高二数学定积分的概念

高二数学定积分

高二数学定积分 目标认知 学习目标: 1.了解“以直代曲”、“以不变代变”的思想方法,了解定积分的实际背景,了解定积分的基本思 想,了解定积分的概念、几何意义。 2.直观了解微积分基本定理的含义,并能用定理计算简单的定积分。 3.应用定积分解决平面图形的面积、变速直线运动的路程和变力作功等问题,在解决问题的过程中体 验定积分的价值. 教学重点: 正确计算定积分,利用定积分求面积。 教学难点: 定积分的概念,将实际问题化归为定积分问题。 知识要点梳理 知识点一:定积分的概念 如果函数在区间上连续,用分点将区间分为n个小区间,在每个小区间上任取一点(i=1,2,3…,n),作和式 ,当时,上述和式无限趋近于某个常数,这个常数叫 做在区间上的定积分.记作.即=,这里,与分别叫做积分下限与积分上限,区间叫做积分区间,函数叫做被积函数,叫做积分变量,叫做被积式. 说明: (1)定积分的值是一个常数,可正、可负、可为零; (2)用定义求定积分的四个基本步骤:①分割;②近似代替;③求和;④取极限. 知识点二:定积分的几何意义 设函数在区间上连续. 在上,当时,定积分在几何上表示由曲线以及直线

与轴围成的曲边梯形的面积; 在上,当时,由曲线以及直线与轴围成的曲边梯形位于轴下方,定积分在几何上表示曲边梯形面积的负值; 在上,当既取正值又取负值时,曲线的某些部分在轴的上方, 而其他部分在轴下方,如果我们将在轴上方的图形的面积赋予正号,在轴下方的图形的面积赋予负号; 在一般情形下,定积分的几何意义是曲线,两条直线与轴所围成的各部分面积的代数和. 知识点三:定积分的性质 (1)(为常数), (2), (3)(其中),

数学分析不定积分

第八5章不定积分 教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。 3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。 教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式; 教学时数:18学时

§ 1 不定积分概念与基本公式(4学时)教学要求:积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 教学重点:深刻理解不定积分的概念。 一、新课引入:微分问题的反问题,运算的反运算. 二、讲授新课: (一)不定积分的定义: 1.原函数: 例1填空: ; ( ; ; ; ; . 定义. 注意是的一个原函数. 原函数问题的基本内容:存在性,个数,求法. 原函数的个数: Th 若是在区间上的一个原函数, 则对,都是在区间上的原函数;若也是在区间上的原函数,则必有. ( 证)

高中数学 定积分练习与解析1 苏教版选修2-2

定积分 练习与解析1 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内 1.根据定积分的定义,dx x ?2 02=( ) A. n n i n i 112 1???? ??-∑= B. n n i n i n 1 12 1lim ??? ? ??-∑=∞→ C. n n i n i 2 22 1??? ? ??∑= D. n n i n i n 222 1lim ??? ? ??∑=∞→ 解析:由求定积分的四个步骤:分割,近似代替,求和,取极限.可知选项为D 2、?-+22 )cos (sin π πdx x x 的值为( ) A 0 B 4 π C 2 D 4 解析:?-+22 )cos (sin π πdx x x =() 22 sin cos ππ- +-x x ?? ? ?????? ??-+??? ??---??? ??+-2sin 2cos 2sin 2cos ππππ=2, 故选C. 3、直线4-=x y 与抛物线x y 22=所围成的图形面积是( ) A 15 B 16 C 17 D 18 解析:直线4-=x y 与抛物线x y 22=的交点为()().4,8,2,2-结合图像可知面积 ()()[]1812303 1213021248221 4 2 3242=-=?-=---?+= --?y dy y s .此题选取y 为积分变量较容易. 选D. 4.以初速度40m/s 素质向上抛一物体,ts 时刻的速度 21040t v -= ,则此物体达到最高时的高度为( ) A . m 3160 B. m 380 C. m 340 D. m 320 解析:由 2 1040t v -==0,得物体达到最高时 t =2.高度 () ()m t t dt t h 3160310401040203202= ??? ? ? -=-=? 5.一物体在力()5232+-=x x x F (力单位:N ,位移单位:m )作用下沿与()x F 相同的方向由m x 5=直线运动到 m x 10=处作的功是( )

