(完整版)高中数学导数与积分知识点

(完整版)高中数学导数与积分知识点
(完整版)高中数学导数与积分知识点

高中数学教案—导数、定积分

一.课标要求:

1.导数及其应用

(1)导数概念及其几何意义

① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;

②通过函数图像直观地理解导数的几何意义。 (2)导数的运算

① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3

,y=1/x ,y=x 的导数;

② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数;

③ 会使用导数公式表。

(3)导数在研究函数中的应用

① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;

② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

(4)生活中的优化问题举例

例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。

(5)定积分与微积分基本定理

① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念;

② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。

(6)数学文化

收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向

导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲

1.导数的概念

函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值

x

y

??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x

y ??=x x f x x f ?-?+)()(00。

如果当0→?x 时,

x

y

??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0

lim →?x x y

??=0

lim →?x x x f x x f ?-?+)()(00。

说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x

y

??不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0);

(2)求平均变化率

x

y ??=x x f x x f ?-?+)

()(00;

(3)取极限,得导数f’(x 0)=x

y

x ??→?0lim 。

2.导数的几何意义

函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0)) 处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f /

(x 0)(x -x 0)。

3.常见函数的导出公式.

(1)0)(='C (C 为常数) (2)1

)(-?='n n

x

n x

(3)x x cos )(sin =' (4)x x sin )(cos -=' 4.两个函数的和、差、积的求导法则

法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'

''v u v u ±=±

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('

''uv v u uv +=

若C 为常数,则'

'

'

'

'

0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)('

'

Cu Cu =

法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,

再除以分母的平方:??

?

??v u ‘=2

''v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|X = y '|U ·u '|X

5.导数的应用

(1)一般地,设函数)(x f y =在某个区间可导,如果'

f )(x 0>,则)(x f 为增函数;如果'

f 0)(

的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;

(3)一般地,在区间[a ,b]上连续的函数f )(x 在[a ,b]上必有最大值与最小值。①求函数?)(x 在(a ,b)内的极值; ②求函数?)(x 在区间端点的值?(a)、?(b); ③将函数? )(x 的各极值与?(a)、?(b)比较,其中最大的是最大值,其中最小的是最小值。

6.定积分 (1)概念

设函数f (x )在区间[a ,b ]上连续,用分点a =x 0

2,…n )作和式I n =∑n

i f

1

=(ξ

i

)△x (其中△x 为小区间长度),把n →∞即△x →0时,和式I n 的极限叫做函数f (x )在区间

[a ,b ]上的定积分,记作:

?

b

a

dx x f )(,即?b

a

dx x f )(=∑=∞

→n

i n f 1

lim (ξi )△x 。

这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式。

基本的积分公式:?dx 0=C ;?

dx x m

111++m x m +C

(m ∈Q , m ≠-1);?x

1

dx =ln x +C ;?dx e x

=x

e +C ;?dx a x

=a

a x

ln +C ;?xdx cos =sin x +C ;?xdx sin =-cos x +C

(表中C 均为常数)。

(2)定积分的性质

①?

?=b

a b

a

dx x f k dx x kf )()((k 为常数);

?

??±=±b

a

b a

b

a

dx x g dx x f dx x g x f )()()()(;

?

??+=b

a

c a

b

c

dx x f dx x f dx x f )()()((其中a <c <b )。

(3)定积分求曲边梯形面积

由三条直线x =a ,x =b (a

=

b

a

dx x f S )(。

如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b (a

S =S 曲边梯形AMNB -S 曲边梯形DMNC =

?

?-b

a

b

a

dx x f dx x f )()(21。

四.典例解析

题型1:导数的概念

例1.已知s=

2

2

1gt ,(1)计算t 从3秒到3.1秒 、3.001秒 、 3.0001秒….各段内平均速度;(2)求t=3秒是瞬时速度。

解析:(1)[]t t ?=-=?,1.031.3,1.3,3指时间改变量; .3059.032

1

1.321)3()1.3(22=-=-=?g g s s s s ?指时间改变量。 059.31

3059

.0==??=

t s v 。 其余各段时间内的平均速度,事先刻在光盘上,待学生回答完第一时间内的平均速度后,

即用多媒体出示,让学生思考在各段时间内的平均速度的变化情况。

(2)从(1)可见某段时间内的平均速度t s ??随t ?变化而变化,t ?越小,t

s

??越接近

于一个定值,由极限定义可知,这个值就是0→?t 时,

t

s

??的极限, V=0

lim

→?x t s

??=0

lim →?

x =?-?+t

s t s )

3()3(0lim

→?x t g t g ?-?+22321)3(21 =

g 21

lim →?x (6+)t ?=3g=29.4(米/秒)。 例2.求函数y=24

x

的导数。

解析:2

222)()

2(44)(4x x x x x x x x x y ?+?+?-=-?+=

?,

22)

(24x x x x

x x y ?+?+?-=??,

∴0

0lim

lim

→?→?=??x x x y

?????

