初二数学教学设计
初中数学初二数学上册《常量与变量》教案、教学设计

(1)详细讲解常量与变量的定义,强调它们在实际问题中的识别和运用。
(2)通过实例演示,展示如何将实际问题抽象为数学模型,并用方程表示。
(3)引导学生学习构建方程的方法和技巧,讲解线性方程的解法和应用。
(三)学生小组讨论
1.教学活动设计:
在学生小组讨论环节,我设计了两个具有挑战性的问题,要求学生以小组为单位,展开讨论,共同解决问题。
3.探究题:
请学生分组进行探究,选择一个感兴趣的问题,例如:不同商品的价格与数量关系、家庭成员的年龄与时间关系等,收集数据、构建方程并求解,分析结果,形成小组报告。
作业要求:
1.学生在完成作业时,要认真审题,规范书写,注意细节,提高解题的准确性和效率。
2.对于选做题和探究题,鼓励学生积极思考,勇于创新,充分展示自己的数学素养。
2.培养学生的合作精神和团队意识,提高沟通能力。
在课堂教学中,鼓励学生相互讨论、交流,培养学生的合作精神和团队意识,提高沟通能力。
3.培养学生勇于面对挑战,克服困难,增强自信心。
在解决实际问题的过程中,鼓励学生勇于尝试,克服困难,不断调整解题策略。通过解决问题,让学生体验成功的喜悦,增强自信心。
4.培养学生严谨、细致的学习态度,提高数学素养。
(2)拓展课外资源,推荐与本章内容相关的阅读材料,引导学生自主学习,拓宽知识视野。
5.教学反思:
在教学过程中,教师应关注学生的学习反馈,及时调整教学策略,以提高教学效果。同时,教师应不断反思自己的教学方法和手段,探索更符合学生需求的教学模式。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
在导入新课环节,我设计了一个与生活密切相关的情境:一家文具店进行促销活动,购买不同数量的铅笔可以获得不同的优惠。通过这个情境,引导学生关注数量与价格之间的关系,从而引出常量与变量的概念。
人教版数学八年级上册15.3.2《整式的除法》教学设计

人教版数学八年级上册15.3.2《整式的除法》教学设计一. 教材分析人教版数学八年级上册15.3.2《整式的除法》是整式除法部分的内容,主要介绍了整式除法的基本概念、方法和应用。
本节课的内容是在学生掌握了整式的加减乘法的基础上进行的,是进一步深化整式运算的重要内容,对于学生理解和掌握数学知识体系,提高解决问题的能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了整式的加减乘法,对于整式的基本概念和运算规则有一定的了解。
但是,对于整式除法这一概念和方法,学生可能较为陌生,需要通过实例和练习来逐渐理解和掌握。
此外,学生的学习习惯和方法可能影响他们对整式除法的理解和应用。
三. 教学目标1.让学生理解和掌握整式除法的基本概念和运算方法。
2.培养学生运用整式除法解决实际问题的能力。
3.提高学生的数学思维能力和创新意识。
四. 教学重难点1.整式除法的基本概念和运算方法。
2.运用整式除法解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、分组合作学习法等,激发学生的学习兴趣,引导学生主动探索,培养学生的数学思维能力和创新能力。
六. 教学准备1.教材、教学PPT、教学案例。
2.教学道具和辅助工具。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这个问题,从而引出整式除法这个概念。
2.呈现(10分钟)通过PPT或黑板,展示整式除法的基本概念和运算方法,让学生初步了解和认识整式除法。
3.操练(10分钟)让学生分组进行练习,运用整式除法解决实际问题,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过一些典型的例题和练习题,让学生进一步巩固整式除法的概念和方法。
5.拓展(10分钟)引导学生思考如何将整式除法应用到更广泛的问题中,提高学生的应用能力和创新意识。
6.小结(5分钟)对本节课的内容进行总结,让学生明确学习目标,强化学习效果。
7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。
初中数学初二数学上册《平面直角坐标系》教案、教学设计

c.如何利用坐标系解决实际问题?