数学分析第八章不定积分

第八章不定积分 §1 不定积分概念与基本积分公式 正如加法有其逆运算减法,乘法有其逆运算除法一样,微分法也有它的逆运算———积分法.我们已经知道,微分法的基本问题是研究如何从已知函数求出它的导函数,那么与之相反的问题是:求一个未知函数,使其导函数恰好是某一已知函数.提出这个逆问题,首先是因为它出现在许多实际问题之中.例如:已知速度求路程;已知加速度求速度;已知曲线上每一点处的切线斜率(或斜率所满足的某一规律),求曲线方程等等.本章与其后两章(定积分与定积分的应用)构成一元函数积分学. 一原函数与不定积分 定义1 设函数f 与F 在区间I 上都有定义.若 F ′( x) = f( x ), x ∈I, 则称F 为f 在区间I 上的一个原函数. - 1 例如, 1 3 x 3 是x 2 在( - ∞,+ ∞) 上的一个原函数, 因为(1 3 1 x 3)′= x 2 ; 又如 2 cos 2 x 与- 2 cos 2 x + 1 都是sin 2 x 在(-∞, + ∞) 上的原函数, 因为 ( -1 cos 2 x )′= ( -1 cos 2 x + 1)′= sin 2 x . 2 2 如果这些简单的例子都可从基本求导公式反推而得的话,那么 F( x) = x arctan x - 1 ln (1 + x 2 ) 2 是f ( x) = arctan x 的一个原函数, 就不那样明显了.事实上, 研究原函数必须解决下面两个重要问题: 1 .满足何种条件的函数必定存在原函数? 如果存在, 是否唯一? 2 .若已知某个函数的原函数存在, 又怎样把它求出来? 关于第一个问题, 我们用下面两个定理来回答; 至于第二个问题, 其解答则是本章接着要介绍的各种积分方法.

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

高等数学(上册)教案22定积分的概念与性质

高等数学(上册)教案22定积分的概念与性 质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第5章 定积分及其应用 定积分的概念与性质 【教学目的】: 1. 理解曲边梯形的面积求法的思维方法; 2. 理解定积分的概念及其性质; 3. 掌握定积分的几何意义 ; 【教学重点】: 1. 定积分的概念及其性质; 【教学难点】: 1. 曲边梯形面积求法的思维方法; 【教学时数】:2学时 【教学过程】: 案例研究 引例5.1.1 曲边梯形的面积问题 所谓曲边梯形是指由连续曲线)(x f y =(设0)(≥x f ),直线a x =,b x =和 0=y (即x 轴)所围成的此类型的平面图形(如图5-1所示).下面来求该曲边 梯形的面积. 分析 由于“矩形面积=底?高”,而曲边梯形在底边上各点处的高()f x 在区间 [,]a b 上是变动的,故它的面积不能按矩形面积公式计算. 另一方面,由于曲线()y f x =在[,]a b 上是连续变化的,所以当点x 在区间 [,]a b 上某处变化很小时,相应的()f x 也就变化不大.于是,考虑用一组平行于 y 轴的直线把曲边梯形分割成若干个小曲边梯形,当分割得较细,每个小曲边图5-1 图5-2

