矩阵的几大题型
逆矩阵复习

3
cdgtb@
4
二. 用行初等变换求逆矩阵
(求逆矩阵的简便方法.) 求逆矩阵的简便方法. 可逆, 所以存在初等矩阵E 设A可逆, 可逆 所以存在初等矩阵 1, …, Ek, 使得
Ek Ek−1LE A = I 1
A−1 = Ek Ek−1LE= Ek Ek−1LE I 1 1
1
1
cdgtb@
逆矩阵的性质: 逆矩阵的性质 均为n (设A, B 均为 设 阶可逆矩阵) 阶可逆矩阵
• • • • • • • • • • • • • • •
1. A-1A=I, AA-1=I 2. 唯一性; 唯一性; 3. A-1可逆,且(A-1)-1 = A; 可逆, 1 −1 -1 = A; 4. λA可逆,且 (λA) 可逆, 可逆 λ -1 = B-1 A-1; 5. AB可逆,且(AB) 可逆, 可逆 6. AT可逆,且(AT)-1 = (A-1)T. 可逆, 7 AX = b只有唯一解 只有唯一 只有唯一解 8. AX =0只有零解; 只有零 只有 9. A与I 行(列)等价; 等价; 与 列 等价 10. A与I 等价; 与 等价; 11. A的标准形为 的标准形为I 的标准形为 12. A可表为有限个初等矩阵的乘积 可表为有限个初等矩阵的乘积; 可表为有限个初等矩阵的乘积 13. det(A) ≠0. 1 14. det(A-1)= det(A) 15.Rank(A)=n
5
cdgtb@
2
2
cdgtb@
常见题型: 常见题型 已知矩阵的一个等式,证明某矩阵可逆, 已知矩阵的一个等式,证明某矩阵可逆 或进行计算 基本技巧: 基本技巧 (1) 从已知等式变形出 矩阵 矩阵 从已知等式变形出(矩阵 矩阵2)=kI 矩阵1)(矩阵 (2) 先化简 后计算 先化简,
高考数学总复习矩阵与变换第2课时逆变换与逆矩阵矩阵的特征值4-2

选修4-2 矩阵与变换第2课时 逆变换与逆矩阵、矩阵的特征值与特征向量(对应学生用书(理)189~191页)1. 设M =⎣⎢⎢⎡⎦⎥⎥⎤0110,N =⎣⎢⎢⎡⎦⎥⎥⎤1012,求MN . 解:MN =⎣⎢⎢⎡⎦⎥⎥⎤0110⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤01210. 2. 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤a 273,若矩阵M 的逆矩阵M -1=⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a,求a 、b 的值.解:由题意,知MM-1=E ,⎣⎢⎢⎡⎦⎥⎥⎤a 273⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a =⎣⎢⎢⎡⎦⎥⎥⎤1001,即⎣⎢⎢⎡⎦⎥⎥⎤ab -1407b -213a -14=⎣⎢⎢⎡⎦⎥⎥⎤1001, 即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3.3. 求矩阵⎣⎢⎢⎡⎦⎥⎥⎤ 12-12的特征多项式. 解:f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4.4. (选修42P 73习题第1题改编)求矩阵M =[ 1 6-2-6]的特征值.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)·(λ+3)=0,令f(λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. (选修42P 73习题第1题改编)求矩阵N =⎣⎢⎢⎡⎦⎥⎥⎤3652的特征值及相应的特征向量.解:矩阵N 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3-6-5λ-2=(λ-8)·(λ+3)=0,令f(λ)=0,得N 的特征值为λ1=-3,λ2=8, 当λ1=-3时⎩⎪⎨⎪⎧-6x -6y =0,-5x -5y =0,一个解为⎩⎪⎨⎪⎧x =-1,y =1, 故特征值λ1=-3的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤-1 1;当λ2=8时⎩⎪⎨⎪⎧5x -6y =0,-5x +6y =0,一个解为⎩⎪⎨⎪⎧x =6,y =5,故特征值λ2=8的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤65.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.(3) 利用行列式解二元一次方程组. 2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量.[备课札记]题型1 求逆矩阵与逆变换例1 用解方程组的方法求下列矩阵M 的逆矩阵.(1) M =⎣⎢⎢⎡⎦⎥⎥⎤1101; (2) M =⎣⎢⎢⎡⎦⎥⎥⎤1221. 解:(1) 设M-1=⎣⎢⎢⎡⎦⎥⎥⎤a b c d , 则由定义知⎣⎢⎢⎡⎦⎥⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤1001,即⎩⎪⎨⎪⎧a +c =1,b +d =0,c =0,d =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =0,d =1,故M-1=⎣⎢⎢⎡⎦⎥⎥⎤1-10 1. (2) 设M-1=⎣⎢⎢⎡⎦⎥⎥⎤a b c d , 则由定义知⎣⎢⎢⎡⎦⎥⎥⎤1221⎣⎢⎢⎡⎦⎥⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤1001, 即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,2a +c =0,2b +d =1,解得⎩⎪⎪⎨⎪⎪⎧a =-13,b =23,c =23,d =-13,故M-1=⎣⎢⎢⎡⎦⎥⎥⎤-13 23 23-13. 