??+?+?-22)(24x x x x x =-3

8

x 。 点评:掌握切的斜率、 瞬时速度,它门都是一种特殊的极限,为学习导数的定义奠定

基础。

题型2:导数的基本运算

例3.(1)求)1

1(3

2

x x x x y ++=的导数; (2)求)11)(

1(-+=x

x y 的导数;

(3)求2

cos 2sin

x

x x y -=的导数; (4)求y=x

x sin 2

的导数;

(5)求y =

x

x x x x 9

532-+-的导数。

解析:(1)23

11x x y +

+=Θ,.233

2

'x x y -=∴ (2)先化简,2

12

1

111-

+-=-+

-?

=

x

x x

x x

x y

∴.1121212123

21

'

??

?

??+-=--=--x x x x y

(3)先使用三角公式进行化简.

x x x x x y sin 2

1

2cos 2sin -=-=

.cos 211)(sin 21sin 21'''

'x x x x x y -=-=??

?

??-=∴

(4)y ’=x x x x x 222sin )'(sin *sin )'(-=x

x

x x x 2

2sin cos sin 2-; (5)Θy =2

33x -x +5-2

19-x

∴y ’=3*(x 23)'-x '+5'-92

1(x )'=3*2321x -1+0-9*(-2

1

)23

-x =

1)1

1(292-+x

x 。 点评:(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这

样可以减少运算量,提高运算速度,减少差错;(2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导.有时可以避免使用商的求导法则,减少运算量。

例4.写出由下列函数复合而成的函数: (1)y=cosu,u=1+2X (2)y=lnu, u=lnx

解析:(1)y=cos(1+2X ); (2)y=ln(lnx)。

点评:通过对y=(3x-22)展开求导及按复合关系求导,直观的得到'x y ='u y .'

x u .给出复合函数的求导法则,并指导学生阅读法则的证明。 题型3:导数的几何意义

例5.(1)若曲线4

y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= (2)过点(-1,0)作抛物线2

1y x x =++的切线,则其中一条切线为( ) (A )220x y ++= (B )330x y -+= (C )10x y ++= (D )10x y -+=

解析:(1)与直线480x y +-=垂直的直线l 为40x y m -+=,即4

y x =在某一点的导数为4,而34y x '=,所以4

y x =在(1,1)处导数为4,此点的切线为430x y --=,故选A ;

(2)21y x '=+,设切点坐标为00(,)x y ,则切线的斜率为201x +,且2

0001y x x =++,于是切线方程为2

00001(21)()y x x x x x ---=+-,因为点(-1,0)在切线上,可解得0

x =0或-4,代入可验正D 正确,选D 。

点评:导数值对应函数在该点处的切线斜率。

例6.(1)半径为r 的圆的面积S(r)=πr 2

,周长C(r)=2πr ,若将r 看作(0,+∞)上

的变量,则(πr 2

)`=2πr ○

1,○1式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数。对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于○1的式子: ○

2;○2式可以用语言叙述为: 。 (2)曲线1y x

=

和2

y x =在它们交点处的两条切线与x 轴所围成的三角形面积是 。

解析:(1)V 球=3

4

3

R π,又32

443

R R ππ'()= 故○2式可填32

443

R R ππ'()=,用语言叙述为“球的体积函数的导数等于球的表面积函数。”;

(2)曲线x

y 1=

和2

x y =在它们的交点坐标是(1,1),两条切线方程分别是y=-x+2

和y=2x -1,它们与x 轴所围成的三角形的面积是

4

3。 点评:导数的运算可以和几何图形的切线、面积联系在一起,对于较复杂问题有很好的效果。

题型4:借助导数处理单调性、极值和最值

例7.(1)对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A .f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) C .f (0)+f (2)≥2f (1) D. f (0)+f (2)>2f (1)

(2)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )

A .1个

B .2个

C .3个

D . 4个 (3)已知函数()11ax

x f x e x

-+=

-。

(Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围。

解析:(1)依题意,当x ≥1时,f '(x )≥0,函数f (x )在(1,+∞)上是增函数;当x <1时,f '(x )≤0,f (x )在(-∞,1)上是减函数,故f (x )当x =1时取得最小值,即有f (0)≥f (1),f (2)≥f (1),故选C ;

