ的面积是四边形ABCD的面积的四分之三∴2t+32=34×64,∴t=8;如图,当t=8时,点P和点C重合,DQ=8,∵CD=AB=8,∴DP=DQ,∴∠DQC=∠DPQ,∴∠D=∠B=30°,∴∠DQP=75°;(4)①当AB=BP时,BP=8,即2t=8,t=4;②当AP=BP时,如图,∵∠B=30°,过P作PM垂直于AB,垂足为点M,∴BM=4,22242BPBP⎛⎫+=⎪⎝⎭,解得:BP,∴2t,∴t③当AB=A P时,同(2)的方法得,BP=∴2t=∴t=所以,当t=4或ABP为等腰三角形.【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.5、见解析【分析】首先根据平行四边形的性质推出AD=CB,AD∥BC,得到∠ADE=∠CBF,从而证明△ADE≌△CBF,得到∠AED=∠CFB,即可证明结论.【详解】证:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,在△ADE和△CBF中,B A ADEC F F B E BD C D =⎧⎪⎨⎪∠==⎩∠ ∴△ADE ≌△CBF (SAS ),∴∠AED =∠CFB ,∴AE ∥CF .【点睛】本题考查平行四边形的性质,以及全等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键.。

北师大版八年级初二数学下册《图形的平移》专题同步试题试卷含答案解析

3.1图形的平移练习卷一.选择题(共6小题)1.(•邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A . 甲种方案所用铁丝最长B . 乙种方案所用铁丝最长C . 丙种方案所用铁丝最长D . 三种方案所用铁丝一样长2.(•呼伦贝尔)将点A (﹣2,﹣3)向右平移3个单位长度得到点B ,则点B 所处的象限是( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限3.(•南昌)如图,△ABC 中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )A . 4,30°B . 2,60°C . 1,30°D . 3,60°4.(•舟山)如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 的周长为16cm ,则四边形ABFD 的周长为( )A . 16cmB . 18cmC . 20cm .22cm5.(•滨州)如图,如果把△ABC 的顶点A 先向下平移3格,再向左平移1格到达A ′点,连接A ′B ,则线段A ′B 与线段AC 的关系是( )A . 垂直B . 相等C . 平分D .平分且垂直6.(•呼和浩特)已知线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点B (﹣4,﹣1)的对应点D 的坐标为( )A . (1,2)B . (2,9)C . (5,3)D . (﹣9,﹣4)二.填空题(共10小题)7.(•济南)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于_________.8.(•江西)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为_________.9.(•宜宾)在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是_________.10.(•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是_________,A1的坐标是_________.11.(•仙桃)如图,在直角坐标系中,点A的坐标为(﹣1,2),点C的坐标为(﹣3,0),将点C绕点A逆时针旋转90°,再向下平移3个单位,此时点C的对应点的坐标为_________.12.(•钦州)如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为_________.13.(•铁岭)如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为_________.14.(•河西区二模)已知△ABC的面积为36,将△ABC沿BC平移到△A′B′C′,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为_________.15.(•吉林)如图,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CDE.如果CB=1,那么OE的长为_________.16.(•武汉)(北师大版)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是_________.三.解答题(共6小题)17.(•茂名)如图,在直角坐标系中,线段AB的两个端点的坐标分别为A(﹣3,0),B(0,4).(1)画出线段AB先向右平移3个单位,再向下平移4个单位后得到的线段CD,并写出A的对应点D的坐标,B的对应点C的坐标;(2)连接AD、BC,判断所得图形的形状.(直接回答,不必证明)18.(•北京)操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是_________;若点B′表示的数是2,则点B表示的数是_________;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是_________.(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.19.(•巴中)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)20.如图,在四边形ABCD中,AD∥BC,AB=CD,AD<BC,画出线段AB平移后的线段,其平移方向为射线AD的方向,平移距离为AD的长,平移后所得的线段与BC相交于E.线段DE 与线段DC相等吗?∠DEC与∠C相等吗?∠DEC与∠B相等吗?∠C与∠B相等吗?试说明理由.21.(•南海区二模)已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,0)B(3,0)C(5,5)△A′B′C′A′(4,2)B′(7,b)C′(c,7)(1)观察表中各对应点坐标的变化,并填空:a=_________,b=_________,c=_________;(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′;(3)直接写出△A′B′C′的面积是_________.22.