2.各小组汇报讨论成果,教师进行点评总结坐标系的实际应用和坐标性质的作用。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
a.填空题:给出一些点的坐标,让学生填写对应的点。
b.选择题:判断坐标的性质,如平移、对称等。
4.小组合作,探讨坐标系的平移、对称性质在解决几何问题中的应用。要求每组选取一个典型问题进行详细解答,并在课堂上进行分享。这个作业有助于培养学生的团队协作能力和表达能力。
5.针对课堂学习内容,撰写学习心得体会,总结自己在平面直角坐标系知识方面的收获和不足。要求字数不少于300字,让学生在反思中不断提高。
4.分层次设计练习题,针对不同水平的学生,提高他们在坐标系知识方面的掌握程度。同时,注重题目的实际应用背景,培养学生的数学建模能力。
5.教学过程中,注重启发式教学,引导学生主动发现问题、解决问题,提高学生的自主探究能力。
6.定期进行课堂小结,帮助学生总结所学知识,形成知识体系。同时,关注学生的学习反馈,调整教学策略,提高教学效果。
2.完成教材课后练习题,包括填空题、选择题和计算题。这些题目涵盖了本节课的重点知识,有助于学生巩固坐标的表示方法和性质,提高运算能力。
3.设计一道实际问题,要求学生运用坐标系知识进行解答。例如:在学校的平面图上,标出教学楼、操场和食堂的位置,并计算它们之间的距离。这个作业旨在培养学生将实际问题转化为数学问题的能力,提高数学建模能力。
难点:将抽象的坐标系与实际情境相结合,运用数学知识解决现实问题。
(二)教学设想
1.采用情境导入法,以生活中的实际问题为例,引导学生认识到坐标系在解决实际问题时的重要性,激发学生的学习兴趣。
初中数学初二数学上册《特殊三角形》教案、教学设计

(5)拓展:引导学生运用特殊三角形的性质进行拓展练习,提高学生的创新思维和解决问题的能力。
3.教学评价:
(1)过程性评价:关注学生在课堂上的表现,如积极参与、主动探究、合作交流等,激发学生的学习积极性。
(2)总结性评价:通过课后作业、单元测试等方式,检验学生对特殊三角形性质的理解和运用程度。
4.请同学们预习下一节课的内容,提前了解特殊三角形在几何证明中的应用,为课堂学习做好准备。
5.结合本节课的学习,总结特殊三角形的性质及其应用,用思维导图的形式呈现,培养知识归纳和总结能力。
作业要求:
1.作业需独立完成,书写工整,步骤清晰,保持卷面整洁。
2.解题过程中,要注重逻辑性和条理性,体现数学思维的严密性。
1.学生对基本几何概念的理解程度,特别是对等腰、等边三角形的认识,以及直角三角形的性质。
2.学生在解决问题时,能否灵活运用特殊三角形的性质,对相关性质的理解是否深入。
3.学生的空间想象能力和逻辑思维能力,以及在学习过程中是否能够主动探究、发现和解决问题。
4.学生在小组合作中的沟通能力,以及团队合作意识的培养。
4.引导学生认识数学在科学、技术、社会等方面的广泛应用,培养学生的数学应用意识,学生数学学习的关键时期,他们在之前的学习中已经掌握了三角形的基本概念和性质,具备了一定的几何图形识别和分析能力。在此基础上,学生对特殊三角形的学习将更具挑战性和深度。然而,由于特殊三角形性质较多,学生在理解和应用上可能会存在一定困难。因此,在教学过程中,应关注以下几点:
4.能够运用特殊三角形的性质进行简单的证明,培养逻辑思维能力和推理能力。
(二)过程与方法
1.通过自主探究、小组合作等方式,让学生在探索特殊三角形性质的过程中,培养发现问题的能力,提高解决问题的能力。
初中数学教案设计(共12篇)

初中数学教案设计〔共12篇〕篇1:初中数学教案设计一、教学目的:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
3、弄清一次函数与正比例函数的区别与联络。
4、掌握直线的平移法那么简单应用。
5、能应用本章的根底知识纯熟地解决数学问题。
二、教学重、难点:重点:初步构建比拟系统的函数知识体系。
难点:对直线的平移法那么的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,假设y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。
正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联络:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
根底训练:1、写出一个图象经过点(1,— 3)的函数解析式为:2、直线y=—2X—2不经过第象限,y随x的增大而。
3、假如P(2,k)在直线y=2x+2上,那么点P到x轴的间隔是:4、正比例函数 y =(3k—1)x,,假设y随x的增大而增大,那么k是:5、过点(0,2)且与直线y=3x平行的直线是:6、假设正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1y2,那么m的取值范围是:7、假设y—2与x—2成正比例,当x=—2时,y=4,那么x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,那么b的值为。
9、圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
(1)求线段AB的长。
八年级数学下册《勾股定理的应用》教学设计一等奖3篇

1、八年级数学下册《勾股定理的应用》教学设计一等奖在教学工作者实际的教学活动中,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么优秀的教学设计是什么样的呢?以下是小编整理的八年级数学下册《勾股定理的应用》教学设计范文,仅供参考,希望能够帮助到大家。
一、教学任务分析勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。
学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。
《数学课程标准》对勾股定理教学内容的要求是:1、在研究图形性质和运动等过程中,进一步发展空间观念;2、在多种形式的数学活动中,发展合情推理能力;3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、本节课的教学目标是:1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、教学重点和难点:应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。
