机械密封故障处理及分析

机械密封故障处理及分析
机械密封故障处理及分析

机械密封故障处理及分析

密封件随着经济的发展逐渐应用于各行各业,每一种类型的密封件都有各自的作用。每种类型的密封件(POLYPAC密封件、机械密封件、液压密封件等)都会出现故障,作为密封件厂家对密封件出现故障的原因都会非常清楚的。下面给大家讲解机械密封故障处理及分析。

故障原因

机械密封的故障大体上都是由异常的泄漏、异常的磨损、异常的扭矩等现象出现后才被人们所知道。造成故障的原因大致有如下四方面:

1、机械密封的设计选型不对;

2、机械密封质量不好;

3、使用或安装机械密封的机器本身精度达不到要求;

4、机器运行操作错误。

密封失效的原因

1、密封面打开

在修理机械密封时,85%的密封失效不是因磨损造成,而是在磨损前就已泄漏了。当密封面一打开,介质中的固体微粒在液体压力的作用下进入密封面,密封面闭合后,这些固体微粒就嵌入软环(通常是右墨环)的面上,这实际成了一个“砂轮”会损坏硬环表面。

由于动环或橡胶圈紧固在轴(轴套)上,当轴串动时,动环不能及时贴合,而使密封面打开,并且密封面的滞后闭合,就使固体微粒

进入密封面中。

同时轴(轴套)和滑动部件之间也存在有固体微粒,影响橡胶圈或动环的滑动(相对动密封点,常见故障)。另外,介质也会在橡胶圈与轴(轴套)磨擦部位产生结晶物,在弹簧处也会存有固体物质,都会使密封面打开。

2、过热

因密封面上会产生热,故橡胶圈使用温度应低于设计规范。氟橡胶和聚四氟乙烯的使用温度为216℃,丁晴橡胶的使用温度为162℃,虽然它们都能承受较高的温度,但因密封面产生的热较高,所以橡胶圈有继续硫化的危险,最终失去弹性而泄漏。(冷区考虑冷脆)密封面之间还会因热引起介质的结晶,如结碳,造成滑动部件被粘住和密封面被凝结。而且有些聚合物因过热而焦化,有些流体因过热而失去润滑等甚至闪火。过热除能改变介质的状况外,还会加剧它的腐蚀速率。引起金属零件的变形,合金面的开裂,以及某些镀层裂缝,设计应选用平衡型机械密封,以降低比压防止过热。

3、超差

正确的装配公差,对于安装机械密封是很必要的,轴(轴套)必须有合适的表面粗糙度和正确的尺寸,但制造者很少提供公差数据,这些数据对安装来讲都是很关键的。(依靠经验和常识),机械密封的尺寸精度及形位公差必须符合图纸要求,超差将会导致密封提前失效。

泵用机械密封主要泄漏点

泵用机械密封主要泄漏点 (l)轴套与轴间的密封; (2)动环与轴套间的密封; (3)动、静环间密封; (4)对静环与静环座间的密封; (5)密封端盖与泵体间的密封。 一般来说,轴套外伸的轴间、密封端盖与泵体间的泄漏比较容易发现和解决,但需细致观察,特别是当工作介质为液化气体或高压、有毒有害气体时,相对困难些。其余的泄漏直观上很难辩别和判断,须在长期管理、维修实践的基础上,对泄漏症状进行观察、分析、研判,才能得出正确结论。 一、泄漏原因分析及判断 1.安装静试时泄漏。机械密封安装调试好后,一般要进行静试,观察泄漏量。如泄漏量较小,多为动环或静环密封圈存在问题;泄漏量较大时,则表明动、静环摩擦副间存在问题。在初步观察泄漏量、判断泄漏部位的基础上,再手动盘车观察,若泄漏量无明显变化则静、动环密封圈有问题;如盘车时泄漏量有明显变化则可断定是动、静环摩擦副存在问题;如泄漏介质沿轴向喷射,则动环密封圈存在问题居多,泄漏介质向四周喷射或从水冷却孔中漏出,则多为静环密封圈失效。此外,泄漏通道也可同时存在,但一般有主次区别,只要观察细致,熟悉结构,一定能正确判断。 2.试运转时出现的泄漏。泵用机械密封经过静试后,运转时高速旋转产生的离心力,会抑制介质的泄漏。因此,试运转时机械密封泄漏在排除轴间及端盖密封失效后,基本上都是由于动、静环摩擦副受破坏所致。引起摩擦副密封失效的因素主要有: (l)操作中,因抽空、气蚀、憋压等异常现象,引起较大的轴向力,使动、静环接触面分离; (2)对安装机械密封时压缩量过大,导致摩擦副端面严重磨损、擦伤; (3)动环密封圈过紧,弹簧无法调整动环的轴向浮动量; (4)静环密封圈过松,当动环轴向浮动时,静环脱离静环座; (5)工作介质中有颗粒状物质,运转中进人摩擦副,探伤动、静环密封端面;

接触网常见故障分析及对策

第四章、牵引网常见故障分析及对策 第1节、牵引网故障现象与分析 第2节、故障处理措施 第3节、电气烧伤故障原因分析 第4节、电气联结方面故障 第5节、绝缘方面故障 第四章、接触网常见故障分析及对策 随着以动车组开行为标志的铁路第六次大面积提速调图工作顺利实施,在我国的繁忙铁路干线上又多了一道靓丽的风景——动车组。由于动车组结构、速度、动力特性需要,全部为电力驱动。在铁路电气化区段牵引供电系统已和信号系统、工务系统一同成为不可或缺的重要组成部分。尤其是动车组自身不带发电设备,车内各种工作和生活用电均直接从接触网上取电.一旦发生断电将会直接影响列车和旅客的工作生活。因此如何确保牵引供电设备的正常运行已成为牵引供电专业急需解决的问题 接触网是牵引供电系统中的重要组成部分,由于其设置的特殊性(机、电合一,露天设置,动态工作,没有备用),所以一旦发生故障将会直接影响牵引供电系统的正常运行,严重时还会中断电气化铁路的行车功能。因此分析和研究其常见故障,制定切实可行的防范措施尤显重要;接触网是一种机、电合一的特殊设备,既有机械方面的结构特点,也有电气方面的技术要求,相辅相成、缺一不可。接触网的常见故障主要表现在3个方面:空间结构尺寸方面;导电回路方面;绝缘方面;空间结构尺寸方面故障;接触网是一种特殊的供电设备,所谓特殊即其不仅要保障质量良好地向电力机车提供电流,而且还要保证接触悬挂能牢固地处在规定的空间几何位置上,保证受电弓能质量良好地、平滑地从接触线上取流。由于机车受电弓宽度有限,且机车运行速度愈来愈快。因此接触网的技术参数一旦发生变化或接触悬挂上零件一旦脱落,就会对电力机车或电动车的运行造成障碍,严重时还会造成弓网故障。 第一节、接触网故障现象与原因分析 4.1.1、故障现象

