二次函数九大题型
新人教版初中数学——二次函数-知识点归纳及典型题解析

新人教版初中数学——二次函数知识点归纳及典型题解析一、二次函数的概念一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).(2)顶点式:y=a(x–h)2+k(a,h,k为常数,a≠0),顶点坐标是(h,k).(3)交点式:y=a(x–x1)(x–x2),其中x1,x2是二次函数与x轴的交点的横坐标,a≠0.三、二次函数的图象及性质1.二次函数的图象与性质开口向上开口向下2.二次函数图象的特征与a,b,c的关系四、抛物线的平移1.将抛物线解析式化成顶点式y=a(x–h)2+k,顶点坐标为(h,k).2.保持y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.五、二次函数与一元二次方程的关系1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0).2.ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.3.(1)b2–4ac>0⇔方程有两个不相等的实数根,抛物线与x轴有两个交点;(2)b2–4ac=0⇔方程有两个相等的实数根,抛物线与x轴有且只有一个交点;(3)b2–4ac<0⇔方程没有实数根,抛物线与x轴没有交点.六、二次函数的综合1、函数存在性问题解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;然后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.2、函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.考向一二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.典例1如果y=(m–2)x2m m-是关于x的二次函数,则m=A.–1 B.2 C.–1或2 D.m不存在【答案】A【解析】依题意²220m mm-=⎧⎨-≠⎩,解得m=–1,故选A.【名师点睛】此题主要考察二次函数的定义,需要注意a0≠.典例2 下列函数是二次函数的是( ) A .y =2x +2 B .y =﹣2x C .y =x 2+2 D .y =x ﹣2【答案】C【解析】直接根据二次函数的定义判定即可. A 、y =2x +2,是一次函数,故此选项错误; B 、y =﹣2x ,是正比例函数,故此选项错误; C 、y =x 2+2是二次函数,故此选项正确; D 、y =x ﹣2,是一次函数,故此选项错误. 故选C .1.二次函数223y x =-+()的图像的顶点坐标是A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3)2.将一元二次方程2316x x +=化为一般形式后,常数项为1,二次项系数和一次项系数分别为 A .3,–6 B .3,6C .3,1D .2 3x ,6x -考向二 二次函数的图象二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.典例3 函数y =ax 2+bx +a +b (a ≠0)的图象可能是A .B .C .D .【答案】C【解析】A,由图象可知,开口向下,则a<0,又因为顶点在y轴左侧,则b<0,则a+b<0,而图象与y轴交点为(0,a+b)在y轴正半轴,与a+b<0矛盾,故此选项错误;B,由图象可知,开口向下,则a<0,又因为顶点在y轴左侧,则b<0,则a+b<0,而图象与y轴交点为(0,1)在y轴正半轴,可知a+b=1与a+b<0矛盾,故此选项错误;C,由图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0,a+b=1可能成立,故此选项正确;D,由图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于正半轴,则a+b>0,而图象与x轴的交点为(1,0),则a+b+a+b=0,显然a+b=0与a+b>0矛盾,故此选项错误.故选C.典例4如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列不等式成立的是A.a>0 B.b<0C.ac<0 D.bc<03.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是A.B.C.D.4.已知函数y=ax+b的大致图象如图所示,那么二次函数y=ax2+bx+1的图象可能是A.B.C.D.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是A.a<0 B.c>0C.a+b+c>0 D.b2–4ac<0考向三二次函数的性质二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.典例5由二次函数y=3(x﹣4)2﹣2可知A.其图象的开口向下B.其图象的对称轴为直线x=4C.其顶点坐标为(4,2)D.当x>3时,y随x的增大而增大【答案】B 【解析】23(4)2y x =--,∴a =3>0,抛物线开口向上,故A 不正确;对称轴为4x =,故B 正确; 顶点坐标为(4,–2),故C 不正确;当4x >时,y 随x 的增大而增大,故D 不正确; 故选B .【名师点睛】本题主要考查二次函数的性质,掌握抛物线的顶点式是解题的关键,即在2()y a x h k =-+中,顶点坐标为(,)h k ,对称轴x h =.a 决定了开口方向.典例6 在函数2(1)3y x =-+中,当y 随x 的增大而减小时,则x 的取值范围是A .1x ≥B .0x >C .3x <D .1x ≤【答案】D【解析】二次函数2(1)3y x =-+的对称轴为直线1x =, ∵0a >,∴1x ≤时,y 随x 的增大而减小.故选D.【名师点睛】本题考查了二次函数的单调性.二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0),当a >0时,在对称轴左侧y 随x 的增大而减小,在对称轴右侧y 随x 的增大而增大;当a <0时,在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小6.关于下列说法:(1)反比例函数13y mx =,在每个象限内y 随x 的增大而减小;(2)函数13y x =-,y 随x 的增大减小;(3)函数213y x =-,当0x >时,y 随x 的增大而减小,其中正确的有A .0个B .1个C .2个D .3个7.