《二次根式(第1课时)》教学设计-人教版八年级下册数学
《二次根式(第1课时)》教学设计一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根的概念,会用根号表示数的平方根、算数平方根根,知道开方与开平方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1.教学目标(1)体会研究二次根式是实际的需要,激发学生的数学学习兴趣。
(2)了解二次根式的概念,培养从特殊到一般的思维能力。
(3)理解二次根式有意义的条件。
2. 教学目标解析1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“双重非负性,”即被开方数≥0是非负数,算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.本节课的教学难点为:理解二次根式的双重非负性.四、教学过程设计1.创设情境,提出问题问题1解答:(1)9的平方根是_______,算术平方根是_______;一个正数有_______个平方根;0的平方根是_______;负数_______平方根.你能用带有根号的的式子填空吗?(2)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(3)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.(4)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t=? _____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.问题2 上面得到的式子,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.【设计意图】为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3 你能用一个式子表示一个非负数的算术平方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1 见ppt 例1、知识点一的1、2及思考:下列式子,哪些是二次根式?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2 见ppt知识点二4、5当是怎样的实数时,在实数范围内有意义呢?师生活动:先让学生独立思考,再追问.【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4 你能比较与0的大小吗?师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.4.综合运用,巩固提高练习1 完成ppt第7题练习2 完成ppt8 , 9 , 10【设计意图】辨析二次根式的概念,确定二次根式有意义的条件. 【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.5.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题. (1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结.【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.6.布置作业:教科书习题16.1第1,3,5, 7,10题.。
八年级数学上册《分式的基本性质》教案、教学设计
6.课后拓展:布置具有挑战性的拓展题,鼓励学生进行深度思考,提高学生的数学思维能力。
-设计意图:培养学生的创新意识,提高学生的数学素养。
7.教学评价:结合课堂表现、练习成绩和课后拓展成果,全面评价学生的学习效果。
-设计意图:关注学生的全面发展,激发学生的学习积极性,提高教学质量。
-设计意图:从生活实例出发,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.问题驱动:提出问题“分数可以表示什么?分式与分数有什么联系和区别?”让学生思考并回答,为新课的学习做好铺垫。
(二)讲授新知
1.分式的定义:讲解分式的概念,强调分式的三个要素:分子、分母和分数线。通过具体实例,解释分式的意义和表示方法。
-题目2:(x^3 - 2x^2 + x) / (x^2 - 1) × (x^2 + 1) / (x - 1)
-设计意图:通过拓展挑战题,锻炼学生的运算能力,提高学生的数学思维。
4.小组合作题:分组讨论并完成以下问题:
-问题:已知一个分数的分子和分母分别是两个连续的整数,且它们的和为17,求这个分数。
八年级数学上册《分式的基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解分式的定义,掌握分式的表示方法,能够正确书写分式。
2.掌握分式的基本性质,如约分、通分、乘除法则等,并能够灵活运用这些性质解决相关问题。
3.能够运用分式进行简单的代数运算,解决实际问题,提高学生的运算能力和解决问题的能力。
-分式的基本性质有哪些?
-分式的运算方法有哪些?
-如何运用和评价。
-设计意图:通过小组讨论,培养学生的合作精神和交流能力,提高学生对分式知识的理解。
初中数学初二数学上册《二次根式的概念和性质》教案、教学设计
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生感受到数学学习的乐趣,增强学生的自信心。
2.培养学生勇于探究、善于发现的精神,使学生养成良好的学习习惯。
3.培养学生严谨、认真的学习态度,使学生认识到数学知识在生活中的重要作用。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一组实际生活中的图片,如平方形的农田、正方形的瓷砖等,引导学生观察并思考这些图形的面积如何表示。
2.提问:“同学们,我们在学习算术平方根时,学过如何表示一个数的平方根。那么,如果遇到一个数的平方根与有理数相乘的情况,我们应该如何表示呢?”