机械密封失效分析与故障分析正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 机械密封失效分析与故障 分析正式版

机械密封失效分析与故障分析正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 1.腐蚀失效 机械密封因腐蚀引起的失效为数不少,常见的腐蚀类型有如下几种。 (1)表面腐蚀 由于腐蚀介质的侵蚀作用,机械密封件会发生表面腐蚀,严重时也可发生腐蚀穿孔,弹簧件更为明显,采用不锈钢材料,可减轻表面腐蚀。

(2)点腐蚀 弹簧套常出现大面积点蚀或区域性点蚀,有的导致穿孔,此类局部腐蚀对密封使用尚不会造成很严重的后果,不过大修时也应予更换。 (3)晶间腐蚀 碳化钨环不锈钢环座以铜焊连接,使用中不锈钢座易发生晶间腐蚀,为克服敏化的影响,不锈钢应进行固溶处理。 (4)应力腐蚀破裂

金属焊接波纹管、弹簧等在应力与介质腐蚀的共同作用下,往往会发生断裂,由于弹簧的突然断裂而使密封失效,一般采用加大弹簧丝径加以解决。 (5)缝隙腐蚀 动环的内孔与轴套表面之间、螺钉与螺孔之间,O形环与轴套之间,由于间隙内外介质浓度之差而导致缝隙腐蚀,此外陶瓷镶环与金属环座间也会发生缝隙腐蚀,一般在轴套表面喷涂陶瓷,镶环处表面涂以黏结剂以减轻缝隙腐蚀。 (6)电化学腐蚀

ZYJ7道岔设备工作原理与室内外故障分析

广州地铁三号线 ZYJ7道岔设备工作原理及室内外故障分析

何彬 通号中心维修部信号三分部

目录

摘要 文章针对广州市轨道交通三号线使用ZYJ7型道岔启动及表示电路存在的问题,根据ZYJ7型电动液压转辙机启动、表示电路原理、结合日常处理故障经验,从室内到室外阐述了判断ZYJ7型电动液压启动电路、表示电路各种故障方法,为我们日常处理ZYJ7型电动液压转辙机启动电路、表示电路故障提供了准确、快捷的主力方法。 关键词:液压转辙机;启动电路;表示电路;故障处理方法Abstract:According to the theory of the boot-up circuit and indication of ZYJ7 electric hydraulic switch machine and in combination with daily experience of failure handling,this paper elaborated how to judge various faults in the circuits both indoors and outdoors,which provide accurate fault circuit and fast approaches for daily faults in the boot-up circuit and indication circuit of ZYJ7 electric hydraulic switch machine. Keywords:HydraulicSwitchMachine;Boot-up circuit;Indication circuit;Fault handing approach

给水泵机封损坏原因分析与处理方法

给水泵机封损坏原因分析及处理措施 给水泵是确保电厂安全运行的重要设备,针对三厂区热源一期给水泵机械密封损坏的问题,本文通过机械密封损坏原因分析吸取的教训,结合现场实际情况降低给水泵振动,改善给水泵机械密封冷却水水质,改善机械密封运行环境,较好解决了给水泵机械密封频繁损坏的问题,取得了较好的效果. 1前言 三厂区热源一期除氧给水系统配备长沙佳能通用泵业有限公司的DG150-100×10(P)多级锅炉给水泵,该泵型系卧式自平衡型结构离心泵,为单吸多级结构,其吸入口在进水段上为垂直向上,吐出口在出水段上为垂直向上,用拉紧螺栓将泵的进水段、中段、

出水段、次级进水段联成一体,轴承驱动端采用圆柱滚子轴承,末端采用圆柱滚子轴承和角接触球轴承组合结构,采用强制油循环稀油润滑,润滑油由液偶油系统提供;泵的进水段、中段、出水段之间的密封面均采用密封胶或“0”形圈密封,轴的密封形式为机械密封。 2给水泵机封运行中存在的问题 三厂区热源一期给水泵在启动正常后,可连续运行,随着运行周期延长,机封漏水量逐渐增大,机封靠轴端外缘出现积盐,在运行中给水泵临时切换或者处理故障停运,机封漏水量显著加大,以至于过大而无法启动。同时当给水泵振动增大时,机械密封漏水量也会增大,严重影响给水泵组安全运行。 3给水泵机封损坏原因分析 3.1机械密封安装注水静试泄漏分析

机械密封安装调好后,要进行注水静压检查,观察泄漏量。如泄漏量较小,多为动环或静环密封圈存在问题;泄漏量较大时,则表明动、静环摩擦副间存在问题。在初步观察泄漏量、判断泄漏部位的基础上,再手动盘车观察,若泄漏量无明显变化则静、动环密封固有问题;如盘车时泄漏量有明显变化则可断定是动、静环摩擦副存在问题;如泄漏介质沿轴向喷射,则动环密封圈存在问题居多,泄漏介质向四周喷射或从水冷却孔中漏出,则多为静环密封圈失效。 3.2试运转时机械密封出现的泄漏分析 给水泵机械密封经过静试后,运转时高速旋转产生的离心力,会抑制给水的泄漏。因此,试运转时机械密封泄漏在排除轴间及端盖密封失效后,基本上都是由于动、静环摩擦副受破坏所致。引起摩擦副密封失效的因素主要有:

地铁接触网常见故障分析及其应对方法

地铁接触网常见故障分析及其应对方法 摘要:地铁供电系统对地铁的运行起到至关重要的作用,其中接触网是地铁供电系统的重要组成设备。接触网故障问题直接影响着地铁的发展,当前引起接触网故障的因素很多,我们在这方面依然存在着不足和需要改进的地方。本文分析了地铁接触网常见故障,并提出了应对方法。 关键词:地铁接触网;常见故障;应对方法 一、地铁接触网概况 接触轨的牵引网在地铁系统的运用具有悠久的历史,世界上早期修建的地下铁道大多采用了这种类型的牵引网,目前特别重视城市景观的新兴现代化城市也仍然在采用这种方式,如北京轻轨、新加坡、温哥华地铁等。 目前国内地铁已有运行经验的接触网类型主要有:北京地铁隧道及地面均采用上接触式低碳钢接触轨;上海市轨道交通1号线和2号线在隧道内采用的是弹性支座有补偿简单悬挂接触网;广州地铁1号线采用架空全补偿链形悬挂接触网,2号线和3号线隧道内采用刚性悬挂接触网,4号线采用下接触式钢铝复合接触轨;深圳市地铁采用架空全补偿链形悬挂接触网;武汉轻轨采用下接触式钢铝复合接触轨;大连轻轨采用架空全补偿链形悬挂接触网;重庆轻轨工程采用与跨座式车辆配套的侧接触式T型汇流排刚性接触网。归纳起来城市轨道接触网有三大类型:接触轨类接触网;架空柔性接触网;架空刚性接触网。这些接触网在地铁的发展中,起着重要作用。 接触网主要有以下特点:(1)工作状态变得恶劣的状况下,容易发生弓网事故。电力机车在高速运行过程中,由于接触悬挂沿跨距的弹性的不均匀、受电弓的惯性力以及空气动力的影响,受电弓在垂直的方向上将会产生一定振幅的振动,此种振动会使接触网的工作状态发生变化,在工作状态变得恶劣的状况下,容易发生弓网事故。(2)接触网的安装架设是以无备用设备的方式安装。接触网的安装架设是以无备用设备的方式安装的,一旦损坏将无备用设备替换,会造成机车中断运行,对铁路运输带来负面影响。 二、地铁接触网常见故障分析及其应对方法 (一)接触网短路 一般而言,若是接触网设备对地短路而引起永久性短路故障,由于短路电流大,直流开关自身的大电流脱扣保护会最先动作,强行试送电也不会成功。因此,一旦出现大电流脱扣保护动作,接触网专业应引起高度重视,利用巡视等方式,重点检查接触网绝缘部件是否有短路现象(如破裂或烧伤),或接触网附近的接地金属部件是否搭在接触网上。

高速泵机械密封泄漏原因分析及改造

编订:__________________ 审核:__________________ 单位:__________________ 高速泵机械密封泄漏原因 分析及改造 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5755-100 高速泵机械密封泄漏原因分析及改 造 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:乙烯装置丙烯外送泵为GSB型高速泵,密封频繁泄漏,通过对其机械密封端面比压的核算与分析,并对其机械密封动环材料及结构的分析找到了密封失效的原因,有针对性地对其进行综合改造,收到良好效果。 关键词:高速泵;机械密封;泄漏;分析;改造乙烯装置丙烯外送泵(位号E-GA301A/B)为下游聚丙烯装置提供原料,该泵对于整个聚丙烯装置具有极其重要的作用,反应所用的液态丙烯全部都由它来供给,所以一旦该泵出现问题,则将导致整个乙烯、聚丙烯装置停车,该泵自20xx年4月投用以来,两台泵曾多次发生润滑油、密封液和丙烯泄漏故障。虽经多次检修,更换新的机械密封部件,但效果甚微。该

机械密封故障的原因与处理

机械密封故障的原因与处理 ㈠从机械损坏判断密封失效原因 (1)动环断裂或开裂。动环用脆性材料制成,断面较薄,非常脆弱。若断裂表面变色不均匀,或者存在磨屑,动环断裂是在开车前或运行中发生的。若没有磨屑、变色,断裂可能是在拆卸时造成的。密封阻力过大造成的损坏一般伴有所配合的传动装置磨损或损坏。原因可能是密封装配不当;安装操作失误;因压缩量过大、泵压力超高、润滑性差、密封面干摩擦、密封面冲蚀或密封面粘着造成的密封面阻力过大;泵压力超高;密封拆卸或解体时损坏;温度变化大。预防纠正措施:安装时应小心操作,降低泵送液体压力,调整压缩量;加大冷却水量,降低密封温度,改善摩擦副环境,防止摩擦副润滑不良造成的阻力过大;仔细装配,避免密封卡死。 (2)密封面扭曲。原因可能是压盖螺栓松紧不均或夹持力过大,冷却不好,有不均匀热应力。泵操作压力过高,超出设计。辅助密封膨胀,密封面不平或面间有杂物,密封环支撑面不合适。应调整压盖螺栓压紧力至均匀、合适力度,调整冷却或冲洗液流量,保证密封面有足够的冷却和润滑,并除去流体中杂质。降低泵的操作压力;改变辅助密封结构和材料;将密封面重新加工平直。 (3)密封面有擦伤和刻痕。原因可能是制造或装配时损伤;密封面进入颗粒物。可用机械或人工研磨消除刻痕或擦痕,消除流体中的颗粒物。 (4)密封环切边。原因可能有:轴振动大或泵压力太高,轴弯曲或密封面与轴线不垂直。应降低轴振动值,降低泵操作压力。消除轴的弯曲变形,保持密封面和轴线垂直。 (5)密封环粘着磨损。原因可能是密封面润滑冷却不良,局部温度过高;密封比压过大;密封面硬度不合适。应加强冲洗、冷却,减小密封比压,提高密封面硬度。 (6)密封面磨粒磨损。固体颗粒沉积在密封环或其附近,硬环密封面上出现有规则的槽痕,软环密封面上磨痕不均匀。硬密封环应使用更硬的耐磨材料,同时采用双端面密封和洁净的密封液(油)。 (7)密封面严重磨损、开裂、变色和过热。原因可能是密封面问无液体或液体不足,密封干磨。应在启动前灌泵时排净气体,排除影响泵吸入流量和压头的故障,如过滤器堵塞、人口阀开度不够、入口液体温度高、压头低等。 (8)辅助密封件物理损坏或被挤出。0形圈或v形环等辅助密封件的切口、擦痕、刻痕、撕裂等损坏或被挤出,都能导致密封失效。原因可能是安装经验不足,安装时将密封件划伤或用力过大以及制造有缺陷。 (9)传动失效。主要有传动销磨坏和断裂,传动凸耳磨损,传动螺钉和卡箍失效。原因有:密封组件卡住;泵轴向串量太大;轴承失效;密封面润滑差;泵操作压力过高;轴弯曲和振动过大。应防止润滑冲洗液中断,减小轴向串量,保持紧钉螺钉紧力,使密封元件不在轴套上滑动。检查轴承,降低操作压力,矫直弯曲的轴,降低轴振动。 (1O)弹簧失弹。原因可能有固体颗粒堆积,结垢严重。应使用大弹簧密封,少用小弹簧密封。 ㈡从热损坏判断机械密封故障原因

