线性代数地几何意义笔记

线性代数地几何意义笔记
线性代数地几何意义笔记

所以,看一个函数是不是线性函数,只需要证明上面这个等式是否成立,或(1)(2)分别证明也行。

几何与线性代数习题册20140123

习题一 几何向量及其运算 学号 班级 一、填空题 1. 下列等式何时成立: 1) βαβα-=+, 当 ; 2) βαβα+=+,当 ; 3) αβαβ+=-, 当 ; 4)β βαα=,(,αβ为非零向量),当 ; 5)βαβα->+, 当 。 2.指出下列向量组是线性相关还是线性无关: 1)},{αθ是 ; 2)βα,不平行,},{βα是 ; 3)γβα,,共面,},,{γβα是 ; 4)γβα,,不共面,},,{γβα是 。 3.在空间直角坐标系中,点(2,3,5)M -关于关于yoz 平面的对称点是 ;关于原点的对称点是 ;关于z 轴的对称点是 ;在xoy 平面上的投影点坐标是 ;在y 轴上的投影点是 ;到yoz 平面的距离是 ;到原点的距离是 ;到x 轴的距离是 。 二、设,,OA OB P αβ==u u u r u u u r 为线段AB 上任一点,证明存在数λ,使得λβαλ+-=)1(OP 。 三、已知向量313221,,e e e e e e +=+=+=γβα,证明αγγββα---,,共面。 四、判断题

1.若γαβα?=?,且αθ≠,则βγ=。 ( ) 2.γβα,,共面的充分必要条件是0)(=??γβα。 ( ) 3.>=<==,则三角形ABD 的面积S = 。 六、已知 21,2,,,,3 παβαβωλαβγαβ==<>==+=-。问 1)λ为何值时,ω与γ平行; 2)λ为何值时,ω与γ垂直。 七、已知α与β垂直,且3,4αβ==,计算:(提示: ,.αβααββ?⊥?⊥) 1)αβα??)(; 2))()(βαβα-??; 3))2()3(βαβα-?-。 习题二 向量及其运算的坐标计算

线性代数公式大全最全最完美

线性代数公式大全——最新修订 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积;

线性代数与解析几何试题(附解析)-中国科技大学

可编辑 中 国 科 学 技 术 大 学 2005—2006学年第2学期考试试卷 考试科目: 线性代数 得分: 学生所在系: 姓名: 学号: 一、判断题(30分,每小题6分)。判断下列命题是否正确,并简要说明理由。 1. 三维空间向量c b,a,共面的充要条件是0det =??? ? ? ???????????c c b c a c c b b b a b c a b a a a 。 2. 设A 为n 阶实正交方阵,I 为n 阶单位阵,则I A 2-为可逆方阵。 3. 设n m ?阶非零实矩阵A 和B 满足0='B A ,则A 的行向量线性相关, 并且B 的行向量也线性相关。 4. 设)(R M n 是n 阶实方阵全体按矩阵的加法与数乘运算构成的线性空间,则 满足0tr =A 的n 阶实方阵A 的全体构成)(R M n 的子空间。 5. 设B A ,为方阵,且???? ??B A 是实正定对称方阵,则B A ,也是实正定对称方阵。 二、计算题(62分)。 1. (15分)b a ,为何值时,下列线性方程组有解?当有解时,求出该方程组的通解。 ?????? ?=-+++=+++=-+++=++++b x x x x x x x x x a x x x x x x x x x x 5432154325 432154321334536223231 2. (15分)设n 阶实方阵?????? ? ??----=211 211 2O O A n O O O ,求n A det 和1 4-A 。 3. (17分)设V 是由所有2阶实方阵构成的实线性空间。在定义内积Y X Y X '=tr ),(后, V 成为一个欧氏空间。现定义V 上的变换X X X '+α: A 。 (1)证明: A 是一个线性变换;(2)求 A 在基??? ??????? ?????? ?????? ?????? ??1000,0100,0010,0001下的表示矩阵; (3)求 A 的所有特征值与特征向量;(4)求V 的一组标准正交基,使得 A 在此基下的表示矩阵为对角阵。 4. (15分)通过正交变换化二次型222)()()(),,(x z z y y x z y x f -+-+-=为标准形;并 判断三维欧氏空间中的曲面3)()()(222=-+-+-x z z y y x 是哪一类曲面。 三、证明题(8分)。以下两小题任选一题。 1. 设n m R A ?∈,m n R B ?∈,I 是n 阶单位方阵。证明: (1))rank(0rank AB n B I A +=??? ? ??-。 (2)n B A AB -+≥)rank()rank()rank(。 2. 设实对称方阵A 满足3A A =,证明:A 正交相似于对角形???? ? ? ?-0s r I I 。