(•南通)在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为_________,点B关于x轴的对称点B′的坐标为_________,点C关于y轴的对称点C的坐标为_________.(2)求(1)中的△A′B′C′的面积.3.1图形的平移练习卷参考答案与试题解析一.选择题(共6小题)1.(•邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是(D)2.(•呼伦贝尔)将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是(D)A.第一象限B.第二象限C.第三象限D.第四象限4.(•舟山)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为(C)A.16cm B.18cm C.20cm D.22cm5.(•滨州)如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是(D)A.垂直B.相等C.平分D.平分且垂直6.(•呼和浩特)已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为(A)A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)二.填空题(共10小题)7.(•济南)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于4或8.8.(•江西)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为12.9.(•宜宾)在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是(2,﹣2).10.(•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是(3,0),A1的坐标是(4,3).11.(•仙桃)如图,在直角坐标系中,点A的坐标为(﹣1,2),点C的坐标为(﹣3,0),将点C绕点A逆时针旋转90°,再向下平移3个单位,此时点C的对应点的坐标为(1,﹣3).12.(•钦州)如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为(a+5,﹣2).13.(•铁岭)如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为(﹣2,1).14.(•河西区二模)已知△ABC的面积为36,将△ABC沿BC平移到△A′B′C′,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为18.15.(•吉林)如图,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CDE.如果CB=1,那么OE的长为7.16.(•武汉)(北师大版)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是(5,4).三.解答题(共6小题)17.(•茂名)如图,在直角坐标系中,线段AB的两个端点的坐标分别为A(﹣3,0),B(0,4).(1)画出线段AB先向右平移3个单位,再向下平移4个单位后得到的线段CD,并写出A的对应点D的坐标,B的对应点C的坐标;(2)连接AD、BC,判断所得图形的形状.(直接回答,不必证明)解答:解:(1)如图所示,CD即为所求作的线段,D(0,﹣4),C(3,0);(2)∵AC、BD互相垂直平分,∴四边形ABCD是菱形.18.(•北京)操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是0;若点B′表示的数是2,则点B表示的数是3;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是.(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.解答:解:(1)点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a,则a+1=2,解得a=3,设点E表示的数为b,则b+1=b,解得b=;故答案为:0,3,;(2)根据题意得,,解得,设点F的坐标为(x,y),∵对应点F′与点F重合,∴x+=x,y+2=y,解得x=1,y=4,所以,点F的坐标为(1,4).19.(•巴中)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)解答:解;(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).20.如图,在四边形ABCD中,AD∥BC,AB=CD,AD<BC,画出线段AB平移后的线段,其平移方向为射线AD的方向,平移距离为AD的长,平移后所得的线段与BC相交于E.线段DE 与线段DC相等吗?∠DEC与∠C相等吗?∠DEC与∠B相等吗?∠C与∠B相等吗?试说明理由.解答:解:平移后的图形如下所示:由题意可知:四边形ABCD是等腰梯形,∴AB=DC,∠B=∠C,又DE是由AB平移得到的,故DE=AB,∠DEC=∠B,∴DE=DC.∠DEC=∠C21.(•南海区二模)已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,0)B(3,0)C(5,5)△A′B′C′A′(4,2)B′(7,b)C′(c,7)(1)观察表中各对应点坐标的变化,并填空:a=0,b=2,c=9;(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′;(3)直接写出△A′B′C′的面积是.解答:解:(1)由表格得出:∵利用对应点坐标特点:A(a,0),A′(4,2);B(3,0),B′(7,b);C(5,5),C′(c,7)∴横坐标加4,纵坐标加2,∴a=0,b=2,c=9.故答案为:0,2,9;(2)平移后,如图所示.(3)△A′B′C′的面积为:×3×5=.故答案为:.22.(•南通)在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.解答:解:(1)∵A(﹣1,5),∴点A关于原点O的对称点A′的坐标为(1,﹣5).∵B(4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C′的坐标为(1,0).故答案分别是:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,∴S△A′B′C′=A′C′•B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.第11页共11页。