接触网常见故障研究分析

接触网常见故障分析 摘要 电气化铁道有着运营成本低,能合理、综合利用能源等优点。由于动车组结构、速度、动力特性需要,全部为电力驱动。在铁路电气化区段牵引供电系统已和信号系统、工务系统一同成为不可或缺的重要组成部分。尤其是动车组自身不带发电设备,车各种工作和生活用电均直接从接触网上取电.一旦发生断电将会直接影响列车和旅客的工作生活。因此如何确保牵引供电设备的正常运行已成为牵引供电专业急需解决的问题。接触网是牵引供电系统中的重要组成部分,由于其设置的特殊性(机、电合一,露天设置,动态工作,没有备用),所以一旦发生故障将会直接影响牵引供电系统的正常运行,严重时还会中断电气化铁路的行车功能。因此分析和研究其常见故障,制定切实可行的防措施尤显重要。通过对电气化铁路及新增二线电气化铁路改造中出现的接触网弓网故障进行分析,从弓网关系入手,分析造成接触网事故产生的各种因素,并提出预防和减少接触网事故的措施。 关键词:接触网,接触悬挂,补偿装置,弓网故障

一、接触网线索断线接续 (4) ㈠准备工作: (4) ㈡人员分工: (4) ㈢作业: (4) ⒈接触线断线后,断头处损伤长度短,仅需做一个接头情况的操作过程。 (4) ⒉接触线断线后,断头处损伤较长,需做两个接线头情况的操作程序。 (5) ㈣注意事项: (7) 二、间结构尺寸方面故障 (8) ㈠故障现象 (8) ㈡原因分析 (8) ㈢采取措施 (9) 三、电气联结方面故障 (11) ㈠电气烧伤故障原因分析: (11) 四、绝缘方面故障 (14) ㈠故障现象 (14) ㈡原因分析 (14) ㈢采取措施 (15) 五、中心锚结故障分析及检调 (16) ㈠中心锚结的作用和安设 (16) 1.中心锚结的作用 (16) 2.中心锚结的安设 (16) ㈡中心锚结的结构和要求 (17) 1.半补偿中心锚结 (17) 2.区间全补偿中心锚结 (18) 3.站场全补偿中心锚结 (19) 4.简单悬挂中心锚结 (20)

水泵机械密封常见故障及解决办法

水泵机械密封常见故障及解决办法 一、常见的渗漏现象机械密封渗漏的比例占全部维修泵的50%以上,机械密封的运行好坏直接影响到水泵的正常运行,现总结分析如下 1、周期性渗漏 (1)泵转子轴向窜动量大,辅助密封与轴的过盈量大,动环不能在轴上灵活移动。在泵翻转,动、静环磨损后,得不到补偿位移。 对策:在装配机械密封时,轴的轴向窜动量应小于0、1mm,辅助密封与轴的过盈量应适中,在保证径向密封的同时,动环装配后保证能在轴上灵活移动(把动环压向弹簧能自由地弹回来)。 (2)密封面润滑油量不足引起干摩擦或拉毛密封端面。 对策:油室腔内润滑油面高度应加到高于动、静环密封面。 (3)转子周期性振动。原因是定子与上、下端盖未对中或叶轮和主轴不平衡,汽蚀或轴承损坏(磨损),这种情况会缩短密封寿命和产生渗漏。 对策:可根据维修标准来纠正上述问题。2、小型潜污泵机封渗漏引起的磨轴现象 (1)715kW以下小泵机封失效常常产生磨轴,磨轴位置主要有以下几个:动环辅助密封圈处、静环位置、少数弹簧有磨轴现象。 (2)磨轴的主要原因:①BIA型双端面机械密封,反压状态是不良的工作状态,介质中的颗粒、杂质很容易进入密封面,使密封失

效。②磨轴的主要件为橡胶波纹管,且是由于上端密封面处于不良润滑状态,动静环之间的摩擦力矩大于橡胶波纹管与轴之间的传递转矩,发生相对转动。③动、静环辅助密封由于受到污水中的弱酸、弱碱的腐蚀,橡胶件已无弹性。有的已腐烂,失去了应有的功能,产生了磨轴的现象。 (3)为解决以上问题,现采取如下措施:①保证下端盖、油室的清洁度,对不清洁的润滑油禁止装配。②机封油室腔内油面线应高于动静环密封面。③根据不同的使用介质选用不同结构的机封。对高扬程泵应重新设计机封结构,对腐蚀性介质橡胶应选用耐弱酸、弱碱的氟橡胶。机封静环应加防转销。 二、由于压力产生的渗漏 (1)高压和压力波造成的机械密封渗漏由于弹簧比压力及总比压设计过大和密封腔内压力超过3MPa时,会使密封端面比压过大,液膜难以形成,密封端面磨损严重,发热量增多,造成密封面热变形。对策:在装配机封时,弹簧压缩量一定要按规定进行,不允许有过大或过小的现象,高压条件下的机械密封应采取措施。为使端面受力合理,尽量减小变形,可采用硬质合金、陶瓷等耐压强度高的材料,并加强冷却的润滑措施,选用可*的传动方式,如键、销等。 (2)真空状态运行造成的机械密封渗漏泵在起动、停机过程中,由于泵进口堵塞,抽送介质中含有气体等原因,有可能使密封腔出现负压,密封腔内若是负压,会引起密封端面干摩擦,内装式机械