备选变式(教师专享) 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2-31-1所对应的线性变换把点A(x ,y)变成点A′(13,5),试求M 的逆矩阵及点A 的坐标.解:依题意,由M =⎣⎢⎢⎡⎦⎥⎥⎤2-31-1,得|M |=1,则M -1=⎣⎢⎢⎡⎦⎥⎥⎤-13-12.从而由⎣⎢⎢⎡⎦⎥⎥⎤2-31-1⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤135,得⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-13-12⎣⎢⎢⎡⎦⎥⎥⎤135=⎣⎢⎢⎡⎦⎥⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎢⎡⎦⎥⎥⎤2-3, 故⎩⎪⎨⎪⎧x =2,y =-3,∴ A 点坐标为(2,-3).题型2 求特征值与特征向量 例2 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎢⎡⎦⎥⎥⎤2a 21⎣⎢⎢⎡⎦⎥⎥⎤ 1-2=⎣⎢⎢⎡⎦⎥⎥⎤-4 0, 得2-2a =-4a =3.(2) 由(1)知M =⎣⎢⎢⎡⎦⎥⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =02x -3y =0.∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤32.变式训练已知M =⎣⎢⎢⎡⎦⎥⎥⎤1221,β=⎣⎢⎢⎡⎦⎥⎥⎤17,计算M 5β. 解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3.令f(λ)=0,解得λ1=3,λ2=-1,从而求得对应的一个特征向量分别为α1=⎣⎢⎢⎡⎦⎥⎥⎤11,α2=⎣⎢⎢⎡⎦⎥⎥⎤1-1.令β=m α1+n α2,则m =4,n =-3.M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M 5α2) =4(λ51α1)-3(λ52α2) =4×35⎣⎢⎢⎡⎦⎥⎥⎤11-3×(-1)5⎣⎢⎢⎡⎦⎥⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤975969. 题型3 根据特征值或特征向量求矩阵 例3矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1102有特征向量为e 1=⎣⎢⎢⎡⎦⎥⎥⎤11,e 2=⎣⎢⎢⎡⎦⎥⎥⎤10, (1) 求e 1和e 2对应的特征值; (2) 对向量α=⎣⎢⎢⎡⎦⎥⎥⎤41,记作α=e 1+3e 2,利用这一表达式间接计算M 4α,M 10α.解:(1) 设向量e 1、e 2对应的特征值分别为λ1、λ2,则⎣⎢⎢⎡⎦⎥⎥⎤1102⎣⎢⎢⎡⎦⎥⎥⎤11=λ1⎣⎢⎢⎡⎦⎥⎥⎤11,⎣⎢⎢⎡⎦⎥⎥⎤1102⎣⎢⎢⎡⎦⎥⎥⎤10=λ2⎣⎢⎢⎡⎦⎥⎥⎤10, 故λ1=2,λ2=1,即向量e 1,e 2对应的特征值分别是2,1. (2) 因为α=e 1+3e 2,所以M 4α=M 4(e 1+3e 2)=M 4e 1+3M 4e 2=λ41e 1+3λ42e2=⎣⎢⎢⎡⎦⎥⎥⎤1916, M 10α=M 10(e 1+3e 2)=M 10e 1+3M 10e 2=λ101e 1+3λ102e 2=⎣⎢⎢⎡⎦⎥⎥⎤210+3210.备选变式(教师专享)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤200-1有特征向量e 1→=⎣⎢⎢⎡⎦⎥⎥⎤10,e 2→=⎣⎢⎢⎡⎦⎥⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α→=⎣⎢⎢⎡⎦⎥⎥⎤x y ,求M 100α→.解:(1) 由矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤200-1变换的意义知M -1=⎣⎢⎢⎡⎦⎥⎥⎤1200-1, 又Me 1→=λ1e 1→,即⎣⎢⎢⎡⎦⎥⎥⎤200-1⎣⎢⎢⎡⎦⎥⎥⎤10=λ1⎣⎢⎢⎡⎦⎥⎥⎤10,故λ1=2,同理Me 2→=λ2e 2→,即⎣⎢⎢⎡⎦⎥⎥⎤200-1⎣⎢⎢⎡⎦⎥⎥⎤01=λ2⎣⎢⎢⎡⎦⎥⎥⎤01,故λ2=-1. (2) 因为α→=⎣⎢⎢⎡⎦⎥⎥⎤x y =x e 1→+y e 2→,所以M 100α→=M 100(x e 1→+y·e 2→)=xM 100e 1→+yM 100e 2→=xλ1001e 1→+yλ2100e 2→=⎣⎢⎢⎡⎦⎥⎥⎤2100x y .1. 求函数f(x)=⎪⎪⎪⎪⎪⎪⎪⎪2cosx sinx -1的值域.解:f(x)=-2-sinxcosx =-2-12sin2x ∈⎣⎢⎡⎦⎥⎤-52,-32.2. 已知矩阵A 的逆矩阵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,求矩阵A 的特征值.