梯形很窄时,其高()f x 的变化就很小.这样,可以在每个小曲边梯形上作一个 与它同底、以底上某点函数值为高的小矩形,用小矩形的面积近似代替小曲边 梯形的面积,进而用所有小曲边梯形的面积之和近似代替整个曲边梯形的面积 (如图5-2所示).显然,分割越细,近似程度越高,当无限细分时,所有小矩 形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,可按以下四步计算曲边梯形的面积A . (1)分割 在闭区间],[b a 上任意插入1n -个分点, 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将闭区间[,]a b 分成n 个小区间 ],[,],,[,],[],,[112110n n i i x x x x x x x x -- , 它们的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 过每一个分点作平行于y 轴的直线,把曲边梯形分成n 个小曲边梯形; (2)取近似 在每个小区间1[,]i i x x -(1,2,...,)i n =上任取一点 1()i i i i x x ξξ-≤≤,以小区间1i i i x x x -?=-为底,()i f ξ为高作小矩形,用小矩形的 面积()i i f x ξ?近似代替相应的小曲边梯形的面积A ?,即 ()(1,2,...,)i i A f x i n ξ?=?=, (3)求和 把这样得到的n 个小矩形的面积加起来,得和式∑=?n i i i x f 1)(ξ, 将其作为曲边梯形面积的近似值,即 11()n n i i i i i A A f x ξ===?≈?∑∑; (4)取极限 当分点个数n 无限增加,且小区间长度的最大值λ (max{}i x λ=?)趋于零时,上述和式的极限值就是曲边梯形面积的精确值, 即 01lim ()n i i i A f x λξ→==?∑. 5.1.1 定积分的定义 定义1 设函数()y f x =在闭区间[,]a b 上有界,在闭区间[,]a b 中任意插 入1n -个分点 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将区间[,]a b 分成n 个小区间 011211[,],[,],...,[,],...,[,]i i n n x x x x x x x x --, 各小区间的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 在每个小区间上任取一点)(1i i i i x x ≤≤-ξξ,作函数值)(i f ξ与小区间长度i x ?的 乘积),,2,1()(n i x f i i =?ξ,并作和∑=?n i i i x f 1)(ξ,记 }max {i x ?=λ, ),,2,1(n i =, 当n 无限增大且0→λ时,若上述和式的极限存在,则称函数()y f x =在区

高中数学~定积分和微积分基本原理

高中数学~~定积分和微积分基本原理 1、求曲线、直线、坐标轴围成的图形面积 ? [ 高三数学] ? 题型:单选题 由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A. 310 B. 4 C. 3 16 D. 6 问题症结:大概知道解题方向了,但没有解出来,请老师分析 考查知识点: ? 定积分在几何中的应用 ? 用微积分基本定理求定积分值 难度:难 解析过程: 联立方程组,2 ???-==x y x y 得到两曲线的交点坐标为(4,2), 因此曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为: 3 16)]2([4 = --? dx x x . 答案:C 规律方法: 首先求出曲线y=和直线y=x-2的交点,确定出积分区间和被积函数,然后利用导数和积分的关 系求解. 利用定积分知识求解该区域面积是解题的关键. 高二数学问题 ? [ 高一数学] ? 题型:简答题 曲线y=sinx (0≤x ≤π)与直线y=?围成的封闭图形面积是? 问题症结:找不到突破口,请老师帮我理一下思路 考查知识点: ? 用定义求定积分值 难度:中 解析过程:

规律方法: 利用定积分的知识求解。 知识点:定积分和微积分基本原理 概述 所属知识点: [导数及其应用] 包含次级知识点: 定积分的概念、定积分的性质、用定义求定积分值、用微积分基本定理求定积分值、用几何意义求定积分的值、定积分在几何中的应用、定积分在物理中的应用、微积分基本原理的含义、微积分基本原理的应用 知识点总结 本节主要包括定积分的概念、定积分的性质、用定义求定积分值、用微积分基本定理求定积分值、用几何意义求定积分的值、定积分在几何中的应用、定积分在物理中的应用、微积分基本原理的含义、微积分基本原理的应用等知识点。对于定积分和微积分基本原理的理解和掌握一定要通过数形结合理解,不能死记硬背。只有理解了定积分的概念,才能理解定积分的几何意义。

巧用定积分求极限(数学分析)

定积分在求极限中的应用 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格, 也只能解决两种形式的极限问题.洛必达法则是用于解决“00”型的极限和“∞ ∞ ”型极限的. 泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入 n-1个分点将 [],a b 分成 n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ?=-=),1[,]i i x x ξ-?∈,作乘积()i i f x ξ?(称 为积分元),把这些乘积相加得到和式 1 ()n i i i f x ξ=?∑(称为积分形式)设 {}max :1i x i n λ=?≤≤,若0 1 lim ()n i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法 及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作 b a ()f x dx ?,即0 1 ()lim ()n b a i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理

高中数学高考总复习定积分与微积分基本定理习题及详解教学内容

定积分与微积分基本定理习题 一、选择题 1. a =??02x d x ,b =??02e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是( ) A .a