(2)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,函数)(x f 在开区间),(b a 内有极小值的点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个,选A 。

(3):(Ⅰ)f(x)的定义域为(-∞,1)∪(1,+∞).对f(x)求导数得 f '(x)= ax 2

+2-a

(1-x)

2 e

-ax

(ⅰ)当a=2时, f '(x)= 2x 2

(1-x)

2 e

-2x

, f '(x)在(-∞,0), (0,1)和(1,+ ∞)均大于0, 所以f(x)在(-∞,1), (1,+∞).为增函数;

(ⅱ)当00, f(x)在(-∞,1), (1,+∞)为增函数.; (ⅲ)当a>2时, 0

a <1, 令f '(x)=0 ,解得x 1= -

a -2

a

, x 2= a -2

a

; 当x 变化时, f '(x)和f(x)的变化情况如下表:

f(x)在(-∞, -a -2

a ), (a -2

a

,1), (1,+∞)为增函数, f(x)在(-a -2

a

,a -2

a

)为减函数。 (Ⅱ)(ⅰ)当0f(0)=1; (ⅱ)当a>2时, 取x 0= 1

2

a -2

a

∈(0,1),则由(Ⅰ)知 f(x 0)

>1且e -ax

≥1,

得:f(x)= 1+x 1-x e -ax ≥1+x

1-x >1. 综上当且仅当a ∈(-∞,2]时,对任意x ∈(0,1)恒有

f(x)>1。

点评:注意求函数的单调性之前,一定要考虑函数的定义域。导函数的正负对应原函数

增减。

例8.(1)3

2

()32f x x x =-+在区间[]1,1-上的最大值是( )

(A)-2 (B)0 (C)2 (D)4

(2)设函数f(x)= 3

2

23(1)1, 1.x a x a --+≥其中(Ⅰ)求f(x)的单调区间;(Ⅱ)讨论f(x)的极值。

解析:(1)2()363(2)f x x x x x '=-=-,令()0f x '=可得x =0或2(2舍去),当-1≤x <0时,()f x '>0,当0

(2)由已知得[]'()6(1)f x x x a =--,令'

()0f x =,解得 120,1x x a ==-。

(Ⅰ)当1a =时,'2

()6f x x =,()f x 在(,)-∞+∞上单调递增;

当1a >时,()'()61f x x x a =--????,'

(),()f x f x 随x 的变化情况如下表:

从上表可知,函数()f x 在(,0)-∞上单调递增;在(0,1)a -上单调递减;在(1,)a -+∞上单调递增。

(Ⅱ)由(Ⅰ)知,当1a =时,函数()f x 没有极值;当1a >时,函数()f x 在0

x =

处取得极大值,在1x a =-处取得极小值3

1(1)a --。

点评:本小题主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。 题型5:导数综合题

例9.设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点

A B 、的坐标分别为

11()x f x (,)、22()x f x (,),该平面上动点P 满足?4PA PB =u u u r u u u r

,点Q 是点P 关于直线2(4)y x =-的对称点.求

(I)求点A B 、的坐标;

(II)求动点Q 的轨迹方程.

解析: (Ⅰ)令033)23()(2

3=+-='++-='x x x x f 解得11-==x x 或;

当1-'x f ,当1>x 时,0)(<'x f 。 所以,函数在1-=x 处取得极小值,在1=x 取得极大值,故

1,121=-=x x ,4)1(,0)1(==-f f 。

所以, 点A 、B 的坐标为)4,1(),0,1(B A -。 (Ⅱ) 设),(n m p ,),(y x Q ,

()()4414,1,122=-+-=--?---=?n n m n m n m , 21-=PQ k ,所以2

1

-=--m x n y 。

又PQ 的中点在)4(2-=x y 上,所以

??

?