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

线性代数与解析几何试题(附解析)-中国科技大学

中 国 科 学 技 术 大 学 2005—2006学年第2学期考试试卷 考试科目: 线性代数 得分: 学生所在系: 姓名: 学号: 一、判断题(30分,每小题6分)。判断下列命题是否正确,并简要说明理由。 1. 三维空间向量c b,a,共面的充要条件是0det =??? ? ? ???????????c c b c a c c b b b a b c a b a a a 。 2. 设A 为n 阶实正交方阵,I 为n 阶单位阵,则I A 2-为可逆方阵。 3. 设n m ?阶非零实矩阵A 和B 满足0='B A ,则A 的行向量线性相关, 并且B 的行向量也线性相关。 4. 设)(R M n 是n 阶实方阵全体按矩阵的加法与数乘运算构成的线性空间,则 满足0tr =A 的n 阶实方阵A 的全体构成)(R M n 的子空间。 5. 设B A ,为方阵,且???? ? ?B A 是实正定对称方阵,则B A ,也是实正定对称方阵。 二、计算题(62分)。 1. (15分)b a ,为何值时,下列线性方程组有解?当有解时,求出该方程组的通解。 ?????? ?=-+++=+++=-+++=++++b x x x x x x x x x a x x x x x x x x x x 5432154325 432154321334536223231 2. (15分)设n 阶实方阵?????? ? ??----=211211 2O O A n ,求n A det 和1 4 -A 。 3. (17分)设V 是由所有2阶实方阵构成的实线性空间。在定义内积Y X Y X '=tr ),(后, V 成为一个欧氏空间。现定义V 上的变换X X X '+ : A 。 (1)证明: A 是一个线性变换;(2)求 A 在基??? ??????? ?????? ?????? ?????? ? ?1000,0100,0010,0001下的表示矩阵; (3)求 A 的所有特征值与特征向量;(4)求V 的一组标准正交基,使得 A 在此基下的表示矩阵为对角阵。 4. (15分)通过正交变换化二次型222)()()(),,(x z z y y x z y x f -+-+-=为标准形;并判 断三维欧氏空间中的曲面3)()()(222=-+-+-x z z y y x 是哪一类曲面。 三、证明题(8分)。以下两小题任选一题。 1. 设n m R A ?∈,m n R B ?∈,I 是n 阶单位方阵。证明: (1))rank(0rank AB n B I A +=??? ? ? ?-。 (2)n B A AB -+≥)rank()rank()rank(。 2. 设实对称方阵A 满足3A A =,证明:A 正交相似于对角形???? ? ? ?-0s r I I 。

线性代数的起源发展及其意义

线性代数的起源发展及其意义 线性代数是处理矩阵和向量空间的数学分支,在现代科学的各个领域都有应用。由于费马和笛卡尔的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量空间的过渡,矩阵论始于凯莱,在十九世纪下半叶,因当时对其充分的研究和探索而使其达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中。线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。 “代数”这一个词在中国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善男才将它翻译成为“代数学”,之后一直沿用。 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现。

线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位 在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分; 该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数,非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。 现代线性代数已经扩展到研究任意或无限维空间。作