(完整版)高二数学定积分的概念测试题

选修2-21.5.3定积分的概念 一、选择题 1.定积分??1 3(-3)d x 等于( ) A .-6 B .6 C .-3 D .3 [答案] A [解析] 由积分的几何意义可知??1 3(-3)d x 表示由x =1,x =3,y =0及y =-3所围成的矩形面积的相反数,故??1 3(-3)d x =-6. 2.定积分??a b f (x )d x 的大小( ) A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关 B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关 C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关 D .与f (x )、区间[a ,b ]和ξi 的取法都有关 [答案] A [解析] 由定积分定义及求曲边梯形面积的四个步骤知A 正确. 3.下列说法成立的个数是( ) ①??a b f (x )d x =∑i =1 n f (ξi )b -a n ②?? a b f (x )d x 等于当n 趋近于+∞时,f (ξi )·b -a n 无限趋近的值 ③??a b f (x )d x 等于当n 无限趋近于+∞时,∑i =1 n f (ξi )b -a n 无限趋近的常

数 ④??a b f (x )d x 可以是一个函数式子 A .1 B .2 C .3 D .4 [答案] A [解析] 由??a b f (x )d x 的定义及求法知仅③正确,其余不正确.故应 选A. 4.已知??1 3f (x )d x =56,则( ) A.??1 2f (x )d x =28 B.??2 3f (x )d x =28 C.??1 22f (x )d x =56 D.??1 2f (x )d x +??2 3f (x )d x =56 [答案] D [解析] 由y =f (x ),x =1,x =3及y =0围成的曲边梯形可分拆成两个:由y =f (x ),x =1,x =2及y =0围成的曲边梯形知由y =f (x ),x =2,x =3及y =0围成的曲边梯形. ∴??1 3f (x )d x =??1 2f (x )d x +??2 3f (x )d x 即??1 2f (x )d x +??2 3f (x )d x =56. 故应选D. 5.已知??a b f (x )d x =6,则??a b 6f (x )d x 等于( ) A .6 B .6(b -a )

考研数学高数5定积分

第五讲:定积分 定积分的概念:设()[]b a x f ,在上有界 1) 任意分割:.,2,1n i x i =? 2) 作乘积:任取[]i i i x x ,1-∈ξ,作乘积i i x f ?).(ξ 3) 作和式: ()i n i i x f ?∑=.1 ξ 4) 取极限:()i n i i x f ?∑=→.lim 1 ξλ 若不管[]b a ,如何分割,i ξ如何选取,当{}0max 1→?=≤≤i n v x λ时,上述极限如果存在,则称()x f 在[]b a ,上是可积的,并称此极限值为()[]b a x f ,在上的定积分,记为 ()0 ()lim .n b i i a i f x dx f x λξ→= =?∑? 我们规定: ()()()b b b a a a f x dx f u du f t dt ?=?=? ()0a a f x dx ?= ()()a b b a f x dx f x dx ?=-? 函数可积的条件: 充分条件:若()[]b a x f ,在满足下列条件之一,则()[]b a x f ,在上可积: 1、()[]b a x f ,在上连续; 2、只有有限个间断点的有界函数 3、单调函数 必要条件:若()[]b a x f ,在上可积,则在[]b a ,上一定有界。 定积分的几何意义: 设()[]b a x f ,在上可积 (1) 若()0≥x f ,则();A dx x f b a =?

(2) 若()0≤x f ,则();A dx x f b a -=? (3) 若()x f 有正有负,则();321A A A dx x f b a +-=? 例: 1、用定义计算积分dx x 2 10?; 2、利用定积分表示下列和式的极限: (1)∑=∞→+n i n n i n 1 11lim (2)()021lim 1>++++∞→p n n p p p p n 3、利用几何意义求积分 ,)2(; )1()1(2220dx x a dx x a b a -?-? 4、比较大小:2121 1 ln (ln )e e I xdx I x dx ==? ? 定积分的性质: 设()()x g x f ,在所讨论的区间上都是可积的,则有 性质1 (线性性) ()()[]()()( )为常数αββαβαdx x g dx x f dx x g x f b a b a b a ?+?=+? 推论: ()()()()[]()()dx x g dx x f dx x g x f dx x f A dx x Af b a b a b a b a b a ?±?=±??=? 性质2 (区间可加性) ()()()都成立 或或注:不论b a c c b a b c a dx x f dx x f dx x f b c c a b a <<<<<