??-+=+4222n x m y ,消去n m ,得()()9282

2=++-y x 。

点评:该题是导数与平面向量结合的综合题。

例10.已知函数()sin f x x x =-,数列{n a }满足:1101,(),1,2,3,.n n a a f a n +<<==L 证明:(ⅰ)101n n a a +<<<;(ⅱ)3

116

n n a a +<

。 证明: (I ).先用数学归纳法证明01n a <<,n=1,2,3,… (i).当n=1时,由已知显然结论成立。

(ii).假设当n=k 时结论成立,即01k a <<。

因为0

()1cos 0f x x =->,所以f(x)在(0,1)上是增函数。

又f(x)在[0,1]上连续,从而1(0)()(1),01sin11k k f f a f a +<<<<-<即.故n=k+1时,结论成立。

由(i)、(ii)可知,01n a <<对一切正整数都成立。

又因为01n a <<时,1sin sin 0n n n n n n a a a a a a +-=--=-<,所以1n n a a +<,综上所述

101n n a a +<<<。

(II ).设函数31()sin 6

g x x x x =-+,01x <<,

由(I )知,当01x <<时,sin x x <,

从而222'

22()cos 12sin 2()0.22222

x x x x x g x x =-+

=-+>-+=所以g (x)在(0,1)上是增函数。

又g (x)在[0,1]上连续,且g (0)=0,所以当01x <<时,g (x)>0成立。

于是31()0,sin 06n n n n g a a a a >-+

>即.故311

6

n n a a +<。 点评:该题是数列知识和导数结合到一块。

题型6:导数实际应用题

例11.请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如右图所示)。试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大?

本小题主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。

解析:设OO 1为x m,则由题设可得正六棱锥底面边长为222

3(1)82x x x +-=+-(单位:m )。

于是底面正六边形的面积为(单位:m 2

):

22222333

3(1)6(82)(82)x x x x x +-=+-=+-g

g 。 帐篷的体积为(单位:m 3

):

233313()(82)(1)1(1612)232

V x x x x x x ??=

+--+=+-???? 求导数,得23

()(123)V x x '=

-; 令()0V x '=解得x=-2(不合题意,舍去),x=2。

当1,V(x)为增函数;当2

答:当OO 1为2m 时,帐篷的体积最大。

点评:结合空间几何体的体积求最值,理解导数的工具作用。 例12.已知函数f(x)=x 3+ x 3,数列|x n |(x n >0)的

第一项x n =1,以后各项按如下方式取定:曲线x=f(x)在

))(,(11++n n x f x 处的切线与经过(0,0)和(x n ,f (x n ))

点的直线平行(如图)求证:当n *N ∈时,

(Ⅰ)x ;2312

12+++=+n n n n x x x

(Ⅱ)21)2

1()21(--≤≤n n n x 。

证明:(I )因为'2

()32,f x x x =+所以曲线()y f x =在11(,())n n x f x ++处的切线斜率

1

21132.n n n k x x +++=+ 因为过(0,0)和(,())n n x f x 两点的直线斜率是2

,n n x x +所以221132n n n n x x x x +++=+.

(II )因为函数2

()h x x x =+当0x >时单调递增,而22

1132n n n n x x x x +++=+

21142n n x x ++≤+211(2)2n n x x ++=+,

所以12n n x x +≤,即

11,2n n x x +≥因此1121211

().2

n n n n n n x x x x x x x ----=??????≥ 又因为12212(),n n n n x x x x +++≥+令2

,n n n y x x =+则

11

.2

n n y y +≤ 因为2

1112,y x x =+=所以12111()().22

n n n y y --≤?=

因此2

21

(),2n n n n x x x -≤+≤ 故1211()().22

n n n x --≤≤

点评:本题主要考查函数的导数、数列、不等式等基础知识,以及不等式的证明,同时考查逻辑推理能力。 题型7:定积分

例13.计算下列定积分的值

(1)

?

--3

1

2

)4(dx x x ;(2)?-2

1

5

)1(dx x ;(3)dx x x ?+20

)sin (π

;(4)dx x ?-

22

2cos π

π;

解析:(1)

(2)因为5

6)1(])1(6

1[-='-x x ,所以6

1|)1(61)1(2162

1

5=-=

-?

x dx x ; (3)

(4)

例14.(1)一物体按规律x =bt 3

作直线运动,式中x 为时间t 内通过的距离,媒质的

阻力正比于速度的平方.试求物体由x =0运动到x =a 时,阻力所作的功。

(2)抛物线y=ax 2

+bx 在第一象限内与直线x +y=4相切.此抛物线与x 轴所围成的图形的面积记为S .求使S 达到最大值的a 、b 值,并求S max .

解析:(1)物体的速度233)(bt bt dt

dx

V ='==

。 媒质阻力4

22229)3(t kb bt k kv F zu ===,其中k 为比例常数,k>0。

当x=0时,t=0;当x=a 时,31

1)(b

a

t t ==,

又ds=vdt ,故阻力所作的功为:

32

77130

320

3

2

7

27727)3(1

1

1

b a k t kb dt bt k dt v k dt v kv ds F W t t t zu zu ==

==?==???? (2)依题设可知抛物线为凸形,它与x 轴的交点的横坐标分别为x 1=0,x 2=-b/a ,所以3

20

261)(b a

dx bx ax S a

b =

+=

?