解:∵ A -1A =E ,∴ A =(A -1)-1.∵ A-1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,∴ A =(A -1)-1=⎣⎢⎢⎡⎦⎥⎥⎤2321.∴ 矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4.令f(λ)=0,解得矩阵A 的特征值λ1=-1,λ2=4.3. (2013·江苏)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-10 02,B =⎣⎢⎢⎡⎦⎥⎥⎤1206,求矩阵A -1B .解:设矩阵A的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤a b c d , 则⎣⎢⎢⎡⎦⎥⎥⎤-10 02⎣⎢⎢⎡⎦⎥⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤1001, 即⎣⎢⎢⎡⎦⎥⎥⎤-a -b 2c 2d =⎣⎢⎢⎡⎦⎥⎥⎤1001, 故a =-1,b =0,c =0,d =12.∴ 矩阵A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-10 012,∴ A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10012⎣⎢⎢⎡⎦⎥⎥⎤1206=⎣⎢⎢⎡⎦⎥⎥⎤-1-2 0 3. 4. 设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a 0b 1(a>0)对应的变换作用下得到的曲线为x 2+y 2=1.(1) 求实数a 、b 的值; (2) 求A 2的逆矩阵.解:(1) 设曲线2x 2+2xy +y 2=1上任一点P(x ,y)在矩阵A 对应的变换下的象是P′(x′,y ′),由⎣⎢⎢⎡⎦⎥⎥⎤x′y′=⎣⎢⎢⎡⎦⎥⎥⎤a 0b 1⎣⎢⎢⎡⎦⎥⎥⎤x y =[]axbx +y,得⎩⎪⎨⎪⎧x′=ax ,y ′=bx +y.因为P′(x′,y ′)在圆x 2+y 2=1上, 所以(ax)2+(bx +y)2=1,化简可得(a 2+b 2)x 2+2bxy +y 2=1, 依题意可得a 2+b 2=2,2b =2a =1,b =1或a =-1,b =1,而由a>0可得a =b =1.(2) 由(1)A =⎣⎢⎢⎡⎦⎥⎥⎤1011,A 2=⎣⎢⎢⎡⎦⎥⎥⎤1011⎣⎢⎢⎡⎦⎥⎥⎤1011=⎣⎢⎢⎡⎦⎥⎥⎤1021|A 2|=1,(A 2)-1=⎣⎢⎢⎡⎦⎥⎥⎤ 10-21. 1. 已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1 -1a1,若点P(1,1)在矩阵A 对应的变换作用下得到点P′(0,-8).(1) 求实数a 的值; (2) 求矩阵A 的特征值.解:(1) 由⎣⎢⎢⎡⎦⎥⎥⎤1-1a1⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤ 0-8,得a +1=-8, 所以a =-9. (2) 由(1)知A =⎣⎢⎢⎡⎦⎥⎥⎤ 1 -1-91,则矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 19 λ-1=(λ-1)2-9=λ2-2λ-8,令f(λ)=0,所以矩阵A 的特征值为-2或4.2. 已知M =⎣⎢⎢⎡⎦⎥⎥⎤2-1-43,N =⎣⎢⎢⎡⎦⎥⎥⎤4-1-31,求二阶方阵X ,使MX =N .解:(解法1)设X =⎣⎢⎢⎡⎦⎥⎥⎤x y z w ,据题意有⎣⎢⎢⎡⎦⎥⎥⎤2-1-43⎣⎢⎢⎡⎦⎥⎥⎤x y z w =⎣⎢⎢⎡⎦⎥⎥⎤4-1-31,根据矩阵乘法法则有⎩⎪⎨⎪⎧2x -z =4,2y -w =-1,-4x +3z =-3,-4y +3w =1.解得⎩⎪⎨⎪⎧x =92,y =-1,z =5,w =-1,所以X =⎣⎢⎢⎡⎦⎥⎥⎤92-15-1. (解法2)因为MX =N ,所以X =M -1N ,M -1=⎣⎢⎢⎡⎦⎥⎥⎤321221.所以X =M-1N =⎣⎢⎢⎡⎦⎥⎥⎤321221⎣⎢⎢⎡⎦⎥⎥⎤4-1-31=⎣⎢⎢⎡⎦⎥⎥⎤92-15-1. 3. 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0),求实数a 的值;并求矩阵M 的特征值及其对应的特征向量.解:由⎣⎢⎢⎡⎦⎥⎥⎤2a 21⎣⎢⎢⎡⎦⎥⎥⎤1-2=⎣⎢⎢⎡⎦⎥⎥⎤-40,∴ 2-2a =-4a =3.∴ M =⎣⎢⎢⎡⎦⎥⎥⎤2321,则矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M 的特征值为-1与4. 当λ=-1时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤1-1;当λ=4时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =02x -3y =0,∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤32.4. 设矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤a 00b (其中a>0,b>0).