数学分析8不定积分总练习题

第八章 不定积分 总练习题 求下列不定积分: (1)∫4 3x 1 x 2x --dx ;(2)∫xarcsinxdx ;(3)∫ x 1dx +;(4)∫e sinx sin2xdx ; (5)∫x e dx ;(6)∫1 x x dx 2-;(7)∫x tan 1x tan 1+-dx ;(8)∫32)2-x (x -x dx ; (9)∫ x cos dx 4;(10)∫sin 4 xdx ;(11)∫4 x 3x 5-x 23+-dx ;(12)∫arctan(1+x )dx ; (13)∫2x x 47+dx ;(14)∫x tan tanx 1tanx 2++dx ;(15)∫100 2 x) -(1x dx ; (16)∫2x arcsinx dx ;(17)∫xln ??? ??+x -1x 1dx ;(18)∫x sinx cos dx 7;(19)∫e x 2 2x 1x -1??? ??+dx ; (20)I n =∫ u v n dx, 其中u=a 1+b 1x ,v=a 2+b 2x ,求递推形式解. 解:(1)∫ 4 3x 1 x 2x --dx=∫41x dx-2∫12 1x dx-∫4 1x - dx =5445x -13241213x -3 4 ∫43 x +C. (2)∫xarcsinxdx=-2 1 ∫arcsinxd(1-x 2)=-2 1(1-x 2)arcsinx+2 1 ∫(1-x 2)darcsinx =-21(1-x 2)arcsinx+21∫2x -1dx =-21(1-x 2)arcsinx+21 ∫t sin -12dsint =-21(1-x 2)arcsinx+21∫cos 2tdt=-21(1-x 2)arcsinx+81 ∫(1+cos2t)d2t =-21(1-x 2)arcsinx+4t +81sin2t+C=-21(1-x 2)arcsinx+41arcsinx +4 1 sintcost+C =2x 2arcsinx-41arcsinx +2x -14 x +C. (3)∫x 1dx +=∫t 1dt 2+=∫t 12tdt +=2∫t 1t 1++dt-2∫t 1dt +=2t-2ln|1+t|+C =2x -2ln|1+x |+C. (4)∫e sinx sin2xdx=2∫e sinx sinxcosxdx=2∫sinxde sinx =2e sinx sinx-2∫e sinx dsinx

数学分析不定积分

8.1 不定积分概念与基本积分公式(2学时) 【教学目的】深刻理解原函数与不定积分的概念;牢记基本积分表;掌握不定积分的线形运算法则。 【教学重点】不定积分的概念,基本积分表,不定积分的线形运算法则。 【教学难点】求不定积分的技巧。 【教学过程】 一、原函数与不定积分 (一) 原函数 定义1 设函数与在区间)(x f )(x F I 上有定义。若 )()(x f x F =′, I x ∈, 则称为在区间)(x F )(x f I 上的一个原函数。 如:331x 是在R 上的一个原函数;2x x 2cos 21?, 12cos 2 1+x ,,等都有是在R 上的原函数——若函数存在原函数,则其原函数不是唯一的。 x 2sin x 2cos ?x 2sin )(x f 问题1 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个? )(x f 问题 2 若函数的原函数存在,如何将它求出?(这是本章的重点内容)。 )(x f 定理1 若在区间)(x f I 上连续,则在)(x f I 上存在原函数。 )(x F (证明在第九章中进行。) 说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。(2)连续是存在原函数的充分条件,并非必要条件。 定理2 设是在在区间)(x F )(x f I 上的一个原函数,则(1)设是在在区间C x F +)()(x f I 上的原函数,其中C 为任意常量(若存在原函数,则其个)(x f