-

(1) 又直线x +y=4与抛物线y=ax 2

+bx 相切,即它们有唯一的公共点,

由方程组??

?+==+bx

ax y y x 2

4

得ax 2

+(b +1)x -4=0,其判别式必须为0,即(b +1)2

+16a=0. 于是,)1(16

1

2+-

=b a 代入(1)式得: )0(,)1(6128)(4

3>+=b b b b S ,5

2)1(3)

3(128)(+-='b b b b S ; 令S'(b)=0;在b >0时得唯一驻点b=3,且当0<b <3时,S'(b)>0;当b >3时,S'(b)<0.故在b=3时,S(b)取得极大值,也是最大值,即a=-1,b=3时,S 取得最大值,且2

9

max =

S 。 点评:应用好定积分处理平面区域内的面积。 五.思维总结

1.本讲内容在高考中以填空题和解答题为主 主要考查:

(1)函数的极限;

(2)导数在研究函数的性质及在解决实际问题中的应用; (3)计算曲边图形的面积和旋转体的体积。

2.考生应立足基础知识和基本方法的复习,以课本题目为主,以熟练技能,巩固概念为目标。

高中数学导数知识点归纳

高中数学选修2----2 知识点 第一章导数及其应用 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数y f ( x) 在x x0处的瞬时变化率是 lim f ( x0x)f ( x ) , x0x 我们称它为函数y f ( x) 在x x0处的导数,记作 f ( x0 ) 或 y |x x, 即 f (x0 ) =lim f ( x0x) f (x0 ) x 0x 2.导数的几何意义:曲线的切线.通过图像 ,我们可以看出当点P n趋近于P时,直线PT与曲线相切。容易 知道,割线 PP n的斜率是k n f ( x n )f ( x ) ,当点 P n趋近于P时,函数y f ( x) 在x x0处的导 x n x0 数就是切线 PT 的斜率 k,即k f (x n ) f ( x0) lim f ( x0 ) x 0x n x0 3.导函数:当 x变化时, f ( x) 便是x的一个函数,我们称它为 f (x) 的导函数.y f ( x) 的导函数有 时也记作 y ,即 f ( x)lim f ( x x) f ( x) x 0x 二 .导数的计算 1)基本初等函数的导数公式: 2若 f ( x)x ,则 f (x)x 1 ; 3若 f ( x)sin x ,则 f(x)cos x 4若 f ( x)cos x ,则 f(x)sin x ; 5若6若f ( x) a x,则 f ( x) a x ln a f ( x)e x,则 f ( x) e x 7若 f ( x)log a x,则f ( x)1 x ln a 8若 f ( x)ln x ,则 f ( x)1 x 2)导数的运算法则 2.[ f (x)g( x)] f ( x)g( x) f ( x) g (x)

最新高中数学导数知识点归纳总结

高中导数知识点归纳 1 一、基本概念 2 1. 导数的定义: 3 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也4 引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 5 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数6 )(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 7 ()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=) ()(lim )(00000 8 2 导数的几何意义:(求函数在某点处的切线方程) 9 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的10 斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为11 ).)((0'0x x x f y y -=- 12 3.基本常见函数的导数: 13 ①0;C '=(C 为常数) ②()1;n n x nx -'= 14 ③(sin )cos x x '=; ④(cos )sin x x '=-; 15 ⑤();x x e e '= ⑥()ln x x a a a '=; 16 ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 17 二、导数的运算 18 1.导数的四则运算: 19

重点高中数学导数知识点归纳总结

高中导数知识点归纳 一、基本概念 1. 导数的定义: 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 ()f x 在点0x 2 函数)(x f y =的切线的斜率, ②()1;n n x nx -'= ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 二、导数的运算 1.导数的四则运算: 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ()()()()f x g x f x g x '''±=±????