(1) 若a =2,b =3,求矩阵M 的逆矩阵M -1;(2) 若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C′:x 24+y 2=1,求a 、b 的值.解:(1) 设矩阵M 的逆矩阵M-1=⎣⎢⎢⎡⎦⎥⎥⎤x 1y 1x 2y 2,则MN -1= ⎣⎢⎢⎡⎦⎥⎥⎤1001.又M =⎣⎢⎢⎡⎦⎥⎥⎤2003,所以⎣⎢⎢⎡⎦⎥⎥⎤2003⎣⎢⎢⎡⎦⎥⎥⎤x 1y 1x 2y 2=⎣⎢⎢⎡⎦⎥⎥⎤1001,所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M -1=⎣⎢⎢⎡⎦⎥⎥⎤120013.(2) 设曲线C 上任意一点P(x ,y),它在矩阵M 所对应的线性变换作用下得到P′(x′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤a 00b ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x′y′,即⎩⎪⎨⎪⎧ax =x′,by =y′.又点P′(x′,y ′)在曲线C′上,所以x′24+y′2=1,则a 2x 24+b 2y2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧a 2=4,b 2=1.又a>0,b>0,所以⎩⎪⎨⎪⎧a =2,b =1.1. 矩阵的逆矩阵(1) 已知A 、B 、C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .(2) 对于二阶可逆矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a b c d (ad -bc≠0),它的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -b ad -bc-c ad -bca ad -bc . 2. 二阶行列式与方程组的解对于关于x 、y的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n ,我们把⎪⎪⎪⎪⎪⎪⎪⎪a b c d 称为二阶行列式,它的运算结果是一个数值(或多项式),记为det(A)=⎪⎪⎪⎪⎪⎪⎪⎪a b c d =ad -bc. 若将方程组中行列式⎪⎪⎪⎪⎪⎪⎪⎪a b c d 记为D ,⎪⎪⎪⎪⎪⎪⎪⎪m b n d 记为D x ,⎪⎪⎪⎪⎪⎪⎪⎪a m c n 记为D y,则当D≠0时,方程组的解为⎩⎪⎨⎪⎧x =D xD,y =DyD .请使用课时训练(B )第2课时(见活页).[备课札记]。
考研数学线代5矩阵的对角化

a1b1 a2b2 an bn ,再由前面特征值
的性质: 1 2 n a11 a22 ann 从而可得:
T
a1b1 a2b2 an bn 是 A 的特征值,重数是 1,而 0 特征值其重数
0 特征值对应的特 a1b1 a2b2 an bn 对应的特征向量是 k;
2 3 2 0,注意 0, 2 3 2 0 1或 2 。
例2 设
A是n阶矩阵(A是实对称矩阵)P是n阶可逆矩阵,已知n维列向量是A 的属于
特征值 的特征向量,则矩阵 P 1 AP 属于特征值 的特征向量是:
T
(1) P 1 ; (3) P ;
矩阵的对角化
一 、矩阵的特征值和特征向量 1 定义: A 是一个 n 捷矩阵, 是一个非零列向量,若存在一个数 0 ,使得:
A 0
则称 0 是 A 的特征值, 称为属于 0 的特征向量。 2 相关的概念 (1)特征矩阵: E A; (2)特征多项式: f ( )
E A ; E A 的根,也就是特征值;
1 2 n a11 a22 ann tr ( A)
1 2 n A
4 A 可逆的充分必要条件是 A 的特征值均不为 0;
,n 是 A 的特征值,则 E kA 的特征值为 k1, - k2 , - kn , 5 若 1,2, E kA k1 k2 kn ;
, n 与 1, 2, , n 的对应关系; 注意:上述中 P 的列向量 P的列向量 1, 2,
由此可以得到:
4 相似变换矩阵 P 不是唯一的,对角矩阵的形式不是唯一的。
2018考研数学线代:矩阵合同与相似的典型题型分析详解

2018考研数学线代:矩阵合同与相似的
典型题型分析详解
合同矩阵与相似矩阵是线性代数中的两个相近概念,它们既有一定的类似性和关联性,但二者又有区别,它们的含义和性质是不同的,有些同学对这两个概念弄不清楚,搞不明白它们之间到底有什么区别,在主流线性代数教材上也没有对它们进行比较分析,在做涉及到这两个概念的习题时也不知道从何下手,为了帮助这些2018考研的同学解决这个难题,本文对合同矩阵和相似矩阵的主要判别方法做一下总结,并对往年考研数学试题中的这类题做些分析。
一、矩阵合同与相似的主要判别方法
从上面的判别方法和典型例题看到,如果两个实对称矩阵相似,则它们的特征值完全相同(包括特征值的重数也相同),因此它们的正、负惯性指数也分别相等,从而这两个矩阵是合同的,但如果不是实对称矩阵,则相似矩阵不一定是合同矩阵;另外,合同矩阵不一定是相似矩阵,这些区别希望同学们理解。
2018考研数学线代:矩阵合同与相似的典型题型分析详解

2018考研数学线代:矩阵合同与相似的
典型题型分析详解
合同矩阵与相似矩阵是线性代数中的两个相近概念,它们既有一定的类似性和关联性,但二者又有区别,它们的含义和性质是不同的,有些同学对这两个概念弄不清楚,搞不明白它们之间到底有什么区别,在主流线性代数教材上也没有对它们进行比较分析,在做涉及到这两个概念的习题时也不知道从何下手,为了帮助这些2018考研的同学解决这个难题,本文对合同矩阵和相似矩阵的主要判别方法做一下总结,并对往年考研数学试题中的这类题做些分析。