学习线性代数的意义

线性代数有什么用? 线性代数有什么用?这是每一个圈养在象牙塔里,在灌输式教学模式下的“被学习”的学生刚刚开始思考时的第一个问题。我稍微仔细的整理了一下学习线代的理由,竟然也罗列了不少,不知道能不能说服你: 1、如果你想顺利地拿到学位,线性代数的学分对你有帮助; 2、如果你想继续深造,考研,必须学好线代。因为它是必考的数学科目,也是研究生科目《矩阵论》、《泛函分析》的基础。例如,泛函分析的起点就是无穷多个未知量的无穷多线性方程组理论。 3、如果你想提高自己的科研能力,不被现代科技发展潮流所抛弃,也必须学好,因为瑞典的L.戈丁说过,没有掌握线代的人简直就是文盲。他在自己的数学名著《数学概观》中说: 要是没有线性代数,任何数学和初等教程都讲不下去。按照现行的国际标准,线性代数是通过公理化来表述的。它是第二代数学模型,其根源来自于欧几里得几何、解析几何以及线性方程组理论。…,如果不熟悉线性代数的概念,像线性性质、向量、线性空间、矩阵等等,要去学习自然科学,现在看来就和文盲差不多,甚至可能学习社会科学也是如此。 4、如果毕业后想找个好工作,也必须学好线代: 想搞数学,当个数学家(我靠,这个还需要列出来,谁不知道线代是数学)。恭喜你,你的职业未来将是最光明的。如果到美国打工的话你可以找到最好的职业(参考本节后附的一份小资料)。 想搞电子工程,好,电路分析、线性信号系统分析、数字滤波器分析设计等需要线代,因为线代就是研究线性网络的主要工具;进行IC集成电路设计时,对付数百万个集体管的仿真软件就需要依赖线性方程组的方法;想搞光电及射频工程,好,电磁场、光波导分析都是向量场的分析,比如光调制器分析研制需要张量矩阵,手机信号处理等等也离不开矩阵运算。 想搞软件工程,好,3D游戏的数学基础就是以图形的矩阵运算为基础;当然,如果你只想玩3D游戏可以不必掌握线代;想搞图像处理,大量的图像数据处理更离不开矩阵这个强大的工具,《阿凡达》中大量的后期电脑制作没有线代的数学工具简直难以想象。 想搞经济研究。好,知道列昂惕夫(Wassily Leontief)吗?哈佛大学教授,1949年用计算机计算出了由美国统计局的25万条经济数据所组成的42个未知数的42个方程的方程组,他打开了研究经济数学模型的新时代的大门。这些模型通常都是线性的,也就是说,它们是用线性方程组来描述的,被称为列昂惕夫“投入-产出”模型。列昂惕夫因此获得了1973年的诺贝尔经济学奖。 相当领导,好,要会运筹学,运筹学的一个重要议题是线性规划。许多重要的管理决策是在线性规划模型的基础上做出的。线性规划的知识就是线代的知识啊。比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;又如,你作为一个大商场的老板,线性规划可以帮助你合理的安排各种商品的进货,以达到最大利润。 对于其他工程领域,没有用不上线代的地方。如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;飞行器设计,就要研究飞机表面的气流的过程包含反复求解大型的线性方程组,在这个求解的过程中,有两个矩阵运算的技巧:对稀疏矩阵进行分块处理和进行LU分解;作餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;知道有限元方法吗?这个工程分析中十分有效的有限元方法,其基础就是求解线性方程组。知道马尔科夫链吗?这个“链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列,看看,矩阵、向量又出现了。 另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解;二次型常常出现在线性代数在工程(标准设计及优化)和信号处理(输出的噪声功率)的应用中,他们也常常出现在物理学(例如势能和动能)、微分几何(例如曲面的法曲率)、经济学(例如效用函数)和统计学(例如置信椭圆体)中,某些这类应用实例的数学背景很容易转化为对对称矩阵的研究。 嘿嘿(脸红),说实在的,我也没有足够经验讲清楚线代在各个工程领域中的应用,只能大概人云亦云地讲述以上线代的一些基本应用。因为你如果要真正的讲清楚线代的一个应用,就必须充分了解所要应用的领域内的知识,最好有实际的工程应用的经

线性代数必须知道的结论

1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1 D ,则(1)2 1 (1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2 (1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3 D D =; 将D 主副角线翻转后,所得行列式为4 D ,则4 D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式:A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1) n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵:

线性代数必须熟记的结论总结

【海文考研数学】:线性代数必须熟记的结论总结 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵:

精心整理线性代数公式大全

1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1 (1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2 D ,则(1)2 2 (1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3 D ,则3 D D =; 将D 主副角线翻转后,所得行列式为4 D ,则4 D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式 : A O A C A B C B O B = =、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子 式; 7. 证明0A =的方法: ①、A A =-; ②、反证法;