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()() f x g x f x g x f x g x ''' ?=+ ?? ?? 常数与函数的积的导数等于常数乘以函数的导数:). ( )) ( (' 'x Cf x Cf=(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: () () ()()()() () () 2 f x f x g x f x g x g x g x ' ??'' - =≠ ?? ?? 。 2.复合函数的导数 形如)] ( [x f y? = 三、导数的应用 1. ) (x f在此区间上为减函数。 恒有'f0 ) (= x,则)(x f为常函数。 2.函数的极点与极值:当函数)(x f在点 x处连续时, ①如果在 x附近的左侧)('x f>0,右侧)('x f<0,那么) (0x f是极大值; ②如果在 x附近的左侧)('x f<0,右侧)('x f>0,那么) (0x f是极小值. 3.函数的最值: 一般地,在区间] , [b a上连续的函数) (x f在] , [b a上必有最大值与最小值。函数) (x f在区间上的最值 ] , [b a值点处取得。 只可能在区间端点及极 求函数) (x f在区间上最值 ] , [b a的一般步骤:①求函数) (x f的导数,令导

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

高中数学 定积分练习与解析1 苏教版选修2-2

定积分 练习与解析1 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内 1.根据定积分的定义,dx x ?2 02=( ) A. n n i n i 112 1???? ??-∑= B. n n i n i n 1 12 1lim ??? ? ??-∑=∞→ C. n n i n i 2 22 1??? ? ??∑= D. n n i n i n 222 1lim ??? ? ??∑=∞→ 解析:由求定积分的四个步骤:分割,近似代替,求和,取极限.可知选项为D 2、?-+22 )cos (sin π πdx x x 的值为( ) A 0 B 4 π C 2 D 4 解析:?-+22 )cos (sin π πdx x x =() 22 sin cos ππ- +-x x ?? ? ?????? ??-+??? ??---??? ??+-2sin 2cos 2sin 2cos ππππ=2, 故选C. 3、直线4-=x y 与抛物线x y 22=所围成的图形面积是( ) A 15 B 16 C 17 D 18 解析:直线4-=x y 与抛物线x y 22=的交点为()().4,8,2,2-结合图像可知面积 ()()[]1812303 1213021248221 4 2 3242=-=?-=---?+= --?y dy y s .此题选取y 为积分变量较容易. 选D. 4.以初速度40m/s 素质向上抛一物体,ts 时刻的速度 21040t v -= ,则此物体达到最高时的高度为( ) A . m 3160 B. m 380 C. m 340 D. m 320 解析:由 2 1040t v -==0,得物体达到最高时 t =2.高度 () ()m t t dt t h 3160310401040203202= ??? ? ? -=-=? 5.一物体在力()5232+-=x x x F (力单位:N ,位移单位:m )作用下沿与()x F 相同的方向由m x 5=直线运动到 m x 10=处作的功是( )

高中数学导数知识点归纳总结

导 数 知识要点 1. 导数(导函数的简称)的定义:即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. Ps :二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f (x )的导数y '=f '(x )仍然是x 的函数,则y '=f '(x )的导数叫做函数y=f (x )的二阶导数。 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. ⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 3. 导数的几何意义: 就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

)0(2''' ≠-= ?? ? ??v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设x x x f 2sin 2)(+ =,x x x g 2 cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导. 5. 复合函数的求导法则:)()())(('''x u f x f x ??=或x u x u y y '''?= 复合函数的求导法则可推广到多个中间变量的情形. 6. 函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法; 如果函数)(x f y =在区间I 恒有)('x f =0,则)(x f y =为常数. 注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件. ②一般地,如果f (x )在某区间有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时, ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.

高考积分,导数知识点精华总结

定积分 一、知识点与方法: 1、定积分的概念 设函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=……把区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上取任一点(1,2,,)i i n ξ=…作和式 1 ()n n i i I f x ξ== ?∑ (其中x ?为小区间长度) ,把n →∞即0x ?→时,和式n I 的极限叫做函数()f x 在区间[,]a b 上的定积分,记作:?b a dx x f )(,即?b a dx x f )(=1 lim ()n i n i f x ξ→∞ =?∑ 。 这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式。 (1)定积分的几何意义:当函数()f x 在区间[,]a b 上恒为正时,定积分()b a f x dx ?的几何意 义是以曲线()y f x =为曲边的曲边梯形的面积。 (2)定积分的性质 ① ??=b a b a dx x f k dx x kf )()((k 为常数);② ???± = ±b a b a b a dx x g dx x f dx x g x f )()()()(; ③???+ = b a c a b c dx x f dx x f dx x f )()()((其中a c b <<)。 2、微积分基本定理 如果()y f x =是区间[,]a b 上的连续函数,并且()()F x f x '=,那么: ()()|()()b b a a f x dx F x F b F a ==-? 3、定积分的简单应用 (1) 定积分在几何中的应用:求曲边梯形的面积由三条直线 ,()x a x b a b ==<,x 轴及一条曲线()(()0)y f x f x =≥围成的 曲边梯的面积? = b a dx x f S )(。 如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b (a