3.学生思考并回答,教师总结并引出二次根式的概念。
3.学生完成后,教师及时批改并反馈,针对共性问题进行讲解。
(五)总结归纳
1.教师带领学生回顾本节课所学内容,总结二次根式的概念、性质、化简方法及应用。
2.强调二次根式在解决实际问题中的应用价值,激发学生学习兴趣。
3.提醒学生课后进行复习,巩固所学知识,为下一节课的学习打下基础。
五、作业布置
为了巩固本节课所学知识,特布置以下作业:
1.基础题:完成课本第chapter页的练习题,包括填空题、选择题和解答题。重点关注二次根式的概念、性质以及化简方法。
要求:学生独立完成,家长检查签字,课堂上教师将针对作业情况进行讲解。
2.提高题:设计两道涉及二次根式计算的题目,要求学生运用所学性质和化简方法解决问题。
要求:学生尝试独立完成,可查阅资料辅助解题,课堂上进行讨论、分享解题思路。
(二)讲授新知
1.二次根式的定义:由算术平方根和有理数乘积的形式构成的式子。如:2√3、-5√2等。
初中数学初二数学上册《线段的垂直平分线》教案、教学设计
初二是学生数学学习的关键时期,学生已经具备了一定的几何基础,掌握了点、线、面的基本概念和性质,能够进行简单的几何推理。在此基础上,学习线段的垂直平分线,有助于巩固和拓展学生的几何知识体系。然而,学生在实际操作和解决问题时,可能会遇到以下困难:对线段垂直平分线的性质理解不够深入;作图技巧不够熟练;在运用线段垂直平分线解决问题时,缺乏灵活性和创新性。因此,在教学过程中,教师应关注学生的个体差异,针对不同学生的需求进行有针对性的指导,帮助学生克服困难,提高几何素养。同时,注重培养学生的动手操作能力和逻辑思维能力,为后续几何学习打下坚实基础。
4.课后作业布置:布置适量的课后作业,巩固课堂所学,并提前告知下节课的学习内容,为下节课的学习做好准备。
五、作业布置
为了巩固本节课所学内容,确保学生对线段垂直平分线的概念、性质和作图方法有深刻的理解,特布置以下作业:
1.基础知识巩固题:
-请学生完成课本第XX页的练习题1-5,重点考察对线段垂直平分线性质的理解。
初中数学初二数学上册《线段的垂直平分线》教案、教学设计
一、教学目标
(一)知识与技能
1.理解线段垂直平分线的定义,掌握其基本性质。
2.学会使用尺规作图法作出线段的垂直平分线。
3.能够运用线段的垂直平分线解决几何问题,如求线段的中点、等分线段等。
4.掌握线段垂直平分线与三角形、四边形等几何图形的关系,提高综合运用能力。
(三)情感态度与价值观
1.激发兴趣:设计有趣的教学活动,让学生在轻松愉快的氛围中学习线段垂直平分线。
2.培养审美情趣:引导学生发现几何图形的美,提高学生的审美能力。
3.严谨态度:强调作图和证明的严谨性,培养学生一丝不苟的学习态度。
4.自信心和自主学习能力:鼓励学生独立思考、解决问题,培养学生的学习自信心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名师精编 优秀教案
初二数学教学设计
19.1.1平行四边形的性质
[教学目标]
1、知识目标:
使学生初步掌握什么是平行四边形的概念及其性质并用其来解决实际问题
2、能力目标:
通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生的
自学能力和缜密的逻辑思维能力。
3、情感目标:
培养学生理论联系实际的科学态度和掌握事物间普遍存在联系的哲学
观,以及善于发现、积极思考、合作学习、勇于创新的学习态度。
[教学重点、难点]
(1)重点:平行四边形的概念和性质
(2)难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想
方法 (即为什么要添加对角线呢?)
(3)难点突破关键:转化的数学思想方法的运用
即如何将平行四边形转化为三角形的数学思想方法的运用。
[教学过程]
教学环
节
教学程序 设计意图
名师精编 优秀教案
引 入 新 课 一.用电脑展示两张图片: 1)过街天桥 2)小区的拉闸门 观察两张图片,勾勒出几何图形,从而引出平行四边形在日常生活中应用广泛,因此我们有必要系统学习平行四边形。 1、体现本课的情感目标。通过观察图片,引导学生从实物中抽象出几
何模型,了解学习平行四边形的必要
性。同时,使学生了解“几何来源于
实践,而又反过来服务于实践”的辩
证唯物主义观点。
概 念 的 形 成 和 巩 固 (一)质疑引入概念并讲解 1、 探讨问题1:平行四边形和一般的四边有什么异同?一般的四边形通过添加
条件后能否转化为平行四边形呢?