一、矩阵合同与相似的主要判别方法
从上面的判别方法和典型例题看到,如果两个实对称矩阵相似,则它们的特征值完全相同(包括特征值的重数也相同),因此它们的正、负惯性指数也分别相等,从而这两个矩阵是合同的,但如果不是实对称矩阵,则相似矩阵不一定是合同矩阵;另外,合同矩阵不一定是相似矩阵,这些区别希望同学们理解。
考研数学二(矩阵)模拟试卷28(题后含答案及解析)

考研数学二(矩阵)模拟试卷28(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A,B均为n阶矩阵,则必有( )A.|A+B|=|A|+|B|。
B.AB=BA。
C.|AB|=|BA|。
D.(A+B)—1=A—1+B—1。
正确答案:C解析:因为|AB|=|A||B|=|B||B|=|BA|,所以C项正确。
取B=一A,则|A+B|=0,而|A|+|B|不一定为零,故A项错误。
由矩阵乘法不满足交换律知,B项不正确。
因(A+B)(A—1+B—1)≠E,故D项也不正确。
故选C。
知识模块:矩阵2.设A,B均为n阶可逆矩阵,则下列等式中必定成立的是( )A.(A+B)(A—B)=A2一B2。
B.(A+B)—1=A—1+B—1。
C.|A+B|=|A|+|B2。
D.(AB)*=B*A*。
正确答案:D解析:根据伴随矩阵的定义可知(AB)*=|AB|(AB)—1=|A||B|B—1A —1=B*A*。
故选D。
知识模块:矩阵3.设A为n阶非零矩阵,E为n阶单位矩阵。
若A3=D,则( )A.E一A不可逆,E+A不可逆。
B.E—A不可逆,E+A可逆。
C.E一A可逆,E+A可逆。
D.E—A可逆,E+A不可逆。
正确答案:C解析:已知(E一A)(E+A+A2)=E—A3=E,(E+A)(E—A+A2)=E+A3=E,故E —A,E+A均可逆。
故选C。
知识模块:矩阵4.设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A一E恒可逆。
上述命题中,正确的个数为( )A.1。
B.2。
C.3。
D.4。
正确答案:D解析:由AB=A+B,有(A—E)B=A。
若A可逆,则|(A—E)B|=|A—E|×|B|=|A|≠0,所以|B|≠0,即矩阵B可逆,从而①正确。
同①类似,由B可逆可得出A可逆,从而AB可逆,那么A+B=AB也可逆,故②正确。
矩阵与行列式习题课
(1) a + b (2) ab (3) a − b (4) −ab
20
7.当λ = (
, )时齐次线性方程组仅有零解
(λ − 2)x1 − 4x2 + x3 = 0 −4x1 + (λ − 3)x2 + 4x3 = 0 (−λ)x1 + 4x2 + x3 = 0 A.λ = 1 B.λ ≠ 1 C.λ ≠ 3
9.若A是n阶方阵 则A可表示为一对称矩阵和 , 反 对称矩阵之和 ( 正确 )
10.在五阶行列式中 a32a55a14a21a43前的符号 ,项 为负 (正确)
17
例3 选择题 1.设A, B, C是n 方阵, I是n 单位方阵,且 阶 阶 ABC = I,则下列各式正确的是 ((2) )
(1) ACB = I (3) CBA = I (2) BCA = I (4) BAC = I
12
3、设 、
1 1 −1 1 1 1 1 2 1 3 1 4 15 x x2 x3 + 1 1 2 1 1 2 1 5 1 1 4 15 1 x x2 x3 + 1 1 1 2 1 4 1 8 0 2 5 12 1 x x2 x3 =0
上述方程的解 x = ______ 解 利用行列式的性质,得 的性质,
2
(3)逆矩阵的计算 逆矩阵的计算 逆矩阵的 ①根据定义导出 ②伴随矩阵法 ③初等变换法 三、矩阵的初等变换与线性方程组 1、 初等变换 (定义、定理) 、 定义、定理) 2、矩阵的等价 、 3、初等矩阵 、 4、矩阵的秩 、 5、线性方程组的解的定理 、
相似对角矩阵题型解法
相似对角矩阵题型解法相似对角矩阵是指具有相同特征值的对角矩阵。
解决相似对角矩阵问题,一般需要以下步骤:1. 找到特征值:首先,计算给定矩阵的特征值。
特征值是满足方程det(A - λI) = 0 的λ 值,其中det 是行列式运算,A 是给定矩阵,I 是单位矩阵。
2. 找到相似矩阵:根据特征值,我们可以得到对应的特征向量。
每个特征值对应一组特征向量。
将这些特征向量组成一个矩阵,这个矩阵就是相似矩阵。
3. 对角化:相似矩阵可以将给定的矩阵对角化。
对角化意味着将矩阵表示为一个对角矩阵和一个与其逆矩阵相乘的相似矩阵。
具体步骤如下:1. 计算特征值:对于一个n x n 的矩阵A,求解它的特征值的方式是解方程det(A - λI) = 0,其中I 是n x n 的单位矩阵,λ 是特征值。
2. 计算特征向量:对于每个特征值λ,解方程组(A - λI)X = 0,其中X 是n 维列向量,求得特征向量。
3. 构建相似矩阵:将所有的特征向量按列组成一个矩阵P,即P = [X1, X2, ... , Xn]。
则相似矩阵B = P^(-1)AP,其中P^(-1) 是P 的逆矩阵。
4. 对角化:相似矩阵B 是对角矩阵,对角线上的元素就是对应的特征值。
需要注意的是,不是所有的矩阵都能被相似对角化。
某些矩阵可能没有足够的特征向量或特征向量线性相关,无法构成相似矩阵。
在这种情况下,矩阵可能处于不可对角化的状态。
这是一个一般的解法步骤,具体的计算过程可能会根据实际问题和矩阵的性质而有所不同。
在具体解决相似对角矩阵问题时,可以参考线性代数相关教材中的定理和方法来进行计算。