若二次函数2y a x bx c =++的图象经过A (m ,n )、B (0,y 1)、C (3–m ,n )、D ,y 2)、E (2,y 3),则y 1、y 2、y 3的大小关系是 A .231y y y << B .132y y y << C .321y y y <<D .123y y y <<考向四二次函数的平移1.抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关.2.涉及抛物线的平移时,首先将表达式转化为顶点式y=a(x–h)2+k的形式.3.抛物线的移动主要看顶点的移动,y=ax2的顶点是(0,0),y=a(x–h)2的顶点是(h,0),y=a (x–h)2+k的顶点是(h,k).4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.典例7如果将抛物线y=–x2–2向右平移3个单位长度,那么所得到的新抛物线的表达式是A.y=–x2–5 B.y=–x2+1C.y=–(x–3)2–2 D.y=–(x+3)2–2A.y=(x2B.y=(x+2)2+2C.y=(x–2D.y=(x–2)2+2【答案】D9.把抛物线y=12x2–1先向右平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式为A.y=12(x+1)2–3 B.y=12(x–1)2–3C.y=12(x+1)2+1 D.y=12(x–1)2+1考向五二次函数与一元二次方程、不等式的综合抛物线y=ax2+bx+c(a≠0)与x轴的交点个数及相应的一元二次方程根的情况都由Δ=b2–4ac决定. 1.当Δ>0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.2.当Δ=0,即抛物线与x轴有一个交点(即顶点)时,方程ax2+bx+c=0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.3.当Δ<0,即抛物线与x轴无交点时,方程ax2+bx+c=0无实数根,此时抛物线在x轴的上方(a>0时)或在x轴的下方(a<0时).典例9二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表,则方程ax2+bx+c=0的A.–0.03<x<–0.01 B.–0.01<x<0.02C.6.18<x<6.19 D.6.17<x<6.18【答案】C【解析】由表格中的数据看出–0.01和0.02更接近于0,故x应取对应的范围为:6.18<x<6.19,故选C.典例10如图是二次函数y=a(x+1)2+2图象的一部分,则关于x的不等式a(x+1)2+2>0的解集是A.x<2 B.x>–3C.–3<x<1 D.x<–3或x>1【答案】C【解析】二次函数y=a(x+1)2+2的对称轴为x=–1,∵二次函数y=a(x+1)2+2与x轴的一个交点是(–3,0),∴二次函数y=a(x+1)2+2与x轴的另一个交点是(1,0),∴由图象可知关于x的不等式a(x+1)2+2>0的解集是–3<x<1.故选C.10.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是A.–1<x<5 B.x>5C.x<–1 D.x<–1或x>511.抛物线y=2x2–4x+m的部分图象如图所示,则关于x的一元二次方程2x2–4x+m=0的解是__________.考向六二次函数的实际应用在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.典例11飞机着陆后滑行的距离y(单位:m)关于滑行时间以(单位:)的函数解析式是y=6t﹣3 2t2.在飞机着陆滑行中,滑行最后的150m所用的时间是s.A.10 B.20 C.30 D.10或30 【答案】A【解析】当y取得最大值时,飞机停下来,则y=60t﹣1.5t2=﹣1.5(t﹣20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当y=600﹣150=450时,即60t﹣32t2=450,解得:t=10,t=30(不合题意舍去),∴滑行最后的150m所用的时间是20﹣10=10,故选A.【名师点睛】本题考查二次函数与一元二次方程综合运用,关键在于解一元二次方程.典例12如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此变换进行下去,若点P(17,m)在这种连续变换的图象上,则m的值为A.2 B.﹣2C.﹣3 D.3【答案】D【解析】∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4......,∴OA1=A1A2=A2A3=A3A4 (4)∵点P(17,m)在这种连续变换的图象上,17÷4=4……1,∴点P(17,m)在C5上,∴x=17和x=1时的函数值相等,∴m=﹣1×(1﹣4)=﹣1×(﹣3)=3,故选D.【名师点睛】本题考查二次函数的性质及旋转的性质,得出x=17和x=1时的函数值相等是解题关键.12.如图所示的是跳水运动员10m跳台跳水的运动轨迹,运动员从10m高A处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运动员的最高点M离墙1m,离水面403m,则运动员落水点B离墙的距离OB是A .2mB .3mC .4mD .5m13.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.求:(1)铅球在行进中的最大高度; (2)该男生将铅球推出的距离是多少m ?考向七 存在性问题与动点问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数表达式,最后根据函数表达式判别图象的变化.典例13 综合与探究: 已知二次函数213222y x x =-++的图象与x 轴交于,A B 两点(点B 在点A 的左侧),与y 轴交于点C .(1)求点 A B C ,,的坐标; (2)求证:ABC 为直角三角形;(3)如图,动点 E F ,同时从点A 出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒姨5个单位长度的速度沿射线AC 方向运动.当点F 停止运动时,点E 随之停止运动.设运动时间为t 秒,连结EF ,将AEF 沿EF 翻折,使点A 落在点D 处,得到DEF .当点F 在AC 上时,是否存在某一时刻t ,使得DCO BCO ≌?