线性代数几何代数历年试题_周建华

《几何与代数》、《线性代数》 教学大纲与历年试题

目录 1.几何与代数教学大纲 (1) 2.线性代数教学大纲 (8) 3.几何与代数教学大纲(64学时) (13) 4.01-02学年第二学期几何与代数期终考试试卷 (21) 5.02-03学年第二学期几何与代数期终考试试卷 (25) 6.03-04学年第二学期几何与代数期终考试试卷 (30) 7.04-05学年第二学期几何与代数期终考试试卷 (34) 8.05-06学年第二学期几何与代数期终考试试卷 (39) 9.06-07学年第二学期几何与代数期终考试试卷 (43) 10.01-02学年第三学期线性代数期终考试试卷 (47) 11.03-04学年第三学期线性代数期终考试试卷 (52) 12.04-05学年第三学期线性代数期终考试试卷 (56) 13.05-06学年第三学期线性代数期终考试试卷 (61) 14.06-07学年第三学期线性代数期终考试试卷 (65) 15.05-06学年第二学期几何与代数补考试卷 (69) 16.05-06学年第二学期线性代数补考试卷 (73) 17.07-08学年第一学期线性代数转系考试试卷 (77)

《几何与代数》教学大纲 48学时 本课程是本科阶段几何及离散量数学最重要的课程。本课程的目的是使学生熟悉线性代数与空间解析的基本概念,掌握用坐标及向量的方法讨论几何图形的方法,熟悉空间中简单的几何图形的方程及其特点,掌握线性代数的基本理论和基本方法,提高其空间想象能力、抽象思维和逻辑思维的能力,为用线性代数的理论解决实际问题打下基础,并为后继课程的学习做好准备。 教学内容和基本要求 一.向量代数平面与直线 1.理解几何向量的概念及其加法、数乘运算,熟悉运算规律,了解两个向量共线和三个向量共面的充分 必要条件; 2.理解空间直角坐标系的概念,了解仿射坐标系的概念,掌握向量的坐标表示;

线性代数的学习方法和心得体会

线性代数的学习方法和心得体会 一、学习方法 今天先谈谈对线形空间和矩阵的几个核心概念的理解。这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。 首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。 总之,空间有很多种。你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。 我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成; 2. 这些点之间存在相对的关系; 3. 可以在空间中定义长度、角度; 4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动, 认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。

线性方程组的几何意义与矩阵之间的关系

线性方程组的几何意义与矩阵之间的关系 数学系数052 蒋春 摘要:通过对二元线性方程组,三元线性方程组,四元线性方程组有关系数矩阵,增广矩阵的秩的分析,对其列,行向量的线性相关性分析,初步得出如何用矩阵的方式讨论线性方程组的几何意义。 关键词:线性方程组 空间直线 系数矩阵 增广矩阵 矩阵秩 线性相关性 引言:判断空间中平面与平面、直线与直线及直线与平面的位子关系是代数知识在空间解析几何上的应用,体现了几何与代数的完美结合,虽在解析中给出了两条判定定理,但在实际应用中这两条定理是不够用的,本文用方程组系数矩阵,增广矩阵的秩,对其列,行向量的线性相关性作出系统研究,并给出了一些非常有用的结论。 1:二元线性方程组几何意义与矩阵之间的关系 设线性方程组:1111 2 222a x b y c l a x b y c l +=?????????+=???????? 因为i i i a x b y c +=表示平面内一条直线i l 根据解析几何知1l 与2l 的几何关系: ○1:相交的充分必要条件是(不重合): ()11 22 1a b a b ≠??????? ○2平行的充分必要条件是: ()111 222 2a b c a b c =≠??????? ○3重合的充分必要条件是: ()111222 3a b c a b c ==??????? 设线性方程组系数矩阵和增广矩阵分别为 1122a b A a b ??=????,111222a b c B a b c ??=???? 现记线性方程组增广矩阵的列向量 112a a α??=????,122b b α??=????,132c c α?? =???? 则

线性代数与空间几何习题

一、填空题(本题共11空,每空2分,共22分) 1、三阶方阵??? ?? ??--=112214112A ,则_______=A ;_______=*A ;元素23a 的代 数余子式_______=23A . 2、设向量(1,1,1),(3,2,1)T αβ==,则=αβ ,=βα . 3、已知矩阵??? ?? ??----=3322111b a A 的秩为1,则= = b a ,. 4、过点),,(101且与直线1 2111z y x =--=-平行的直线方程为 . 5、设3阶方阵A 的特征值为1,1,2,则行列式=-A 2 . 6、二次型3231212322 2122242x x x x x x x x x f -+--+-=的矩阵为 ,是否为正定二次型? .(填“是”或者“否”) 班级: 学号: 姓名: 题号 一 二 三 四 五 六 七 八 九 十 总分 得分 本题 得分