考研数学二(行列式、矩阵、向量)历年真题试卷汇编2(题后含答案及解析)
考研数学二(行列式、矩阵、向量)历年真题试卷汇编2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.记行列式为f(x),则方程f(x)=0的根的个数为A.1.B.2C.3D.4正确答案:B解析:[分析] 本题实质上是考查四阶行列式的计算问题,可利用行列式的性质进行计算,得到f(x)后,即可确定其根的个数.[详解] 因为由此可知f(x)=0的根的个数为2,故应选(B).[评注] 由于数学二只要求考查线性代数初步,相对内容较少,行列式的计算问题基本上每年出一题,因此利用行列式的定义、性质和按行或列展开定理进行计算应熟练掌握.知识模块:行列式2.设A是m×n矩阵,B是n×m矩阵,则A.当m>n时,必有行列式|AB|≠0.B.当m>n时,必有行列式|AB|=0.C.当n>m时,必有行列式|AB|≠0.D.当n>m时,必有行列式|AB|=0.正确答案:B解析:[分析] 四个选项在于区分行列式是否为零,而行列式是否为零又是矩阵是否可逆的充要条件,问题转化为矩阵是否可逆,而矩阵是否可逆又与矩阵是否满秩相联系,最终只要判断AB是否满秩即可.[详解] 因为AB为m 阶方阵,且r(AB)≤min{r(A),r(B)}≤min{m,n),当m>n时,由上式可知,r(AB)≤n<m,即AB不是满秩的,故有行列式|AB|=0.故应选(B).[评注] 本题不知矩阵AB的具体元素,因此直接应用行列式的有关计算方法进行求解是困难的.对于此类抽象矩阵行列式的计算往往可考虑转换为利用:1.矩阵的秩(判断行列式是否为零);2.行(列)向量组的线性相关性;3.方程组解的判定;4.特征值和相似矩阵的性质等进行计算.知识模块:行列式3.设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,则满足AQ—c的可逆矩阵Q为A.B.C.D.正确答案:D解析:[分析] 本题考查初等矩阵的概念与性质,对A作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q即为这两个初等矩阵的乘积.[详解] 由题设,有,于是,故应选(D).知识模块:矩阵4.设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则A.交换A*的第1列与第2列得B*.B.交换A*的第1行与第2行得B*.C.交换A*的第1列与第2列得-B*.D.交换A*的第1行与第2行得-B*.正确答案:C解析:[分析] 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.[详解] 由题设,存在初等矩阵E12(交换n阶单位矩阵的第1行与第2行所得),使得E12A=B,于是B*=(E12A)*=A*E12*=A*|E12|.E12-1=-A*E12,即A*E12=-B*,故应选(C).[评注] 注意伴随矩阵的运算性质:AA*=A*A==|A|E,当A可逆时,A*=|A|A-1,(AB)*=B*A*.知识模块:矩阵5.设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则A.C=P-1AP.B.C=PAP-1.C.C=PTAP.D.C=PAPT.正确答案:B解析:由题设可得,而,则有C=PAP-1.故应选(B).知识模块:矩阵6.设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=.若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ为A.B.C.D.正确答案:A解析:因为Q=P.于是.即(A)正确.知识模块:矩阵7.设A为3阶矩阵,将A的第二列加到第一列得矩阵B,再交换B的第二行与第三行得单位矩阵,记,则A=A.P1P2.B.P1-1P2.C.2P1.D.2P1-1.正确答案:D解析:由已知条件有P2AP1E得A=P2-1EP1-1=P2P1-1.故应选(D).知识模块:矩阵8.设A为3阶矩阵,P为3阶可逆矩阵,且P-1AP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=A.B.C.D.正确答案:B解析:由已知条件有Q=P,因此故应选(B).知识模块:矩阵9.设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*等于A.kA*.B.kn-1A*.C.knA*.D.k-1A*.正确答案:B解析:[分析] 利用伴随矩阵的定义讨论即可.若加强条件,则可令A可逆.[详解1] 采用加强条件的技巧,设A可逆,则由AA*=A*A=|A|E,知A*=|A|A-1,于是(kA)*=|kA|(kA)-1=kn|=kn-1|A|A-1=kn-1A*.故应选(B).题设k≠0,±1,n≥3,主要是为了做到四个选项只有一个是正确的.[详解2] 由A*的定义,设A=(aij)n ×n,其元素aij的代数余子式记作Aij,则矩阵kA=(kaij)n×n,若其元素的代数余子式记作△ij(i,j=1,2,…,n),由行列式性质有△ij=kn-1Aij(i,j=1,2,…,n).从而(kA)*=kn-1A*.[评注] 涉及与A*有关的题目,一般利用A*的定义和公式AA*=|A|E.知识模块:矩阵10.设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若|A|=2,|B|=3,则分块矩阵的伴随矩阵为A.B.C.D.正确答案:B解析:利用伴随矩阵的公式,有。