(点D 不与点B 重合)若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4,01,00,2A B C (),(-),();(2)证明见解析;(3)存在;3t 4=【解析】(1)当0y =时,2132022x x -++= 解得:121,4x x ==∴点A 的坐标为()4,0,点B 的坐标为()1,0-当0x =时,2y =∴点C 的坐标为()0,224,01,00,2A B C ()(),(-),(),41 2.OA OB OC ∴===,,5AB AC BC ∴=====,=22225AC BC AB ∴+==ABC ∴为直角三角形()3由()2可知ABC 为直角三角形.且90ACB ∠=︒2AE t AF t ==,,AF AB AE AC ∴==又EAF CAB ∠=∠,AEF ACB ∴∽,90.AEF ACB ∴∠=∠=︒AEF ∴沿EF 翻折后,点A 落在x 轴上点D 处,由翻折知,DE AE =,24AD AE t ∴==, 当DCO BCO ≌时,BO OD =, 441OD t BO =-=,,441t ∴-=,解得:t =34,即:当t =34秒时,.DCO BCO ≌【名师点睛】本题考查二次函数解析式与坐标轴的交点,勾股定理的逆定理,相似三角形的判定和性质,全等三角形的判定及性质,综合性较强,掌握相关知识并灵活应用是本题的解题关键.14.抛物线y =ax 2+bx +c 与x 轴交于A ,B 两点(点A 在点B 的左侧),且A (﹣1,0),B (4,0),与y 轴交于点C ,C 点的坐标为(0,﹣2),连接BC ,以BC 为边,点O 为对称中心作菱形BDE C .点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线交抛物线于点Q ,交BD 于点M .(1)求抛物线的解析式.(2)x 轴上是否存在一点P ,使三角形PBC 为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.(3)当点P 在线段OB 上运动时,试探究m 为何值时,四边形CQMD 是平行四边形?请说明理由.1.抛物线2(2)(6)y x x =-+的对称轴是 A .3x =B .3x =-C .2x =D .2x =-2.将抛物线22y x =向右平移4个单位长度,再向下平移1个单位长度,所得抛物线为 A .22(4)1y x =+-B .22(4)1y x =++C .22(4)1y x =-+D .22(4)1y x =--3.若b <0,则二次函数y =x 2+2bx ﹣1的图象的顶点在 A .第一象限B .第二象限C .第三象限D .第四象限4.如图是二次函数2 23y x x =--+的图象,使0y ≥成立的x 的取值范围是A .31x ≤≤-B .1x ≥C .31x x <->或D .31x x ≤-≥或5.直线y =ax +b 和抛物线y =ax 2+bx +c 在同一坐标系中的图象可能是A .B .C .D .6.若函数y =mx 2+2x +1的图像与x 轴只有一个公共点,则常数m 的值为 A .m =1B .m =1或m =2C .m =0D .m =1或m =07.如图,边长为2的正ABC ∆的边BC 在直线l 上,两条距离为1的平行直线a 和b 垂直于直线l ,a 和b 同时向右移动(a 的起始位置在B 点),速度均为每秒1个单位,运动时间为t (秒),直到b 到达C 点停止,在a 和b 向右移动的过程中,记ABC ∆夹在a 和b 间的部分的面积为S ,则S 关于t 的函数图象大致为A .B .C .D .8.如图,已知抛物线y 1=﹣x 2+1,直线y 2=﹣x +1,当x 任取一值时,x 对应的函数值分别为y 1,y 2.若y 1≠y 2,取y 1,y 2中的较小值记为M ;若y 1=y 2,记M =y 1=y 2.例如:当x =2时,y 1=﹣3,y 2=﹣1,y 1<y 2,此时M =﹣3.下列判断中:①当x <0时,M =y 1;②当x >0时,M 随x 的增大而增大;③使得M 大于1的x 值不存在;④使得M =12的值是﹣2或12,其中正确的个数有A .1B .2C .3D .49.抛物线y =(x –2)(x +3)与y 轴的交点坐标是__________.10.若A (–3.5,y 1)、B (–1,y 2)、C (1,y 3)为二次函数y =–x 2–4x +5的图象上三点,则y 1,y 2,y 3的大小关系是__________.(用>连接)11.二次函数y =x (x –6)的图象的对称轴是__________.12.已知一个二次函数的图象经过A (1,6)、B (–3,6)、C (0,3)三点,求这个二次函数的解析式,并指出它的开口方向.13.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25 m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40 m的栅栏围住(如图).设绿化带的BC边长为x m,绿化带的面积为y m2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围.(2)当x为何值时,满足条件的绿化带的面积最大?14.已知二次函数y=–12x2–x+72.(1)用配方法把这个二次函数的解析式化为y=a(x+m)2+k的形式;(2)写出这个二次函数图象的开口方向、顶点坐标和对称轴;(3)将二次函数y=–12x2的图象如何平移能得到二次函数y=–12x2–x+72的图象,请写出平移方法.15.如图,抛物线()20y ax bx c a =++≠的顶点坐标为()21,-,并且与y 轴交于点()03,C ,与x 轴交于A 、B 两点. (1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似.若存在,求出点E 的坐标;若不存在,请说明理由.16.如图,二次函数22y ax bx =++的图象与x 轴交于点A (10)-,、B (40),,与y 轴交于点C .(1)a =__________;b =__________;(2)点P 为该函数在第一象限内的图象上的一点,过点P 作PQ BC ⊥于点Q ,连接PC , ①求线段PQ 的最大值;②若以P 、C 、Q 为顶点的三角形与△ABC 相似,求点P 的坐标.1.抛物线2362y x x =-++的对称轴是 A .直线2x = B .直线2x =- C .直线1x =D .直线1x =-2.抛物线244y x x =-+-与坐标轴的交点个数为 A .0 B .1 C .2D .33.