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

定积分知识点总结.doc

定积分知识点总结 北京航空航天大学 李权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性 如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()(

特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下 和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道 i i i M f m ≤≤)(ξ 将这些不等式逐项各乘以i x ?(i x ?是正数)并依i 求其总和,可以得到

高中数学导数知识点归纳

导数及其应用 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是 000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于 P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00 ()() n n n f x f x k x x -= -,当点n P 趋近于 P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有 时也记作y ',即0 ()() ()lim x f x x f x f x x ?→+?-'=? 例一: 若2012)1(/=f ,则x f x f x ?-?+→? )1()1(l i m 0 = ,x f x f x ?--?+→?) 1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 二.导数的计算 1)基本初等函数的导数公式: 2 若()f x x α =,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '=

高中数学导数知识点归纳总结

核心出品 必属精品 免费下载 导 数 考试内容: 导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c 为常数)、y=xn(n ∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. §14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做

)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时, 1-=??x y ,故x y x ??→?0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) )0(2''' ≠-=?? ? ??v v u v vu v u 注:①v u ,必须是可导函数. ②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、 积、商不一定不可导. 例如:设x x x f 2sin 2)(+=,x x x g 2 cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导. 5. 复合函数的求导法则:)()())(('''x u f x f x ??=或x u x u y y '''?= 复合函数的求导法则可推广到多个中间变量的情形.

高中数学人教版选修2-2导数及其应用(定积分)知识点总结

数学选修2-2导数及其应用(定积分)知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高中数学~定积分和微积分基本原理

高中数学~~定积分和微积分基本原理 1、求曲线、直线、坐标轴围成的图形面积 ? [ 高三数学] ? 题型:单选题 由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A. 310 B. 4 C. 3 16 D. 6 问题症结:大概知道解题方向了,但没有解出来,请老师分析 考查知识点: ? 定积分在几何中的应用 ? 用微积分基本定理求定积分值 难度:难 解析过程: 联立方程组,2 ???-==x y x y 得到两曲线的交点坐标为(4,2), 因此曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为: 3 16)]2([4 = --? dx x x . 答案:C 规律方法: 首先求出曲线y=和直线y=x-2的交点,确定出积分区间和被积函数,然后利用导数和积分的关 系求解. 利用定积分知识求解该区域面积是解题的关键. 高二数学问题 ? [ 高一数学] ? 题型:简答题 曲线y=sinx (0≤x ≤π)与直线y=?围成的封闭图形面积是? 问题症结:找不到突破口,请老师帮我理一下思路 考查知识点: ? 用定义求定积分值 难度:中 解析过程:

规律方法: 利用定积分的知识求解。 知识点:定积分和微积分基本原理 概述 所属知识点: [导数及其应用] 包含次级知识点: 定积分的概念、定积分的性质、用定义求定积分值、用微积分基本定理求定积分值、用几何意义求定积分的值、定积分在几何中的应用、定积分在物理中的应用、微积分基本原理的含义、微积分基本原理的应用 知识点总结 本节主要包括定积分的概念、定积分的性质、用定义求定积分值、用微积分基本定理求定积分值、用几何意义求定积分的值、定积分在几何中的应用、定积分在物理中的应用、微积分基本原理的含义、微积分基本原理的应用等知识点。对于定积分和微积分基本原理的理解和掌握一定要通过数形结合理解,不能死记硬背。只有理解了定积分的概念,才能理解定积分的几何意义。

高中数学高考总复习定积分与微积分基本定理习题及详解教学内容

定积分与微积分基本定理习题 一、选择题 1. a =??02x d x ,b =??02e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是( ) A .a

导数及定积分知识点的总结及练习(经典)

导数的应用及定积分 (一)导数及其应用 1.函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx .我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx 。 2.导数的几何意义 函数y =f (x )在x =x 0处的导数,就是曲线y =f (x )在x =x 0处的切线的斜率 ,即k =f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 3.函数的导数 对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数.当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称为导数),即f ′(x )=y ′=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 4.函数y =f(x)在点x 0处的导数f ′(x 0)就是导函数f ′(x)在点x =x 0处的函数值,即f ′(x 0)=f ′(x)|x =x 0。 5.常见函数的导数 (x n )′=__________.(1 x )′=__________.(sin x )′=__________.(cos x )′=__________. (a x )′=__________.(e x )′=__________.(log a x )′=__________.(ln x )′=__________. (1)设函数f (x )、g (x )是可导函数,则: (f (x )±g (x ))′=________________;(f (x )·g (x ))′=_________________. (2)设函数f (x )、g (x )是可导函数,且g (x )≠0,?? ?? f (x ) g (x )′=___________________. (3)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=y u ′·u x ′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 6.函数的单调性 设函数y =f(x)在区间(a ,b)内可导, (1)如果在区间(a ,b)内,f ′(x)>0,则f(x)在此区间单调__________; (2)如果在区间(a ,b)内,f ′(x)<0,则f(x)在此区间内单调__________. (2)如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________,其图象比较__________. 7.函数的极值