二、单项选择题(请在每小题的4个备选答案中,选出一个最佳答案,共6小题;每小题3分,共18分) 1、若11 12 132122 233132 33 a a a a a a a a a a =,则=---23 22 21 333231 13 1211222a a a a a a a a a ( ). (A) 4a (B) -2a (C) -4a (D) 2a 2、设P 是34?矩阵, Q 是53?矩阵, 则下列运算( )有意义. (A )QP (B)PQ (C) P Q + (D) P Q - 3、设A 是n 阶方阵,如有矩阵关系式=AB AC ,则必有( ) (A )=A O (B )0A ≠时,B C = (C )=A O 时,=B C (D )≠B C 时, =A O 4、设线性方程组b AX =,其中A 为m n ?矩阵,0b ≠且m n <,则方程组b AX =( ) (A )有唯一解 (B )有无穷多解 (C )无解 (D )可能无解 5、下面二次曲面中,不是..柱面方程的方程是( ) (A ) 22=x y (B ) 1222=-+z y x (C ) 122=-x y (D ) 19 42 2=+x y 6、设A B ,为两个相似的n 阶矩阵,则( ). (A )存在非奇异矩阵P ,使得1P AP B -= (B )A B = (C )存在对角矩阵D ,使A B ,都相似于D (D )E A E B λλ-=- 三、计算题(本题共6小题,共60分) 1、求经过直线 12 413 --==-x y z 且与平面222++=x y z 垂直的平面方程。(10分) 本题 得分 本题 得分

线性代数必须知识结论

1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1)n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为 4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式:A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有: 1 (1)n n k n k k k E A S λλλ-=-=+-∑,其中 k S 为k 阶主子式; 7. 证明0A =的方法: ①、 A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵:

线性代数的几何意义

《线性代数地几何意义——向量组地线性相关性》 学年第二学期 教学目标 .利用线性代数地几何意义,帮助学生更深层次地理解线性代数.很多学生都抱怨线性代数枯燥、抽象、难理解,引入几何方法能调动学生积极性.资料个人收集整理,勿做商业用途 .使学生了解线性代数用几何方法理解地思想,并学会将这种能力迁移来进行其他定理地学习 教学重点 向量组地秩用几何方法理解地确切含义——维数,以及线性相关,线性无关地几何意义,这是一切用几何方法理解向量组知识地基础.资料个人收集整理,勿做商业用途 教学难点 如何短时间内让学生真正理解方法地精髓,并学会举一反三去理解其他定义,定理.维数地共存问题是难点之一. 教学用具 教案,多媒体课件() 教学过程 先讲明白向量空间地定义及几何意义,这虽然是最后一节学地,但却是 学习方法地思想来源.最基础地往往是最重要地. 向量空间:设为维向量地全体所构成地集合叫做维向量空间 设为向量空间,如果个向量,……∈,且满足: (),……都线性无关 ()中任意向量都可由,……线性表示 那么,……就称为向量空间地一个基,称为向量空间地维数,若把看成向量组,那么地基就是就是向量组地最大无关组,地维数就是向量组地秩.联系高中学过地三维直角坐标系地知识,容易联想到若三个单位向量(),(),()指地是定义中地向量,它们线性无关,即不能用λμ表示,而在高中知识中λμ表示三个向量共面(两个向量如λ表示,两向量共线)故线性无关在三维中指不公线.资料个人收集整理,勿做商业用途 不同向量线性关系地几何意义 两个向量,线性相关指两向量平行(或者说共线),此时只是在线上地关系,仅仅是一维,线性无关指两向量相交,≠λ即能确定一个二维平面.线性无关提供了另一种维度,使得向量所在地空间增加了一维.资料个人收集整理,勿做商业用途 三个向量,线性相关指三向量共面,即能写成λμ形式地,线性无关指三向量不共面,同上,线性相关研究地是三个向量共面而确定二维平面,而线性无关又从中插一杠子,线性无关又提供了另一种维度,使得向量所在地空间增加了一维.于是三个向量若线性无关,那么它们不共面,即存在于三维立体空间中.资料个人收集整理,勿做商业用途四个向量,同理,线性相关指四向量共体,即存在同一三维空间中,线性无关是指又加了一个维度,这时一般人地想象力已经接近极限,根据大科学家爱因斯坦地理论,还有五维,六维,而在物理学中第四维普遍被认为是指时间,这里提一下就好.研究方法同上.资料个人收集整理,勿做商业用途 向量组中地秩指地是向量组(很多向量构成地集合)在空间中所占地维度,注意,用三维表示地向量组不一定秩是,也可能是(表示共面),(表示共线)资料个人收集整理,勿做商业用途 定理地理解,定理:向量能由向量组,……线性表示地充分必要条件是矩阵(,……)地秩等于矩阵(,…… ,)地秩.定理表示一个向量若是想要用其他一些向量表示地话,就必须和其