已知点()()()()1,,1,,2,0A m B m C m n n -->在同一个函数的图象上,这个函数可能是A .y x =B .2y x=-C .2y x =D .2y x =﹣4.已知反比例函数y =abx的图象如图所示,则二次函数y =ax 2-2x 和一次函数y =bx +a 在同一平面直角坐标系中的图象可能是A .B .C .D .5.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为 A .22(2)3y x =++ B .22(2)3y x =-+ C .22(2)3y x =--D .22(2)3y x =+-6.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =7.在平面直角坐标系中,对于二次函数22()1y x =-+,下列说法中错误的是 A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =C .当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D .它的图象可以由2yx 的图象向右平移2个单位长度,再向上平移1个单位长度得到8.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是 A .c <-3 B .c <-2 C .c <14D .c <19.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是 A .2a < B .1a >- C .12a -<≤D .12a -≤<10.如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有A .1个B .2个C .3个D .4个11.如图是王阿姨晚饭后步行的路程s (单位:m )与时间t (单位:min )的函数图象,其中曲线段AB 是以B 为顶点的抛物线一部分,下列说法不正确的是A .25 min~50 min ,王阿姨步行的路程为800 mB .线段CD 的函数解析式为324002550s t t =+≤≤()C .5 min~20 min ,王阿姨步行速度由慢到快D .曲线段AB 的函数解析式为23(20)1200(520)s t t =--+≤≤12.小飞研究二次函数y =–(x –m )2–m +1(m 为常数)性质时如下结论:①这个函数图象的顶点始终在直线y =–x +1上;②存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2m ,则y 1<y 2;④当–1<x <2时,y 随x 的增大而增大,则m 的取值范围为m ≥2其中错误结论的序号是 A .① B .② C .③D .④13.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为A .y =26675x 2B .y =-26675x 2C .y =131350x 2D .y =-131350x 214.二次函数y =-(x -6)2+8的最大值是__________.15.在平面直角坐标系中,垂直于x 轴的直线l 分别与函数y =x -a +1和y =x 2-2ax 的图象相交于P ,Q 两点.若平移直线l ,可以使P ,Q 都在x 轴的下方,则实数a 的取值范围是__________. 16.当03x ≤≤时,直线y a =与抛物线2(1)3y x =--有交点,则a 的取值范围是_________. 17.如图,抛物线2y ax c =+与直线y mx n =+交于A (-1,P ),B (3,q )两点,则不等式2ax mx c n ++>的解集是__________.18.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为__________米.19.已知二次函数2y x x a =++的图象与x 轴交于12(0)(0)A x B x ,、,两点,且2212111x x +=,求a 的值.20.已知抛物线224y x x c =-+与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线224y x x c =-+经过点()2,A m 和点()3,B n ,试比较m 与n 的大小,并说明理由.21.在画二次函数()20y ax bx c a =++≠的图象时,甲写错了一次项的系数,列表如下:乙写错了常数项,列表如下:通过上述信息,解决以下问题:(1)求原二次函数()20y ax bx c a =++≠的表达式;(2)对于二次函数()20y ax bx c a =++≠,当x __________时,y 的值随x 的值增大而增大;(3)若关于x 的方程()20ax bx c k a ++=≠有两个不相等的实数根,求k 的取值范围.22.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x 元,每天售出y 件. (1)请写出y 与x 之间的函数表达式;(2)当x 为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w 元,当x 为多少时w 最大,最大值是多少?23.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计)24.在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售,笔记本一律按原价销售,学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元?25.我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x元/件(x≥6,且x是按0.5元的倍数上涨),当天销售利润为y元.(1)求y与x的函数关系式(不要求写出自变量的取值范围);(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.26.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.27.随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=12x+12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?28.