高中数学导数知识点归纳.

高中数学选修 2----2知识点第一章导数及其应用 一.导数概念的引入1.导数的物理意义:瞬时速率。一般的,函数()y f x 在0x x 处的瞬时变化率是000()() lim x f x x f x x ,我们称它为函数()y f x 在0x x 处的导数,记作0()f x 或0|x x y ,即0()f x =000()() lim x f x x f x x 2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点 n P 趋近于P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00()()n n n f x f x k x x ,当点n P 趋近于P 时,函数()y f x 在0x x 处的导数就是切线PT 的斜率k ,即0000()()lim () n x n f x f x k f x x x 3.导函数:当x 变化时,()f x 便是x 的一个函数,我们称它为()f x 的导函数. ()y f x 的导函数有时也记作y ,即0()() ()lim x f x x f x f x x 二.导数的计算 1)基本初等函数的导数公式 : 2 若() f x x ,则1()f x x ; 3 若() sin f x x ,则()cos f x x 4 若() cos f x x ,则()sin f x x ; 5 若() x f x a ,则()ln x f x a a 6 若() x f x e ,则()x f x e 7 若() log x a f x ,则1()ln f x x a 8 若()ln f x x ,则1 ()f x x 2)导数的运算法则2. [()()]()()()()f x g x f x g x f x g x

高中数学常见题型解法归纳 求定积分的方法

高中数学常见题型解法归纳 求定积分的方法 【知识要点】 一、曲边梯形的定义 我们把由直线,,0x a x b y ===和曲线()y f x =所围成的图形称为曲边梯形. 二、曲边梯形的面积的求法 分割→近似代替(以直代曲)→求和→取极限 三、定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b a x n -D =),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n x =L ,作和式:1 1 ()()n n n i i i i b a S f x x f n ξ==-= ?=∑∑ 如果x D 无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数 ()f x 在区间[,]a b 上的定积分.记为:()b a S f x dx =?, 其中 ? 是积分号,b 是积分上限,a 是积分下限,()f x 是被积函数,x 是积分变量,[,]a b 是积分区间,()f x dx 是被积式. 说明:(1)定积分 ()b a f x dx ? 是一个常数,可以是正数,也可以是负数,也可以是零,即n S 无限趋 近的常数S (n →+∞时)记为 ()b a f x dx ? ,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③ 求和:1 ()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 四、定积分的性质 根据定积分的定义,不难得出定积分的如下性质: 性质1()()()b b a a kf x dx k f x dx k =??为常数(定积分的线性性质); 性质2 1212[()()]()()b b b a a a f x f x dx f x dx f x dx ±=±? ??(定积分的线性性质);

高中数学导数知识点

导数知识点 考试要求: (1)了解导数概念的某些实际背景 (2)理解导数的几何意义 (3)掌握函数的导数公式 (4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、 极大值、极小值及闭区间上的最大值和最小值. (5)会利用导数求某些简单实际问题的最大值和最小值. 知识要点 1.导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为 ).)((0' 0x x x f y y -=- 2. 导数的四则运算法则: ' ' ' )(v u v u ±=±) (...)()()(...)()(' '2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ' '''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) ) 0(2 ' ' ' ≠-= ?? ? ??v v u v vu v u 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

3.函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导, 如果)('x f >0,则)(x f y =为增函数; 如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法; 如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数. 4. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时, ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0① . 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同). 注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使) (' x f =0,但0 =x 不是极值点. ②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0 =x 是函数的极小值点. 5. 极值与最值区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 6. 几种常见的函数导数: I.0'=C (C 为常数) x x c o s )(s i n ' = 1 ' )(-=n n nx x (R n ∈) x x s i n )(c o s ' -= II. x x 1)(ln ' = e x x a a l o g 1)(l o g ' = x x e e =' )( a a a x x ln )(' =

相关文档
最新文档