八年级数学图形的证明单元测试题及答案

八年级数学图形的证明单元测试题及答案八年级数学第十一章单元测试一、选择题(每题3分,共24分) l、下列判定正确的是 ( ) A.对角线互相垂直的四边形是菱形 B.两角相等的四边形是等腰梯形C.四边相等且有一个角是直角的四边形是正方形 D.对角线相等且互相垂直的四边形是正方形 2、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是 ( ) A.①② B.②④ C.②③ D.①②④ 3、下列句子中,不是命题的是 ( ) A.三角形的内角和等于180度: B.对顶角相等; C.过一点作已知直线的垂线; D.两点确定一条直线. 4、已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线半行;⑤邻补角的半分线互相垂直.其中,真命题的个数为 ( ) A.0 B.1个 C.2个 D.3个 5、下列命题的逆命题是真命题的是 ( ) A.直角都相等 B.如果x2+y2=0,那么x=y=0 C.钝角都小l800 D.对顶角相等 6、如图,直线,l1∥l2,l3⊥l4.有三个命题:①∠l+∠3=900;②∠2+∠3=900;③∠2≠∠4.下列说法中,正确的是 ( ) A.只有①正确 B.只有②正确 C.①和③正确 D.①②③都正确 7、如下图左:∠A+∠B+∠C+∠D+∠E+∠F等于 ( ) A.1800 B.3600 C.5400 D.7200 8、如图所示,AM是△ABC的角平分线,N为BM 的中点,NE∥AM交AB于点D,交CA的延长线于点E,下列结论中正确的是 ( ) A.BM=MC B.AE=BD C.AM=DE D.DN=BN二、填空题(每题3分,共24分) 9、命题:等角的补角相等的条件是__________________结论是__________________ 10、命题“矩形的对角线相等”的逆命题是__________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学第二章整章水平测试
一、试试你的身手(每小题3分,共30分)
1.把一个长为2的矩形剪去一个正方形后,所剩下的矩形与原矩形相似,则原矩形的宽为

______.

2.已知23acebdf,则3abf .
3.已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两数的比例中项,
第三个数是 (只需写出一个即可).

4.ABC△的三边长分别为5,10,15,ABC△的两边长分别为1和2,如果
ABCABC△∽△,那么ABC△
的第三边长为 .

5.把一个多边形的面积扩大为原来的3倍,且与原来的多边形相似,则其周长扩大为原来
的 倍.
6.有同一个地块的甲、乙两张地图,比例尺分别为1∶3000和1∶5000,则甲地图和乙地
图的相似比是 .

7.在ABC△中,90BAC∠,ADBC于D,3BD,9AD,则
22
:ABAC

8.如图1,RtABC△中,有三个正方形,9cmDF,6cmGK,则第三个正方形的
边长PQ .

9.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB长为
20m,试计算主持人应走到离A点至少 m处?如果她向B点再走 m,也

处在比较得体的位置?(52.236≈,结果精确到0.1m)
10.已知:如图3,ABCD中,:=1:2AEEB,如果
2
6cmAEFS


,则CDFS△ .

二、相信你的选择(每小题3分,共30分)
1.已知xymn,则把它改写成比例式后,错误的是( )

A.xmny B.ynmx C.xymn D.xnmy
2.一个运动场的实际面积是26400m,那么它在比例尺1:1000的地图上的面积是( )
A.26.4m B.2640cm C.264cm D.28cm
3.下列四组线段中,不能成比例的是( )
A.3624abcd,,,

B.1263abcd,,,
C.46510abcd,,,
D.251523abcd,,,
4.如图4,在正方形网格上有6个三角形:
①ABC△,②BCD△,③BDE△,④BFG△,
⑤FGH△,⑥EFK△.
其中②~⑥中,与三角形①相似的是( )
A.②③④ B.③④⑤
C.④⑤⑥ D.②③⑥
5.两个相似多边形面积之比为5∶1,周长之比为m∶1,则5m( )