某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600 注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是__________元/件;当售价是__________元/件时,周销售利润最大,最大利润是__________元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.1.【答案】A【解析】∵223y x =-+(),∴二次函数223y x =-+()的图象的顶点坐标是(2,3),故选A.【名师点睛】此题考查二次函数的性质,解题关键在于掌握其顶点式一般形式的特点. 2.【答案】A【解析】一元二次方程3x 2+1=6x 化为一般形式是3x 2–6x +1=0,各项的系数分别是:3,–6.故选A【名师点睛】本题考查了一元二次方程的解,解答本题要通过移项,转化为一般形式,注意移项时符号的变化. 相交,D 选项符合.故选D . 4.【答案】D【解析】根据一次函数的图象可得a >0,b <0.则二次函数开口向上,对称轴在y 轴的右侧. 故选D . 5.【答案】C【解析】∵由图象知,开口向上,∴a >0,故A 错误;由图象知,与y 轴的交点在负半轴,∴c <0,故B 错误;令x =1,则a +b +c >0,故C 正确;∵抛物线与x 轴有两个交点,∴Δ= b 2–4ac >0,故D 错误.故选C . 6.【答案】C【解析】(1)反比例函数113=3m y mx x=,当m >0时,图象在第一、三象限,在每个象限内y 随x 的增大而减小,当m <0时,图象在第二、四象限,在每个象限内y 随x 的增大而增大,故(1)的说法错误;(2)函数13y x =-中k =103-<,y 随x 的增大减小,故(2)的说法正确; (3)函数213y x =-中a =103-<,函数图象开口向下,对称轴为直线x =0,所以当0x >时,y随x 的增大而减小,故(3)的说法正确.故选C.【名师点睛】此题主要考查了反比例函数、正比例函数和二次函数的图象与性质,熟练掌握它们的性质是解决此题的关键. 7.【答案】A【解析】∵经过A (m ,n )、C (3–m ,n ),∴二次函数的对称轴x =32,∵B (0,y 1)、D ,y 2)、E (2,y 3)与对称轴的距离B 最远,D 最近, ∵|a |>0,∴y 1>y 3>y 2;故选A .【名师点睛】此题考查二次函数的图象及性质;熟练掌握函数图象上点的特征是解题的关键. 8.【答案】B【解析】∵抛物线C :y =x 2+2x –3=(x +1)2–4,∴抛物线对称轴为直线x =–1.∴抛物线与y 轴的交点为A (0,–3).则与A 点关于直线x =–1对称的点是B (–2,–3).若将抛物线C 平移到C ′,并且C ,C ′关于直线x =1对称,就是要将B 点平移后以对称轴x =1与A 点对称,则B 点平移后坐标应为(4,–3).因此将抛物线C 向右平移4个单位长度.故选B . 9.【答案】B【解析】∵把抛物线y =12x 2–1先向右平移1个单位,再向下平移2个单位,∴得到的抛物线的解析式为y =12(x –1)2–3,故选B . 10.【答案】A【解析】由图可知,对称轴为直线x =2,∵抛物线与x 轴的一个交点坐标为(5,0),∴抛物线与x 轴的另一个交点坐标为(–1,0),又∵抛物线开口向下,∴不等式ax 2+bx +c >0的解集是–1<x <5.故选A . 11.【答案】x 1=–1,x 2=3【解析】观察图象可知,抛物线y =2x 2–4x +m 与x 轴的一个交点为(–1,0),对称轴为x =1,∴抛物线与x 轴的另一交点坐标为(3,0),∴一元二次方程2x 2–4x +m =0的解为x 1=–1,x 2=3.故答案为:x 1=–1,x 2=3.。
(完整word版)九年级二次函数常考题型复习

九年级数学二次函数常考题型常考知识点总结:1、二次函数的看法:一般地,形如y ax2bx c 〔 a ,b,c 是常数,a 0〕的函数,叫做二次函数。
注:和一元二次方程近似,二次项系数 a 0 ,而b,c能够为零.二次函数的定义域是全体实数.2、二次函数 y ax2bx c的结构特点:⑴ 等号左侧是函数,右侧是关于自变量x 的二次式, x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数,c是常数项3、 y a x h2k 的性质:a 的符号张口方向极点坐标对称轴性质a0向上h,k X=h x h 时, y 随x的增大而增大;x h 时, y 随x 的增大而减小;x h 时, y 有最小值 k .a0向下h,k X=h x h 时, y 随x的增大而减小;x h 时, y 随x 的增大而增大;x h 时, y 有最大值 k .4、二次函数 y ax2bx c的性质:〔 1〕当a0时,抛物线张口向上,对称轴为xb ,极点坐标为 b ,4ac b2;当 x b时, y2a 2 a4a2a随 x 的增大而减小;当xb时, y 随x的增大而增大;当x b时, y 有最小值4ac b2.2a2a4a〔 2〕当a0时,抛物线张口向下,对称轴为xb ,极点坐标为 b ,4ac b2;当 x b时, y2a 2 a4a2a随 x 的增大而增大;当xb时, y 随x的增大而减小;当x b时, y 有最大值4ac b2。
2a2a4a5、二次函数剖析式确实定:依照条件确定二次函数剖析式,平时利用待定系数法.用待定系数法求二次函数的剖析式必定依照题目的特点,选择合适的形式,才能使解题简略.一般来说,有以下几种情况:(1〕抛物线上三点的坐标,一般采纳一般式;(2〕抛物线极点或对称轴或最大〔小〕值,一般采纳极点式;(3〕抛物线与 x 轴的两个交点的横坐标,一般采纳两根式;6、二次函数、二次三项式和一元二次方程之间的内在联系〔 a 0 时〕:0抛物线与x 轴有二次三项式的值可正、一元二次方程有两个不相等实根两个交点可零、可负0抛物线与x 轴只二次三项式的值为非负一元二次方程有两个相等的实数根有一个交点0抛物线与x 轴无二次三项式的值恒为正一元二次方程无实数根 .交点题型 :依照图像,判断 a 、 b 、c 的关系问题。
初三数学二次函数知识点总结与经典习题含答案

初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。
(完整)二次函数知识点总结——题型分类总结,推荐文档

二次函数知识点总结——题型分类总结一、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ;⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =错误!未定义书签。
; ⑧y=-5x 。