2、归纳概念
(1)让学生自己归纳定义
(2)电脑演示平行四边形定义的三种数学
语言表述方式
1、引入课题,弄清四边形和平行四
边形的关系,为概念的引入做铺垫
(抓住“平行”两个字,引导学生从
一组边平行一组边不平行和两组边
都平行两个方面去讨论)
2、让学生归纳定义增强学生的成就
感,给出三种数学语言的表述,是为
了培养学生对三种表述形式的理解
和转化能力
3、强调定义的判定和性质作用
讲授平行四边形对边、对角、对角线以及平行四边形的记法 强调平行四边形的顶点要按顺时
针或逆时针来写
A
A D
B
名师精编 优秀教案
1、质疑:如果已知平行四边形一个内角
的度数,能确定其他三个内角的度数吗?
说说你的理由。
2、书P93页练习1
巩固概念,为下一步研究平行四
边形的性质做铺垫
性
质
的
发
现
和
证
明
(二)探索平行四边形的性质
1、复习四边形的性质,由定义可知平行
四边形也具有此性质
2、质疑:
平行四边形除以上性质外还有其他性质
吗?
(提示:请学生仿照三角形的学习方
法从边和角去探索)
2、 小组合作学习探索:
让学生拿出提前准备好的透明平行四边
形自己想办法
(测量、计算、对折剪开、
旋转、平移、推理等探索发现平行四边形
的邻角、对角、邻边、对边的数量关系。)
3、 小组汇报发现(猜想):
平行四边形
(1)对边相等(2)对角相等
1、体现本课的能力目标。突出
教学目标
2、进行新旧知识的链接
让学生仿照三角形的学习方法
类比探索平行四边形的性质,通过动
手实际操作去发现规律,对事物的本
质进行抽象、概括的能力。体现自主
-合作-探究的学习方法,培养小组合
作学习能力。
名师精编 优秀教案
4.如何证明上述结论?
已知: □ABCD
求证:∠A=∠C ∠B=∠D
AB=DC AD=BC
(1)拼图活动。用学习全等三角形时准
备的两个全等的三角形纸片(不可翻转)
可以拼出几种形状不同的平行四边形?
(2)总结解决四边形问题的常用方法。
(3)多种方法证明(略)
5、归纳总结平行四边形的性质
并用三种数学语言表述
1、再次突出本课的能力目标,并为
突破难点用拼图的活动启发学生将
平行四边形问题转化为三角形问题
解决。
总结解决多边形问题的常用方法,
即:连结对角线,将多边形问题转化
成三角形问题,化未知为已知,化复
杂为简单。
2、鼓励学生用多种方法证明,对于
学生说出的证法予以肯定,同时让学
生比较几种证明方法的优缺点。
1、质疑:如果已知平行四边形一个内角的度数,能确定其他三个内角的度数吗?说说你的理由。 2、书P93页练习1 3、书P93页的例1 运用和巩固平行四边形的性质,
解决实际问题,感受“数学来源于生
活又服务于生活的含义”。
性
质
的
应
用
名师精编 优秀教案
3.巩固练习:
填空: D
C
1)如图:DC∥EF∥AB E O F
DA∥GH∥CB ,则图中的
平行四边形有_____个;A B
2)在□ABCD中,
① 若∠A=120°,则∠B =____ ,
∠C =____ ,∠D =______;
② 若∠B+∠D=120°,则∠A =____
∠B=_____;
③ 若∠D-∠C=120°,则∠A =____
∠B =_____;
若AB=2cm ,BC=3cm ,则□ABCD的周长为
________;
本环节补充了一组直接运用平
行四边形的概念和性质进行计算的
练习题,要求学生联系刚学过的概念
和性质,并结合方程的思想进行计
算。这样,及时地将理论用于实践,
既为学生独立完成课后练习中的计
算题和证明题,作了必要的铺垫,又
达到了逐步突破难点的目的。同时,
有利于激发学生的学习兴趣和积极
性,从而形成一种人人参与的氛围,
给学生创造体验成功的机会。
课
堂
小
结
1、 引导学生自己讨论总结本节课的收获 训练学生用表格的形式总结平行四边形的性质 通过小结回顾了本节课的重点内容,
培养学生的总结概括能力通过表格,
使知识条理化、系统化,便于理解、
记忆。
布
置
作
业
1. 必做题: 教材 99页 1、2、3题,选6 2.探索思考 : 教材93页的练习3 3、寻找生活中的平行四边形的实例 1、巩固所学的概念,进一步发现和
弥补教与学的不足;
2、强化基本技能的训练,培养学
生良好的学习习惯和思维品质。
H
G
性
质
的
应
用
名师精编 优秀教案
板 书 设 计 一、平行四边形的概念 例 1
二、平行四边形的性质