石化行业离心泵机械密封失效原因分析及解决办法

石化行业离心泵机械密封失效原因分析及解决办法 随着社会经济的飞速发展,石化行业在不断进步,离心泵的应用也得到了推广。文章着重分析了离心泵机械密封泄漏的原因及处理方法,并对检修中可能会遇到的问题进行分析。 标签:石化;炼油;泵用机械密封;泄漏 1 概述 石化行业中使用的离心泵大多是用以输送危险介质的设备,这些易燃易爆剧毒的介质在输送过程中一旦泄漏就会对工作人员造成极大的伤害,同时也会破坏环境,在高度重视安全生产和环境保护的今天,泵用机械密封的正确使用及维护,确保它不泄漏就显得格外重要。 2 结构 机械密封其实是一种动态密封,它是通过弹性元件的弹力和介质的轴向作用力相互作用,达到平衡从而实现的密封。泵用机械密封的种类非常多,有小弹簧的,波纹管的等等。但是,泵用机械密封常见泄漏点都集中在以下几处:动环端面处与静环端面处、动环与辅助密封圈处、静环与辅助密封圈处、轴套和动环之间以及泵盖和压盖处。 3 造成泄漏的原因 上述的几处一旦出现泄漏就直接会导致密封的失效,在泵运行的过程中我们可以通过机封泄漏的现象来分析机械密封产生泄漏的具体原因。 3.1 机泵长周期的运行 运行时间长是造成机封泄漏的主要原因之一,具体现象为:泵用机械密封在长时间的运行之后,整个转子的轴向窜量会越来越大,轴与辅助密封的过盈量越来越大,动环与轴的摩擦力也会越来越大,在机泵的运行过程中动静环磨损却得不到位移补偿,解决这种现象的办法是:定期将机泵切换运行对机封进行检查和维护,回装时一定注意轴向窜量要小于0.1mm,轴与辅助密封在安装时也不能过紧,要保证动环可以在轴上灵活转动。 机泵在运行的过程中,很有可能会出现泵轴的周期性振动。这种现象会极大的影响机械密封的使用寿命,解决的办法是:參照国家标准进行检维修,避免这种现象造成的机械密封失效。介质不干净,如果介质中颗粒较大,会造成摩擦副的泄漏,要及时清理泵入口的过滤器。介质腐蚀性较大,如果密封圈被介质腐蚀造成泄漏,就要考虑提高材质的等级了。

水泵机械密封常见故障及解决办法

水泵机械密封常见故障及解决办法 机械密封亦称端面密封,其有一对垂直于旋转轴线的端面,该端面在流体压力及补偿机械外弹力的作用下,依赖辅助密封的配合与另一端保持贴合,并相对滑动,从而防止流体泄漏。 一、常见的渗漏现象机械密封渗漏的比例占全部维修泵的50%以上,机械密封的运行好坏直接影响到水泵的正常运行,现总结分析如下 1.周期性渗漏 (1)泵转子轴向窜动量大,辅助密封与轴的过盈量大,动环不能在轴上灵活移动。在泵翻转,动、静环磨损后,得不到补偿位移。对策:在装配机械密封时,轴的轴向窜动量应小于0.1mm,辅助密封与轴的过盈量应适中,在保证径向密封的同时,动环装配后保证能在轴上灵活移动(把动环压向弹簧能自由地弹回来)。(2)密封面润滑油量不足引起干摩擦或拉毛密封端面。对策:油室腔内润滑油面高度应加到高于动、静环密封面。 (3)转子周期性振动。原因是定子与上、下端盖未对中或叶轮和主轴不平衡,汽蚀或轴承损坏(磨损),这种情况会缩短密封寿命和产生渗漏。对策:可根据维修标准来纠正上述问题。 2.小型潜污泵机封渗漏引起的磨轴现象 (1)715kW以下小泵机封失效常常产生磨轴,磨轴位置主要有以下几个:动环辅助密封圈处、静环位置、少数弹簧有磨轴现象。 (2)磨轴的主要原因: ①BIA型双端面机械密封,反压状态是不良的工作状态,介质中的颗粒、杂质很容易进入密封面,使密封失效。 ②磨轴的主要件为橡胶波纹管,且是由于上端密封面处于不良润滑状态,动静环之间的摩擦力矩大于橡胶波纹管与轴之间的传递转矩,发生相对转动。 ③动、静环辅助密封由于受到污水中的弱酸、弱碱的腐蚀,橡胶件已无弹性。有的已腐烂,失去了应有的功能,产生了磨轴的现象。 (3)为解决以上问题,现采取如下措施: ①保证下端盖、油室的清洁度,对不清洁的润滑油禁止装配。 ②机封油室腔内油面线应高于动静环密封面。 ③根据不同的使用介质选用不同结构的机封。对高扬程泵应重新设计机封结构,对腐蚀性介质橡胶应选用耐弱酸、弱碱的氟橡胶。机封静环应加防转销。

机械密封的泄漏原因及解决办法.

机械密封的泄漏原因分析及解决办法摘要:通过对泵用机械密封的实际应用和理论分析,提出了机械密封的实际密封效果不仅与机械密封自身的性能有关,且与其它零部件提供的条件以及密封辅助系统提供的条件有着重要的关系。 关键词:泵;机械密封 Abstract:Through the practical application and theorical analysis of the pump mechanical seal,the idea was put for—ward that the design of mechanical seal must consider the effect of external conditions such as the effect of other parts and the assist seal system except considering the feature of mechanical sea1. Keywords:pump;mechanical seal. 目前机械密封在泵类产品中的应用非常广泛。而随着产品技术水平的提高和节约能源的要求,机械密封的应用前景将更加广泛。机械密封的密封效果将直接影响整机的运行,尤其是在石油化工领域内,因存在易燃、易爆、易挥发、剧毒等介质,机械密封出现泄漏,将严重影响生产正常进行,严重的还将出现重大安全事故。 1 机械密封的原理及要求 机械密封是靠一对或几对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持接合并配以辅助密封而达到的阻漏的轴封装置。机械密封通常由动环、静环、压紧元件和密封元