F (4)2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。
3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。
4、若函数y=(m -2)x m -2+5x+1是关于的二次函数,则m 的值为 。
x 6、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
二、二次函数的对称轴、顶点、最值记忆:如果解析式为顶点式:y=a(x -h)2+k ,则对称轴为: ,最值为: ;如果解析式为一般式:y=ax 2+bx+c ,则对称轴为: ,最值为: ;如果解析式为交点式:y=(x-x 1)(x-x 2), 则对称轴为: ,最值为: 。
1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = .3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( )A.开口向上,对称轴是y 轴B.开口向下,对称轴是y 轴C.开口向下,对称轴平行于y 轴D.开口向上,对称轴平行于y 轴6.已知抛物线y =x 2+(m -1)x -的顶点的横坐标是2,则m 的值是_ .147.抛物线y=x 2+2x -3的对称轴是 。
初三数学二次函数知识点总结及经典习题含答案

初三数学二次函数知识点总结及经典习题含答案初三数学二次函数知识点总结一、二次函数概念:二次函数是指形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数。
需要强调的是,和一元二次方程类似,二次项系数a≠0,而b,c可以为零。
二次函数的定义域是全体实数。
二、二次函数的基本形式1.二次函数基本形式:y=ax2的性质:当a的绝对值越大,抛物线的开口越小。
a的符号决定开口方向,顶点坐标为(0,0),对称轴为y轴。
当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小;当x=0时,y有最小值。
当a>0时,向上开口,对称轴为y轴;当a<0时,向下开口,对称轴为y轴。
2.y=ax2+c的性质:上加下减。
a的符号决定开口方向,顶点坐标为(0,c),对称轴为y轴。
当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小;当x=0时,y有最小值c。
当a>0时,向上开口,对称轴为y轴;当a<0时,向下开口,对称轴为y轴。
3.y=a(x-h)的性质:左加右减。
a的符号决定开口方向,顶点坐标为(h,0),对称轴为x=h。
当x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;当x=h时,y有最小值。
当a>0时,向上开口,对称轴为x=h;当a<0时,向下开口,对称轴为x=h。
4.y=a(x-h)+k的性质:a的符号决定开口方向,顶点坐标为(h,k),对称轴为x=h。
当x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;当x=h时,y有最小值k。
当a>0时,向上开口,对称轴为x=h;当a<0时,向下开口,对称轴为x=h。
三、二次函数图象的平移1.平移步骤:将抛物线解析式转化成顶点式y=a(x-h)+k,确定其顶点坐标(h,k)处。
保持抛物线y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:向上平移|k|个单位,当k>0时;向下平移|k|个单位,当k<0时。
(完整word)九年级数学二次函数知识点总结及经典例题,推荐文档

二次函数知识点总结一、二次函数概念:21二次函数的概念:一般地,形如y ax bx c( a,b ,c是常数,a 0 )的函数,叫做二次函数。
里需要强调:和一元二次方程类似,二次项系数 a 0,而b,c可以为零•二次函数的定义域是全体实数.92. 二次函数y ax bx c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a ,b, c是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式21.二次函数基本形式:y ax的性质:a的绝对值越大,抛物线的开口越小。
22. y ax c的性质:上加下减。
23. y a x h的性质:左加右减。
24. y ax hk 的性质: a 的符号开口方向 顶点坐标 对称轴 性质a 0向上h , kX=hx h 时,y 随x 的增大而增大;x h 时,y 随 x 的增大而减小;x h 时,y 有最小值k •a 0向下 h , k X=hx h 时,y 随x 的增大而减小;x h 时,y 随 x 的增大而增大;x h 时,y 有最大值k •三、二次函数图象的平移1.平移步骤:2⑴将抛物线解析式转化成顶点式 y a x h k ,确定其顶点坐标 h , k ;⑵ 保持抛物线y ax 2的形状不变,将其顶点平移到 h ,k 处,具体平移方法如下:当x 2a 时,y 随x 的增大而减小; y=ax 2 A y=ax 2+k向右(h>0)【或左(*0)] 平移|k|个单位y=a(x h)2向右(h>0)【或左(h<0)] 平移|k|个单位2.平移规律在原有函数的基础上 概括成八个字“左加右减,h 值正右移,负左移;上加下减” •k 值正上移,负下移”六、 四、二次函数从解析式上看,b a x2a二次函数1. 4ac b 24a,其中 ax 2 bx c 的性质当a 0时,抛物线开口向上,对称轴为2axax 2 bx c 的比较bx c 是两种不同的表达形式, 后者通过配方可以得到前者,4ac b 2 4a盘,顶点坐标为b 4ac b 22a ' 4a向上(k>0)【或向下(k<0)】平移|k|个单位向上(k>0)【或下(k<0)】 平移|k 个单位向右(h>0)【或左(h<0)] 平移|k|个单位2当x佥时,y随x的增大而增大;x2a 时,y有最小值4ac b 2 4a2•当a 0时,抛物线开口向下, 对称轴为 x —,顶点坐标为2a b 4ac b 2 、[/ b ”亠方,F .当x 茲时,y 随 x 的增大而增大;当x 2a 时,b 4ac b 2y 随x 的增大而减小;当x 亦时,y 有最大值 f 七、 1. 二次函数解析式的表示方法一般式:y ax 2bx c ( a , b , c 为常数,a 0);2顶点式:y a (x h ) k ( a , h , k 为常数,a 0); 两根式(交点式):y a (x x i )(x X 2) ( a 0,为,x ?