线性代数发展简史

华北水利水电学院 线性代数发展简史 课程名称:线性代数 专业班级:2012084 成员组成:201208420 联系方式:************ 2013年11月6日 摘要:线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。 关键词:行列式,矩阵,,,, 正文:线性代数的发展简史 引言 代数学可以笼统地解释为关于字母运算的学科。在中学所学的初等代数中,字母仅用来表示数。初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。发展到这个阶段,就叫做高等代数。线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。在线性代数中,字母的含义也推广了,不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。笼统地说,线性代数是研究具有线性关系的代数量的一门学科。线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。在线性代数中最重要的内容就是行列式和矩阵。虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生的动力和钥匙。行列式出现于线性方程组的求解。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683 年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。1750 年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。1848 年英格兰的J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。1855 年矩阵代数得到了Arthur Cayley 的工作培育。Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换ST 的系数矩阵变为矩阵S 和矩阵T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由Cayley 在1858 年在他的矩阵理论文集中提出的。利用单一的字母A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。数学家Cauchy 首先给出了特征方程的术语,并证明了阶数超过3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论,数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既v x w 不等于w x v )的向量代数是由Hermann Grassmann 在他的《线性扩张论》(Die lineale Ausdehnungslehre )一书中提出的。(1844) 。

(完整版)线性代数知识点全归纳

1 线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

线性代数知识点总结

(括号内的数字是知识点在书中的页数) 第一章、矩阵和线性方程组 1、线性方程组(3),方程组解的几何意义(4—5),(m×n)矩阵(6),增广矩阵和系数矩阵(7),初等变换和初等行变换(8—10)。 2、阶梯形矩阵(15),简化的阶梯形矩阵(16),不相容方程组(19),如何简化为简化的阶梯形矩阵(20),解方程组(22)。 3、对方程组解的情况的讨论——Remark 1/2/3(29)+Remark 4(30)+ Theorem 3(30)+ Corollary (31);齐次方程组(31)。 5、矩阵相等(46),矩阵的加法和数乘(47),n维空间向量(48),一般解的向量形式(49),点积(50),矩阵的乘法(52),矩阵乘法的其他几种公式化的表述(55—57)。 6、矩阵加法和乘法的运算性质(61和62和63),矩阵的转置(63),矩阵转置的运算性质(64),对称矩阵(64),单位矩阵(66),数积和向量的模(67—68)。 7、线性组合(71),线性无关(73),单位向量(75),Theorem 11(76),奇异和非奇异(76),Theorem 12(76),Theorem 13(77)。 9、逆矩阵(92),Lemma(94),计算逆矩阵(97),Theorem 16(97),二阶方阵的逆矩阵(98),逆矩阵的性质(99),Theorem 18(101)。 第二章、二维向量和三维向量 1、三种向量(114),物理向量(物理矢量)(114),几何向量(114),几何向量相等(115),位置向量(115),分向量(117),几何向量相等的检验(117),代数向量(118),Table 2.1(119),物理向量和几何向量的加法(120),标量乘法(123),平行向量(124),向量的长度/模(124和125),二维基本向量(125)。 2、右手法则(128),三维直角坐标系(128),两点的距离公式(129),中点公式(130),几何向量的分向量(131),三维代数向量(131),三维向量的加法和标量乘法(132),三维平行向量、向量的长度和单位向量(132—133),三维基本向量(133)。 3、两向量的点积(136),两向量夹角(137),点积的代数性质(137),正交向量(138),向量的投影(138—139),叉积(141—142),叉积的代数性质(143),叉积的几何性质(144),三重积(145),共线和共面(146)。 4、三维平面直角坐标系上的直线的向量形式(149),参数方程(150),空间平面及其法向量(152),三维空间平面方程的向量形式(154),通过叉积求法向量(155),平行平面

相关文档
最新文档