A.1 B.55 C.5 D.5
6.如图5,在ABC△中,如果30cmAB,24cmBC,
27cmCA,AEEFFB,EGDFBC∥∥

FMENAC∥∥
,图中阴影部分三个三角形周长的和

为( )
A.70cm B.75cm
C.80cm D.81cm
7.下列说法正确的是( )
A.分别在ABC△的边AB,AC的反向延长线上取点DE,,使DEBC∥,则
ADE△
是ABC△放大后的图形
B.两位似图形的面积比等于位似比
C.位似多边形中对应对角线之比等于位似比
D.位似图形的周长之比等于位似比的平方
8.如图6,已知DEBC∥,EFAB∥,则下列
比例式中错误的是( )
A.ADAEABAC B.CEEACFFB
C.DEADBCBD D.EFCFABCB
9.如图7,将一个矩形纸片ABCD沿边AD和BC的中点
连线EF对折,要使矩形AEFB与原矩形相似,则原矩形的
长与宽的比应为( )

A.2∶1 B.3∶1 C.2∶1 D.1∶1
10.某校有两块相似的多边形草坪,其面积比为9∶4,其中一块草坪的周长是36米,则另
一块草坪的周长是( )
A.24米 B.54米 C.24米或54米 D.36米或54米
三、挑战你的技能(本大题共36分)
1.(9分)三角形的顶点坐标分别是(22)A,,(42)B,,(64)C,,试将ABC△缩小,使缩
小后的DEF△与ABC△对应边比为1∶2.

2.(9分)已知:如图8,在ABC△中,ADBC于D,=24BC,=18AD,矩形
EFGH
内接于ABC△,且=2EHEF,求矩形EFGH的周长.
3.(9分)如图9,一人拿着一支刻有厘米分划的小尺,他站在距电线杆约30米的地方,把
手臂向前伸直,小尺竖直,看到尺上约12个分划恰好遮住电线杆,已知臂长约60厘米.求
电线杆的高.

4.(9分)某出版社一位编辑在设计一本书的封面时,想把封面划分为四个矩形,其中左上
角矩形与右下角矩形相似(如图10所示),以给人一种和谐的感觉,那么这样的两个矩形是
怎样画出来的呢?

四、拓广探索(本大题24分)
1.(12分)在ABC△中,4AB.
(1)如图11(1)所示,DEBC∥,DE把ABC△分成面积相等的两部分,即IIISS,
求AD的长.
(2)如图11(2)所示,DEFGBC∥∥,DEFG,把ABC△分成面积相等的三部分,
即IIIIIISSS,求AD的长.
(3)如图11(3)所示,DEFGHKBC∥∥∥∥,DEFGHK,,,…把ABC△分
成面积相等的n部分,IIIIIISSS…,请直接写出AD的长.
2.(12分)如图12,在矩形ABCD中,12AB厘米,6BC厘米.点P沿AB边从
A
开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒速度移
动.如果PQ,同时出发,用t(秒)表示移动的时间(06t≤≤),那么:
(1)当t为何值时,QAP△为等腰直角三角形?
(2)求四边形QPAC的面积;提出一个与计算结果有关的结论;
(3)当t为何值时,以点QAP,,为顶点的三角形与ABC△相似?
八年级数学第二章整章水平测试参考答案
一、1.51
2.23
3.2或16或42
4.3
5.3
6.5∶3
7.1∶9
8.4cm
9.7.6,4.7
10.54cm2
二、1.C 2.C 3.C 4.B 5.C 6.D 7.D 8.C 9.C 10.C
三、1.略.
2.EFGH的周长为2165.
3.电线杆的高为6米.
4.略.

四、1.(1)22AD.(2)433AD.(3)4nADn.
2.(1)当2t秒时,QAP△为等腰直角三角形.
(2)36QAPCS四边形(厘米2).
由计算结果发现:
在PQ,两点移动的过程中,四边形QAPC的面积始终保持不变.(也可提出:PQ,两点
到对角线AC的距离之和保持不变).
(3)当1.2t秒或3秒时,以点QAP,,为顶点的三角形与ABC△相似.

相关文档
最新文档