是抛物线与x 轴两交点的横坐标) 2. 3. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只 有抛物线与x 轴有交点,即b 2 4ac 0时,抛物线的解析式才可以用交点式表示. 二次函数解析式的这三种形式可以互化.八、 1. ⑴ ⑵ 二次函数的图象与各项系数之间的关系二次项系数a当a 0时,抛物线开口向上, 当a 0时,抛物线开口向下, a 的值越大,开口越小,反之 a 的值越小,开口越大; a 的值越小,开口越小,反之 a 的值越大,开口越大.2. 一次项系数b在二次项系数a 确定的前提下, 3. 常数项c⑴当c ⑵当c ⑶当c总结起来, 0时, 0时, 0时, b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)抛物线与y 轴的交点在x 轴上方,即抛物线与 抛物线与抛物线与y 轴的交点在x 轴下方,即抛物线与 c决定了抛物线与y 轴交点的位置.y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为正; y轴交点的纵坐标为0 ; y 轴交点的纵坐标为负.九、二次函数与一元二次方程:i.二次函数与一元二次方程的关系(二次函数与 一二次方程ax 2 bx c 0是二次函数y x 轴的交点个数: 兀 图象与 ax 2 x 轴交点情况): bx c 当函数值y 0时的特殊情况.2b 4ac 0时,图象与x 轴交于两点Ax 1 ,0 ,B x 2 ,0 (x 1X 2),其中的X i , x 是一元二次方2ax bx 0的两根.• 1' 2' 0时, 0时, 当a 当a x 轴只有一个交点;x 轴没有交点. 0时,图象落在 0时,图象落在 图象与 图象与 x 轴的上方,无论 x 轴的下方,无论 x 为任何实数, x 为任何实数, 都有都有2.抛物线y 2axbx c 的图象与y 轴一定相交,交点坐标为 (0 , c);二次函数对应练习试题、选择题1.二次函数y2x 4x 7的顶点坐标是A.(2, —11)B. (-2, 7)C. (2, 11)D. (2, - 3)2.把抛物线y2x2向上平移1个单位, 得到的抛物线是(2A. y 2(x 1)B. y 2(x 2 21) C. y 2x 1 D. 2x2 12k3.函数y kx k和y (k 0)在同一直角坐标系中图象可能是图中的0)的图象如图所示,则下列结论:①a,b同号;②当x 1和x 3时,函数值相等;③4a b 0④当y 确的个数是()A.1个B.2 个C. 35.已知二次函数y ax2 bx c(a由图象可知关于兀二次方程axA. — 1 .6.已知二次函数A.第一象限C.第三象限7.方程2x x2A.0个8.已知抛物线过点A. y x2C. y x22时,x的值只能取0.其中正个个D. 4B.-2.3C.-0.3D.-3.32ax bx c的图象如图所示, 则点(ac,bc)在(B.第二象限D.第四象限-的正根的个数为xB.1A(2,0),B(-1,0), x 2 或y x2C.2与y轴交于点B.x 2 D.C,且0C=2.则这条抛物线的解析式为y x2 x 22 、2y x x 2 或y x x 2二、填空题9•二次函数y x2 bx 3的对称轴是x 2,则b ______________ 。
二次函数的图像,性质及常规题型的归纳
北辰教育学科老师辅导讲义(此类问题方法总结:二次函数在定义域为实数的围,最值都在顶点处,表示出顶点的纵坐标,根据a 的大小判断为最大还是最小值,注意结合函数图像解题)四.判断二次函数解析式y=ax 2+bx+c 中a,b,c 与0的数量关系。
1. 1、知二次函数2(0)y ax bx c a =++≠的图象如图所示,给出以下结论: ① 0a b c ++<;② 0a b c -+<;③20b a +<;④0abc >. 其中所有正确结论的序号是( ) A. ③④ B. ②③ C. ①④D. ①②.2.已知二次函数y=ax2+bx+c,且a<0,a-b+c>0,则一定有( ). A.b2-4ac>0 B.b2-4ac=0 C.b2-4ac<0 D.b2-4ac ≤0(此类问题方法总结:a,b,c 的大小关系往往通过开口方向,对称轴y=-ab2,顶点为(—a b 2,a b ac 442-),c 为图像与y 轴的交点,结合图像写不等式)五.填空题最后一题:有关图形平移,翻折,旋转类题型18.如图,在Rt △ACB 中,90ACB ∠=︒,点O 在AB 上,且6CA CO ==,1cos 3CAB ∠=,若将△ACB 绕点A 顺时针旋转得到Rt △''AC B ,且'C 落在CO 的延长线上,联结'BB 交CO 的延长线于点F ,则BF =18. 在Rt △ABC 中,90C ∠=,4BC = ,3AC =,将△ABC 绕着点B 旋转后点A 落在直线BC 上的点A ',点C 落在点C '处,那么'tan AAC ∠的值是 18.如图,在△ABC 中,∠90C =,点D 为AB 的中点,3BC =,13cosB =,△DBC 沿着CD 翻折后,点B 落到点E ,那么AE 的长为 .C A BO F 'C 'B ADCB-11xyO6.抛物线()243y x =-+的顶点坐标是( )(A )()4,3-; (B )()4,3-- ; (C )()4,3; (D )()4,3-. 7.下列抛物线中,顶点在第一象限的是 ( ) (A )2)1(21-=x y ;(B )3212+=x y ; (C )3)1(212++=x y ; (D )3)1(212+-=x y .9.把抛物线2)2(3+-=x y 平移后得到抛物线23x y -=,平移的方法可以是 ( ) (A )沿x 轴向右平移2个单位 (B )沿x 轴向左平移2个单位 (C )沿y 轴向上平移2个单位 (D )沿y 轴向下平移2个单位 10.抛物线23x y -=向左平移2个单位后得到的抛物线为( )(A )232+-=x y ; (B )232--=x y ; (C )2)2(3+-=x y ; (D )2)2(3--=x y .11.抛物线c bx ax y ++=2中,a b 4=,它的图象如图,有以下结论:①0>c ;②0>++c b a ;③0>+-c b a ④042<-ac b ⑤0<abc 其中正确的有( )12.二次函数y =ax 2+bx +c 的图象如图所示,那么①abc ,②ac b 42-,③b a +2,④c b a ++这四个代数式中,值为正数的有( )13.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO =12,CO =BO ,AB =3,求这条抛物线的函数解析式归纳总结解二次函数问题往往要结合图像,用图形来理解其最值,运动变化情况。