常见接触网故障抢修预案

普速铁路常见接触网故障抢修预案 一、断线断索 (一)接触线断线 接触线断线后,首先要迅速查明断线的准确位臵和断口两侧接触线的损伤情况,并查明断线波及范围和其它设备破坏情况,并据此确定抢修方案。 1、导线两侧断头损伤轻微且废弃长度很小(高温季废弃长度<600mm,冬季废弃长度<300mm),可以采取直接紧线做接头、不降弓的抢修方案。优先选择用钢丝绳滑轮组+绳滑轮组的方式将断线拉近,再用倒链葫芦紧线,将两边断头锯平做接头,恢复行车。注意检查是接头是否平滑,确保接头不打弓。同时对事故波及范围内的定位装臵、中心锚结、锚段关节以及下锚补偿装臵进行检查调整。 2、导线两侧断头不能直接做接头但损伤废弃长度<5m,采取钢丝绳滑轮组+绳滑轮组的方式将断线拉近,再用倒链葫芦直接紧线,用TRJ-120电连接线并接于断口处,两端各用2个电连接线夹夹持。检查并调整相关的支撑定位、中心锚结、锚段关节及下锚补偿后,采取降弓通过的办法恢复行车。 3、若接触线断头损伤严重但支撑定位装臵完好,断头损伤废弃长度>5m,可以结合实际从以下四种方法中选择一种进行处理: ①在两断头间接一段接触线,不降弓。用一段长度适当的接触线先在地面做一个接头,采取钢丝绳滑轮组+绳滑轮组的方式将断线拉近,再用倒链葫芦紧起做另一接头,检查并调整相关的支撑定位、中心锚结、锚段关节及下锚补偿后恢复行车。 ②在两断头间接一段接触线,降弓。用一段长度适当的接触线先在地面做一个接头,采取钢丝绳滑轮组+绳滑轮组的方式将断线拉近,再用倒链葫芦紧起但不取下倒链扳葫芦,用TRJ-120电连接线并接于

断口处,两端各用2个电连接线夹夹持,检查并调整相关的支撑定位、中心锚结、锚段关节及下锚补偿后,采取降弓通过的办法恢复行车。 ③将两边断头临时锚固,降弓。卸掉两边补偿器坠砣各5-8块,将两边断头用倒链葫芦紧起分别临时锚固在承力索上,用TRJ-120电连接线并接于断口处,两端各用2个电连接线夹夹持。检查并调整相关的支撑定位、中心锚结、下锚补偿等,使其满足送电行车条件后,采取降弓通过的办法恢复行车。 ④在两断头间接一段承力索,降弓。如果现场有合适长度的承力索(或用承力索做好的短接绳)而无接触线,可以在断口中间加装承力索或短接线(挂紧线器或用钢线卡子)。先在地面连接好一头,用钢丝绳滑轮组+绳滑轮组的方式将断线拉近,再用倒链葫芦紧线连接,取下(也可以不取)倒链扳葫芦,再用TRJ-120电连接线并接于断口处,两端各用2个电连接线夹夹持,检查并调整相关的支撑定位、中心锚结、锚段关节及下锚补偿后,采取降弓通过的办法恢复行车。 (二)承力索断线 承力索断线后,首先要迅速查明断线的准确位臵和断口两侧承力索的损伤情况,并查明断线波及范围和其它设备破坏情况,并据此确定抢修方案。 1、承力索两侧断头损伤轻微且废弃长度很小,用倒链葫芦紧起来就可以。如果是载流区段,则在断口处并接并接一段载流承力索或TRJ-120电连接线。先用钢丝绳滑轮组+绳滑轮组的方式将断线拉近,再用倒链葫芦紧线,送电通车。对事故波及范围内的支撑装臵、中心锚结、锚段关节以及下锚装臵进行检查调整。 2、若承力索断头损伤较为严重,断头损伤废弃长度>5m,可以结合实际从以下两种方法中选择一种进行处理: ①在两断头间接一段承力索。用一段长度适当的承力索先在地面做一个接头,采取钢丝绳滑轮组+绳滑轮组的方式将断线拉近,再用

冰机机械密封失效原因分析和处理实用版

YF-ED-J9346 可按资料类型定义编号 冰机机械密封失效原因分析和处理实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

冰机机械密封失效原因分析和处 理实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1 简介 我厂冰机是由意大利辛比隆公司设计制造 的多级离心式压缩机型号为2MCL528/1,轴端 密封采用德国伯格曼公司生产的H-D1/142-Kbl 型机械密封。 整个机械密封由一套双端面主机械密封和 一套单端面辅助机械封组成,如图19所示。 图19 机械密封结构简图 1一灯笼环,2--0形环,3一主机械密封动

环,4--0形环,5一定位套, 6一机械密封套,7一防松螺丝,8一锁紧套,9一锁紧套 双端面主机械密封动环3,由锁紧套8压紧在机械密封套6上,动环下面装有O形密封环4。动环和轴套间无驱动销,依靠两端面压紧产生的摩擦力,使其随轴套一起转动。为防止动环锁紧套8松动退出,锁紧套后部还设有四个周向均布的防松螺丝7。单端面辅助机械密封环也装在机械密封轴套上,靠锁紧套9压紧。 密封油以比A腔参考密封气体压力高约0.6MPa的压力进入机械密封,之后分两路,一路通到灯笼环1与壳体形成的环形槽中,将灯笼环连同辅助机械密封静环一起推到左面位置,使动、静环工作面分开(如图中位置),这

机械密封的密封失效原因分析报告

机械密封的密封失效原因分析 泵用机械密封种类繁多,型号各异,但泄漏点主要有五处: (l)轴套与轴间的密封; (2)动环与轴套间的密封; (3)动、静环间密封; (4)对静环与静环座间的密封; (5)密封端盖与泵体间的密封。 1.安装静试时泄漏 机械密封安装调试好后,一般要进行静试,观察泄漏量。如泄漏量较小,多为动环或静环密封圈存在问题;泄漏量较大时,则表明动、静环摩擦副间存在问题。在初步观察泄漏量、判断泄漏部位的基础上,再手动盘车观察,若泄漏量无明显变化则静、动环密封圈有问题;如盘车时泄漏量有明显变化则可断定是动、静环摩擦副存在问题;如泄漏介质沿轴向喷射,则动环密封圈存在问题居多,泄漏介质向四周喷射或从水冷却孔中漏出,则多为静环密封圈失效。此外,泄漏通道也可同时存在,但一般有主次区别,只要观察细致,熟悉结构,一定能正确判断。 2.试运转时出现的泄漏。泵用机械密封经过静试后,运转时高速旋转产生的离心力,会抑制介质的泄漏。因此,试运转时机械密封泄漏在排除轴间及端盖密封失效后,基本上都是由于动、静环摩擦副受破坏所致。引起摩擦副密封失效的因素主要有:

(l)操作中,因抽空、气蚀、憋压等异常现象,引起较大的轴向力,使动、静环接触面分离; (2)对安装机械密封时压缩量过大,导致摩擦副端面严重磨损、擦伤; (3)动环密封圈过紧,弹簧无法调整动环的轴向浮动量; (4)静环密封圈过松,当动环轴向浮动时,静环脱离静环座; (5)工作介质中有颗粒状物质,运转中进人摩擦副,探伤动、静环密封端面; (6)设计选型有误,密封端面比压偏低或密封材质冷缩性较大等。 上述现象在试运转中经常出现,有时可以通过适当调整静环座等予以消除,但多数需要重新拆装,更换密封。 由于两密封端面失去润滑膜而造成的失效: a)因端面密封载荷的存在,在密封腔缺乏液体时启动泵而发生干摩擦; b)介质的低于饱和蒸汽压力,使得端面液膜发生闪蒸,丧失润滑; c)如介质为易挥发性产品,在机械密封冷却系统出现结垢或阻塞时,由于端面摩擦及旋转元件搅拌液体产生热量而使介质的饱和蒸汽压上升,也造成介质压力低于其饱和蒸汽压的状况。 由于腐蚀而引起的机械密封失效: a)密封面点蚀,甚至穿透。 b)由于碳化钨环与不锈钢座等焊接,使用中不锈钢座易产生晶间腐蚀;

ZD6道岔原理与常见故障分析

道岔的原理及常见故障的分析 一、道岔控制电路的原理 1、 道岔启动电路应保证实现以下技术条件 ⑴道岔区段有车时,道岔不应转换。此种锁闭作用叫做区段锁闭。 ⑵进路在锁闭状态时,进路上的道岔都不应转换。此种锁闭作用叫做进路锁闭。 ⑶在道岔启动电路已经动作以后,即使有车驶入该道岔区段也应保证道岔继续转换到底。 ⑷道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电机故障,以至电动 机电路不通时,应使启动电路自动停止工作复原,保证道岔不会再转换。 ⑸为了便于维修试验,以及在道岔尖轨与基本轨之间夹有障碍物致使道岔转换不到底时应能 使道岔转回原位。 2、 道岔启动电路构成原理 ⑴1DQJ 电路励磁电 路 ① 、道岔按钮CA 道岔按钮CA -61 CA-61 与 CA-62 ② 、锁闭继电器SJ -8前接点。 在6 5 0 2电器集中里,SJ 吸起反映道岔区段空闲和进路在解锁状态。当道岔区段有车时 或进路在锁闭状态时,SJ 落下,SJ81-82断开切断道岔启动电路,对道岔实行进路锁闭和区 段锁闭使道岔不能转换。 ③ 、道岔按钮继电器CAJ 前接点和条件电源 “KFZFJ”或“KFZDJ'。CAJ —Q 是道岔按钮 按下DAJ 吸起后闭合,是道岔按钮按下闭合接点的复示继电器。条件电源 “KFZFJ”在道岔 总反位继电器吸起后才有电。条件电源 “KFZDJ'在道岔总定位继电器吸起后才有电。 ④ 、道岔定位操纵继电器和DCJ 接点道岔反位操纵继电器FCJ 接点。当排列进路时,需 要进路上的道岔向定位转动则DCJ 吸起,当进路上的道岔需要向反位转动时,FCJ 吸起。 ⑤ 道岔第二启动继电器第四组接点(2DQJ 141 )反映道岔处在什么位置。 ?141 — 142闭 合,道岔处在定位。141 — 143闭合道岔处在反位。 ⑥ 向定位单独操纵道岔的操作方法为: ?同时按下道岔的单操按钮和总定位按钮, 这时CAJ 吸 起接通电路。ZDJ 吸起使“K — ZDJ'有电。1 DQJ 的励磁电路为: KZ — CA — SJ-Q —1 DQJ3.4 线圈一2DQJ 141_143 — CAJ — KF-ZDJ 。 ⑦ 道岔向反位单独操纵的操作方法为:同时按下道岔的单操按钮和总反位按钮,这时 CAJ 吸 起接通电路。ZFJ 吸起使“K — ZFJ”有电。1 DQJ 的励磁电路为:KZ — CA — SJ-Q —1DQ J 3.4 线圈一2DQJ 141-142 — CAJ — KF-ZFJ 。 ⑵2DQ J 电路 1DQ J 吸起后,2 DQJ 跟着吸起。励磁电路为: KZ — 1 CAJ21-22 — KF — ZDJ.或 KZ — 1 DQJ41-42 —2 DQJ1、 ⑶1DQJ 自闭电路 ①从反位向定位操纵 1 DQJ 吸起, 2 DQJ 转极后,1 DQJ 自闭电路为: -6接点 与CA-62接点定位时闭合,在维修转辙机或清扫道岔时,把CA 按钮拉出 断开 对道岔实行单独锁闭。 DQJ31-32 -2 DQJ J 3.4 线圈 2 线圈 CAJ11-12 — KF — ZFJ.