考研数学二(矩阵)模拟试卷11(题后含答案及解析)
考研数学二(矩阵)模拟试卷11(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设n维行向量α=(),矩阵A=E-αTα,B=E+2αTα,则AB=A.0.B.E.C.-E.D.E+αTα.正确答案:B解析:AB=(E-αTα)(E+2αTα)=E+2αTα-αTα-2αTααTα=E+αTα-2αT(ααT)α.注意ααT=,故AB=E.应选B.知识模块:矩阵2.设A是任一n阶矩阵,下列交换错误的是A.A*A=AA*.B.AmAp=ApAm.C.ATA=AAT.D.(A+E)(A-E)=(A-E)(A+E).正确答案:C解析:因为AA*=A*A=|A|E,AmAp=ApAm=Am+p,(A+E)(A -E)=(A-E)(A+E)=A2-E,所以选项A、B、D均正确.而故C不正确.知识模块:矩阵3.设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1=A.A+B.B.A-1+B-1.C.A(A+B)-1B.D.(A+B)-1.正确答案:C解析:(A-1+B-1)-1=(EA-1+B-1)-1=(B-1BA-1+B-1)-1 =[B-1(BA-1+AA-1)]-1=[B-1(B+A)A-1]-1 =(A-1)-1(B+A)-1(B-1)-1=A(A+B)-1 B.故应选C.知识模块:矩阵4.设A,B均是n阶矩阵,下列命题中正确的是A.AB=0A=0或B=0.B.AB≠0A≠0且B≠0.C.AB=0|A|=0或|B|=0.D.AB≠0|A|≠0且|B|≠0.正确答案:C 涉及知识点:矩阵5.A.AP1P2.B.AP1P3.C.AP3P1.D.AP2P3.正确答案:B 涉及知识点:矩阵6.两个4阶矩阵满足A2=B2,则A.A=B.B.A=-B.C.A=B或A=-B.D.|A|=|B|或|A|=-|B|.正确答案:D 涉及知识点:矩阵填空题7.若A=,则A=2_______,A3=_______.正确答案:解析:A2=A3=A2A=知识模块:矩阵8.若A=,则A*=_______,(A*)*=_______.正确答案:;0.解析:用定义.A11=-3,A12=6,A13=-3,A21=6,A22=-12,A23=6,A31=-3,A32=6,A33=-3,故A*=因为r(A*)=1,A*的二阶子式全为0,故(A*)*=0.知识模块:矩阵9.设A=,则A-1=_______.正确答案:解析:利用易见知识模块:矩阵10.设矩阵A=,B=A2+5A+6E,则=_______.正确答案:涉及知识点:矩阵11.设A是n阶矩阵,满足A2-2A+E=0,则(A+2E)-1=_______.正确答案:(4E-A)解析:由(A+2E)(A-4E)+9E=A*-2A+E=0有(A+2E)(4E-A)=E.所以(A+2E)-1=(4E-A).知识模块:矩阵12.若A=,则(A*)-1=_______.正确答案:涉及知识点:矩阵解答题解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
好像目前还没有这方面题目的总结。这几天连续看到四个问这类题目的人,今天在这里简单写一下。这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。 不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1:
下面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵:
矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?废话,交换过来后两个矩阵有可能根本不能相乘。为什么它又满足结合律呢?仔细想想你会发现这也是废话。假设你有三个矩阵A、B、C,那么(AB)C和A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。
经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。
经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。 由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。 经典题目3 POJ3233 (感谢rmq) 题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位
置分别相加)。输出的数据mod m。k<=10^9。 这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目
的数据规模k进行二分。比如,当k=6时,有: A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3) 应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。
经典题目4 VOJ1049 题目大意:顺次给出m个置换,反复使用这m个置换对初始序列进行操作,问k次置换后的序列。m<=10, k<2^31。 首先将这m个置换“合并”起来(算出这m个置换的乘积),然后接下来我们需要执行这个置换k/m次(取整,若有余数则剩下几步模拟即可)。注意任意一个置换都可以表示成矩阵的形式。例如,将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:
置换k/m次就相当于在前面乘以k/m个这样的矩阵。我们可以二分计算出该矩阵的k/m次方,再乘以初始序列即可。做出来了别忙着高兴,得意之时就是你灭亡之日,别忘了最后可能还有几个置换需要模拟。
经典题目5 《算法艺术与信息学竞赛》207页(2.1代数方法和模型,[例题5]细菌,版次不同可能页码有偏差) 大家自己去看看吧,书上讲得很详细。解题方法和上一题类似,都是用矩阵来表示操作,然
后二分求最终状态。
经典题目6 给定n和p,求第n个Fibonacci数mod p的值,n不超过2^31 根据前面的一些思路,现在我们需要构造一个2 x 2的矩阵,使得它乘以(a,b)得到的结果是(b,a+b)。每多乘一次这个矩阵,这两个数就会多迭代一次。那么,我们把这个2 x 2的矩阵自乘n次,再乘以(0,1)就可以得到第n个Fibonacci数了。不用多想,这个2 x 2的矩阵很容易构造出来:
经典题目7 VOJ1067 我们可以用上面的方法二分求出任何一个线性递推式的第n项,其对应矩阵的构造方法为:
在右上角的(n-1)*(n-1)的小矩阵中的主对角线上填1,矩阵第n行填对应的系数,其它地方都填0。例如,我们可以用下面的矩阵乘法来二分计算f(n) = 4f(n-1) - 3f(n-2) + 2f(n-4)的第k项:
利用矩阵乘法求解线性递推关系的题目我能编出一卡车来。这里给出的例题是系数全为1的情况。
经典题目8 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值 把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,如果要求经过k步的路径数,我们只需要二分求出A^k即可。
经典题目9 用1 x 2的多米诺骨牌填满M x N的矩形有多少种方案,M<=5,N<2^31,输出答案mod p的结果
我们以M=3为例进行讲解。假设我们把这个矩形横着放在电脑屏幕上,从右往左一列一列地进行填充。其中前n-2列已经填满了,第n-1列参差不齐。现在我们要做的事情是把第n-1列也填满,将状态转移到第n列上去。由于第n-1列的状态不一样(有8种不同的状态),因此我们需要分情况进行讨论。在图中,我把转移前8种不同的状态放在左边,转移后8种不同的状态放在右边,左边的某种状态可以转移到右边的某种状态就在它们之间连一根线。注意为了保证方案不重复,状态转移时我们不允许在第n-1列竖着放一个多米诺骨牌(例如左边第2种状态不能转移到右边第4种状态),否则这将与另一种转移前的状态重复。把这8种状态的转移关系画成一个有向图,那么问题就变成了这样:从状态111出发,恰好经过n步回到这个状态有多少种方案。比如,n=2时有3种方案,111->011->111、111->110->111和111->000->111,这与用多米诺骨牌覆盖3x2矩形的方案一一对应。这样这个题目就转化为了我们前面的例题8。 后面我写了一份此题的源代码。你可以再次看到位运算的相关应用。 经典题目10 POJ2778 题目大意是,检测所有可能的n位DNA串有多少个DNA串中不含有指定的病毒片段。合法
的DNA只能由ACTG四个字符构成。题目将给出10个以内的病毒片段,每个片段长度不超过10。数据规模n<=2 000 000 000。 下面的讲解中我们以ATC,AAA,GGC,CT这四个病毒片段为例,说明怎样像上面的题一样通过构图将问题转化为例题8。我们找出所有病毒片段的前缀,把n位DNA分为以下7类:以AT结尾、以AA结尾、以GG结尾、以?A结尾、以?G结尾、以?C结尾和以??结尾。其中问号表示“其它情况”,它可以是任一字母,只要这个字母不会让它所在的串成为某个病毒的前缀。显然,这些分类是全集的一个划分(交集为空,并集为全集)。现在,假如我们已经知道了长度为n-1的各类DNA中符合要求的DNA个数,我们需要求出长度为n时各类DNA的个数。我们可以根据各类型间的转移构造一个边上带权的有向图。例如,从AT不能转移到AA,从AT转移到??有4种方法(后面加任一字母),从?A转移到AA有1种方案(后面加个A),从?A转移到??有2
种方案(后面加G或C),从GG到??有2种方案(后面加C将构成病毒片段,不合法,只能加A和T)等等。这个图的构造过程类似于用有限状态自动机做串匹配。然后,我们就把这个图转
化成矩阵,让这个矩阵自乘n次即可。最后输出的是从??状态到所有其它状态的路径数总和。 题目中的数据规模保证前缀数不超过100,一次矩阵乘法是三方的,一共要乘log(n)次。因
此这题总的复杂度是100^3 * log(n),AC了。
最后给出第9题的代码供大家参考(今天写的,熟悉了一下C++的类和运算符重载)。为了避免大家看代码看着看着就忘了,我把这句话放在前面来说: Matrix67原创,转贴请注明出处。
#include #define SIZE (1<#define MAX_SIZE 32 using namespace std;
class CMatrix { public: long element[MAX_SIZE][MAX_SIZE]; void setSize(int); void setModulo(int); CMatrix operator* (CMatrix); CMatrix power(int); private: int size; long modulo; };
void CMatrix::setSize(int a) { for (int i=0; i