二次函数的应用题的考试常见题型
二次函数的应用题的考试常见题型1. 求解二次方程根问题描述:给定一个二次方程 $ax^2 + bx + c = 0$,其中 $a, b, c$ 为已知常数,求解该二次方程的根。
解答思路:使用一元二次方程的求根公式,即 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$,其中 $\pm$ 表示两个根,根的个数和值的情况有以下三种:- 若 $b^2 - 4ac > 0$,则有两个不相等的实根;- 若 $b^2 - 4ac = 0$,则有两个相等的实根;- 若 $b^2 - 4ac < 0$,则无实根。
示例题目:已知二次方程 $2x^2 + x - 3 = 0$,求解该二次方程的根。
解答过程:根据一元二次方程的求根公式,将$a=2, b=1, c=-3$ 代入可得:$$x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2}$$计算可得:$$x_1 = 1, x_2 = -\frac{3}{2}$$所以该二次方程的根为 $x_1 = 1$ 和 $x_2 = -\frac{3}{2}$。
2. 求解最值问题问题描述:给定一个二次函数 $y = ax^2 + bx + c$,其中 $a, b, c$ 为已知常数,求解该二次函数的最值。
解答思路:对于二次函数 $y = ax^2 + bx + c$,其最值出现在顶点处。
二次函数的顶点坐标为 $x = -\frac{b}{2a}$,将 $x$ 的值代入二次函数可得到最值。
- 如果 $a$ 为正,则二次函数的开口向上,最小值为顶点;- 如果 $a$ 为负,则二次函数的开口向下,最大值为顶点。
示例题目:已知二次函数 $y = 2x^2 + x - 3$,求解该二次函数的最值。
解答过程:将 $a=2, b=1, c=-3$ 代入可得顶点坐标 $x = -\frac{1}{2 \cdot 2} = -\frac{1}{4}$。
(完整word版)二次函数知识点总结和题型总结
二次函数知识点总结和题型总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵a b c,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.例题:例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 。
二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
c的性)2h的性4.()2y a x h k=-+的性质:二次函数的对称轴、顶点、最值如果解顶点式-则最值果解析般式y=ax2+bx+c则最值为4ac-b24a)1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴6.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = 。
三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 函数y=ax 2+bx+c 的图象和性质例题:1.抛物线y=x 2+4x+9的对称轴是 。
初三二次函数经典大题
初三二次函数经典大题初三的学习生涯是学习二次函数的关键阶段。
了解二次函数及其在实际应用中的意义对于学生来说至关重要,因为它涉及到了许多概念、思维方式和技术。
本文将介绍初三二次函数经典大题,旨在激发学生学习二次函数这一数学基础概念的兴趣及积极性,帮助学生掌握学习二次函数的规律和技巧,并做到复习有效率。
一、二次函数的定义:二次函数是指以次数为2的多项式构成的函数,通常形式为:y=ax^2+bx+c,其中a、b、c均为常数,a≠0时,称为标准二次函数,a=0时,称为二次项为0的二次函数。
此外,还可以定义其他形式的二次函数,例如抛物线等。
二、初三二次函数经典大题:1、求二次函数y=-ax^2+bx+c的对称轴方程及其解析解;解:根据解析几何的知识,二次函数的对称轴方程可以表示为:x=-b/2a,且当a>0时,函数的图像反比缩小,当a<0时,函数的图像放大;2、求函数y=ax^2+bx+c的极值;解:求函数的极值的方法有:(1)先求y’=2ax+b;(2)对y’=0求解,即得x=-b/2a,此时是函数的极值点;(3)将函数y’替换到原函数中,两边同时平方可得y”;(4)若y”>0,则这是函数的极大值;若y”<0,则这是函数的极小值。
3、求(ax+b)^2+c=0的解析解;解:将(ax+b)^2+c=0转换为ax^2+2abx+b^2+c=0,联立方程组可以得到:x=-b+√(b^2-c)或x=-b-√(b^2-c)。
3、求二次函数y=ax^2+bx+c的图像大致形状;解:此处的形状主要取决于a的正负号,若a>0,则函数的图像呈“弯曲”形状;若a<0,则函数的图像呈“凹弯”形状。
4、求击破y=ax^2+bx+c的根。
解:将y=ax^2+bx+c代入到高斯消元法中,套用公式求得:x1=(-b+√(b^2-4ac))/2a,x2=(-b-√(b^2-4ac))/2a。
5、用幂函数的方法求出y=4x+1的图像大致形状;解:将y=4x+1转换为y=4x^1,其中b=0,a=4,此时根据指数函数的性质可以知道,该函数的图像呈线性递增形状,且是一条抛物线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数九大题型
二次函数是高中数学中的重要内容,它在各种应用问题中都有广泛的应用。
下面是九大常见的二次函数题型及解题思路:1. 求二次函数的图像:首先确定二次函数的开口方向,然后找到顶点坐标,再根据对称性画出图像。
2. 求二次函数的零点:将二次函数转化为一元二次方程,然后利用求根公式或配方法求解。
3. 求二次函数的最值:通过求导或利用顶点公式求得最值。
4. 求二次函数与坐标轴交点:将二次函数转化为一元二次方程,然后解方程得到交点坐标。
5. 求解满足条件的参数:根据给定条件列方程,然后解方程得到参数值。
6. 求解满足条件的范围:根据给定条件列不等式,然后解不等式得到范围。
7. 判断两个二次函数图像位置关系:比较两个二次函数的开口方向、顶点位置和系数大小来判断位置关系。
8. 判断一个点是否在给定的二次函数图像上:将该点代入二次函数方程中,判断是否成立。
9. 利用已知信息确定未知参数:根据已知条件列方程,然后解方程得到未知参数的值。
以上是常见的二次函数题型,通过掌握这些题型的解题思路和方法,可以更好地应对二次函数相关的问题。