泵用机械密封的泄漏分析与检修分析

编号:AQ-JS-05006 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 泵用机械密封的泄漏分析与检 修分析 Leakage analysis and maintenance analysis of pump mechanical seal

泵用机械密封的泄漏分析与检修分 析 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 在现代化工生产中,泵用机械密封不可或缺,且用量很大,特别是在储运硫酸、烧碱等特殊液体物料方面,对密封性有着极为严格的要求,但机械密封泄漏是个难题,亟待解决。对此,本文分析了泵用机械密封泄漏问题,并就其检修进行了研究,希望对降低泵用机械密封泄漏几率和影响,延长密封使用寿命有所帮助。 众所周知,泵用机械密封在化工领域十分常见,一旦发生泄漏便容易引发安全事故和重大损失,毕竟其运输的多为危险性物质,如硫酸、烧碱等,这就要求我们加强日常检修,以期将密封泄漏隐患降至最低。可是在正式着手该项工作之前,必须对泵用机械密封泄漏的原因和检修方法等有所掌握,唯有如此,才可能事半功倍,有效解决问题。

泵用机械密封泄漏分析 泵用机械密封之所以应用广泛,而这与其诸多优势关系密切,如较之软填料密封,其泄漏量小,状态稳定,密封性更为可靠;摩擦功率较小,轴套磨损几乎可忽略;而且抗震性好,使用寿命和维修周期较长,其中端面在发生磨损后仍可进行一定的修补并继续使用。虽然如此,可是泄漏问题并不能完全规避,而且后果不容忽视,具体情况如下所述: 1.1试验性泄漏 若泵用机械密封安装不规范,则易在静压或加水试验期间发生泄漏,常见的有动静环接触面因安装不当而损坏或碰伤,动静环夹入了砂尘或铁锈等异物,密封圈未压紧或损坏或尺寸有误等都可能引发泵用机械密封泄漏甚至失效。 1.2突发性泄漏 一般情况下,因泵抽真空、振动强烈等原因导致补偿弹簧、传动销、防转销等脱落或断裂,以及相关辅助装置出现故障灯,如此一来,动静环冷热状态便会骤变,最终造成密封面裂缝或变形,进

地铁接触网常见故障及应对措施概述

地铁接触网常见故障及应对措施概述 摘要接触网是地铁牵引供电系统中的重要组成部分,一旦发生故障将会直接影响牵引供电系统的正常运行,严重时还会中断地铁列车行车。本文分析了地铁接触网故障的危害,介绍了刚性接触网的几种常见故障、分析了其原因,提出了相应的应对措施。 关键词轨道交通;接触网;故障 地铁运行需要供电线路有效不间断地提供电能,接触网是供电线路与地铁接触并有效提供电能的接口,为保证地铁的有效运行,接触网的可靠性非常重要。作为一种低净空架空接触网,刚性接触网首次于2003年期间在广州市地铁二号线中开始正式运营。由于刚性接触网技术发展较快,且结构简单、没有断线的危险,因此该技术推广应用的较快,在地铁运营中运用较多。然而由于刚性的接触网类型在我国的运用时间并不长,我国的运营、维护、设计、保养、维修的相关经验并不充足,在实际运行的地铁中刚性接触网经常出现故障,对地铁系统的实际运行造成了很大的困扰。 1 地铁接触网故障的危害 接触网是城市轨道交通系统牵引供电设备的重要组成部分,它担负着不间断地向沿线运行中的电力机车输送电能的重要任务。接触网无备用回路,一旦损坏将中断牵引供电。由于地铁接触网所处的环境和电力机车受电弓的摩擦和机械冲击等原因,接触网成为牵引供电系统中容易发生故障的部分。无备用决定了接触网的唯一性和脆弱性,一旦停电故障,将对运输组织和效率产生影响,同时造成长时间行车中断,恢复困难的后果[1]。 2 刚性接触网常见故障 隧道内接触网悬挂结构形式为刚性悬挂,地面、高架段和车辆段接触网悬挂形式为柔性悬挂。目前,国内外地铁,架空刚性接触网已大量采用,且效果良好。架空接触网在隧道内不会受外界雷雨、冰雪和刮大风等恶劣天气的影响,它与柔性接触网相比的最大差异是,它不设对网进行轴向加力的补偿装置,从而避免了断线事故,接触线允许磨耗量也比柔性网大得多。由于不存在断线之忧,刚性网的故障一般是点故障,范围很小。采用刚性接触悬挂,其主要特点就是无断线之忧、零配件少、维护简单、运营可靠性高。然而刚性接触网在国内部分地铁使用一段时间后发现,刚性接触网出现的问题越来越多,随着运营时间越来越长,行车间隔越来越短,这些问题会越来越突出,对刚性接触悬挂造成的影响也越来越明显。刚性接触网易出现的问题有:部件松动或脱落;接触线磨耗严重;受电弓磨耗不均;部件松动脱落[2]。 3 刚性接触网常见故障原因分析及对策

冰机机械密封失效原因分析和处理(2021新版)

冰机机械密封失效原因分析和处理(2021新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0651

冰机机械密封失效原因分析和处理(2021 新版) 1简介 我厂冰机是由意大利辛比隆公司设计制造的多级离心式压缩机型号为2MCL528/1,轴端密封采用德国伯格曼公司生产的H-D1/142-Kbl型机械密封。 整个机械密封由一套双端面主机械密封和一套单端面辅助机械封组成,如图19所示。 图19机械密封结构简图 1一灯笼环,2--0形环,3一主机械密封动环,4--0形环,5一定位套, 6一机械密封套,7一防松螺丝,8一锁紧套,9一锁紧套 双端面主机械密封动环3,由锁紧套8压紧在机械密封套6上,

动环下面装有O形密封环4。动环和轴套间无驱动销,依靠两端面压紧产生的摩擦力,使其随轴套一起转动。为防止动环锁紧套8松动退出,锁紧套后部还设有四个周向均布的防松螺丝7。单端面辅助机械密封环也装在机械密封轴套上,靠锁紧套9压紧。 密封油以比A腔参考密封气体压力高约0.6MPa的压力进入机械密封,之后分两路,一路通到灯笼环1与壳体形成的环形槽中,将灯笼环连同辅助机械密封静环一起推到左面位置,使动、静环工作面分开(如图中位置),这时A、B腔就直接连通。 另一路进入主机械密封腔至。这路油绝大郡分直接从腔至顶郡流出,作为主机械密封的冲洗和冷却用油,一小部分油由外侧静环和动环密封面流出,进入轴承箱中,而极少量油穿过内侧静环和动环密封面流入B腔;同工艺气体混合,这部分油又流入A腔,从A 腔下部排出,经油气分离器后排入污油脱气槽,在脱气槽中被加热,脱除氨气,再流回主油箱循环使用。 辅助机械密封仅在停密封油时才投入正常工作。这时灯笼环在左面气体压力和静环弹簧推力作用下,克服O形环阻力,被推到右

相关文档
最新文档