数必为无穷多个)。(2)在)(x f I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。 证:(i)这是因为[] .),()()(I x x f x F C x F ∈=′=′+(ii)设F 和G 是f 在I 上的任意两个原函数,则有 [] I x x f x f x G x F C x F ∈=?=′?′=′+,0)()()()()(根据第六章拉格朗日中值定理的推论,知道I x C x G x F ∈≡?,)()(. 口 (二) 不定积分 定义 2 函数在区间)(x f I 上的原函数的全体称为在)(x f I 上的不定积分,记作: ∫dx x f )( 其中∫积分号;被积函数; ????)(x f ??dx x f )(被积表达式;??x 积分变量。 注1: 是一个整体记号; ∫dx x f )(注2:不定积分与原函数是总体与个体的关系,即若是的一个原函数,则的不定积分是一个函数族)(x F )(x f )(x f {}C x F +)(,其中是任意常数,于是,记为:∫=。 C dx x f )(C x F +)(此时称C 为积分常数,它可取任意实数。故有 ——先积后导正好还原; ∫=′)(])([x f dx x f 或 。 ∫=dx x f dx x f d )()( ∫——先导后积还原后需加上一个常数(不能完全还原)。 +=′C x f dx x f )()(或 ∫。 +=C x f x df )()(如: C x dx x +=∫332, C x xdx +?=∫2cos 212sin 。 不定积分的风何意义: 若是的一个原函数,则称的图象为的一条积分曲线。于是,的不定积分在几何上表示的某一条)(x F )(x f )(x F y =)(x f )(x f )(x f

高中数学定积分知识点

高中数学定积分知识点Newly compiled on November 23, 2020

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111 212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度; 5、常见的函数导数 6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有:

用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表 f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大格,检查/() 值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值 8.利用导数求函数的最值的步骤:求) f在[]b a,上的最大值与最小值的步骤如下: (x a,上的极值; ⑴求) (x f在[]b ⑵将) f a f b比较,其中最大的一个是最大值,最小的一个是最小 f的各极值与(),() (x 值。[注]:实际问题的开区间唯一极值点就是所求的最值点; 9.求曲边梯形的思想和步骤(“以直代曲”的思想) 10.定积分的性质 根据定积分的定义,不难得出定积分的如下性质:

高等数学教案22定积分的概念与性质

第5章 定积分及其应用 定积分的概念与性质 【教学目的】: 1. 理解曲边梯形的面积求法的思维方法; 2. 理解定积分的概念及其性质; 3. 掌握定积分的几何意义 ; 【教学重点】: 1. 定积分的概念及其性质; 【教学难点】: 1. 曲边梯形面积求法的思维方法; 【教学时数】:2学时 【教学过程】: 案例研究 引例 曲边梯形的面积问题 所谓曲边梯形是指由连续曲线)(x f y =(设0)(≥x f ),直线a x =,b x =和 0=y (即x 轴)所围成的此类型的平面图形(如图5-1所示) .下面来求该曲边梯形的面积. 分析 由于“矩形面积=底?高”,而曲边梯形在底边上各点处的高()f x 在区间[,]a b 上是变动的,故它的面积不能按矩形面积公式计算. 另一方面,由于曲线()y f x =在[,]a b 上是连续变化的,所以当点x 在区间[,]a b 上某处变化很小时,相应的()f x 也就变化不大.于是,考虑用一组平行于y 轴的直线把曲边梯形分割成若干个小曲边梯形,当分割得较细,每个小曲边梯形很窄时,其高()f x 的变化就很小.这样,可以在每个小曲边梯形上作一个与它同底、以底上某点函数值为高的小矩形,用小矩形的面积近似代替小曲边梯形的面积,进而用所有小曲边梯形的面积之和近似代替整个曲边梯形的面积(如图5-2所示).显然,分割越细,近似程度越高,当无限细分时,所有小矩形面积之和的极限就是曲边梯形面积的精确值. 根据以上分析,可按以下四步计算曲边梯形的面积A . 图5-1 图5-2

(1)分割 在闭区间],[b a 上任意插入1n -个分点, 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将闭区间[,]a b 分成n 个小区间 ],[,],,[,],[],,[112110n n i i x x x x x x x x --ΛΛ, 它们的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 过每一个分点作平行于y 轴的直线,把曲边梯形分成n 个小曲边梯形; (2)取近似 在每个小区间1[,]i i x x -(1,2,...,)i n =上任取一点1()i i i i x x ξξ-≤≤,以小区间1i i i x x x -?=-为底,()i f ξ为高作小矩形,用小矩形的面积()i i f x ξ?近似代替相应的小曲边梯形的面积A ?,即 ()(1,2,...,)i i A f x i n ξ?=?=, (3)求和 把这样得到的n 个小矩形的面积加起来,得和式∑=?n i i i x f 1)(ξ,将 其作为曲边梯形面积的近似值,即 1 1 ()n n i i i i i A A f x ξ===?≈?∑∑; (4)取极限 当分点个数n 无限增加,且小区间长度的最大值λ(max{}i x λ=?)趋于零时,上述和式的极限值就是曲边梯形面积的精确值,即 0 1lim ()n i i i A f x λξ→==?∑. 定积分的定义 定义1 设函数()y f x =在闭区间[,]a b 上有界,在闭区间[,]a b 中任意插入1n -个分点 01211......i i n n a x x x x x x x b --=<<<<<<<<=, 将区间[,]a b 分成n 个小区间 011211[,],[,],...,[,],...,[,]i i n n x x x x x x x x --, 各小区间的长度依次为 11022111,,...,,...,i i i n n n x x x x x x x x x x x x --?=-?=-?=-?=-, 在每个小区间上任取一点)(1i i i i x x ≤≤-ξξ,作函数值)(i f ξ与小区间长度i x ?的乘积),,2,1()(n i x f i i Λ=?ξ,并作和∑=?n i i i x f 1)(ξ,记 }max {i x ?=λ, ),,2,1(n i Λ=, 当n 无限增大且0→λ时,若上述和式的极限存在,则称函数()y f x =在区间[,]a b 上可积,并将此极限值称为函数()y f x =在[,]a b 上的定积分,记为 ?b a dx x f )(. 即 ∑?=→?=n i i i b a x f dx x f 1 )(lim )(ξλ, 其中x 称为积分变量,()f x 称为被积函数,()f x dx 称为被积表达式, a 称为积分下限,b 称为积分上限,[,]a b 称为积分区间,符号?b a dx x f )(读作函数()f x 从

数学分析9.1定积分概念

数学分析9.1定积分 概念 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

F(x)≈F(ξi ), x ∈[x i-1,x i ], i=1,2,…,n. 于是质点从x i-1位移到x i 时,力F 所作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

最新高中数学选修2-2-定积分的简单应用

[学习目标] 1.理解定积分的几何意义,会通过定积分求由两条或多条曲线围成的图形的面积.2.掌握利用定积分求曲边梯形面积的几种常见题型及方法.3.通过具体实例了解定积分在物理中的应用,会求变速直线运动的路程和变力做功的问题. 知识点一 定积分在求几何图形面积方面的应用 1.求由一条曲线y =f (x )和直线x =a ,x =b (a <b )及y =0所围成的平面图形的面积S . (1)如图①,f (x )>0,??a b f (x )d x >0,所以S =??a b f (x )d x . (2)如图②,f (x )<0,??a b f (x )d x <0,所以S =??????a b f (x )d x =-??a b f (x )d x . (3)如图③,当a ≤x ≤c 时,f (x )≤0,??a c f (x )d x <0;当c ≤x ≤b 时,f (x )≥0,??a b f (x )d x >0.所以 S =???? ? ?a c f (x )d x +??c b f (x )d x =-??a c f (x ) d x +? ?c b f (x )d x . 2.求由两条曲线f (x )和g (x )(f (x )>g (x )),直线x =a ,x =b (a <b )所围成平面图形的面积S . (1)如图④,当f (x )>g (x )≥0时,S =??a b [f (x )-g (x )]d x .

(2)如图⑤,当f (x )>0,g (x )<0时,S =? ?a b f (x )d x +??????a b g (x )d x =??a b [f (x )-g (x )]d x . 3.当g (x )<f (x )≤0时,同理得S =??a b [f (x )-g (x )]d x . 思考 (1)怎样利用定积分求不分割型图形的面积? (2)当f (x )<0时,f (x )与x 轴所围图形的面积怎样表示? 答案 (1)求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来表示面积,然后计算定积分即可. (2)如图,因为曲边梯形上边界函数为g (x )=0,下边界函数为f (x ),所以 S =??a b (0-f (x ))d x =-??a b f (x )d x . 4.利用定积分求平面图形面积的步骤: (1)画出图形:在平面直角坐标系中画出曲线或直线的大致图象; (2)确定图形范围,通过解方程组求出交点的横坐标(或纵坐标),确定积分上、下限; (3)确定被积函数; (4)写出平面图形面积的定积分表达式; (5)利用微积分基本定理计算定积分,求出平面图形的面积,写出答案. 知识点二 定积分在物理中的应用 1.在变速直线运动中求路程、位移 路程是位移的绝对值之和,从时刻t =a 到时刻t =b

相关文档
最新文档