全校共206名参加品德与社会考试
初中数学苏科八下第7章测试卷(2)

第7章测试卷(2 )一、选择题1.以下调查方式,你认为最|适宜的是()A.了解漳州市每天的流动人口数,采用抽样调查方式B.了解漳州市百岁以上老人的健康情况,采用抽样调查方式C.了解漳州市中学生课外阅读的情况,采用普查方式D.了解漳州市居民日平均用水量,采用普查方式2.下面调查中,适宜采用全面调查方式的是()A.调查全国中小学生身体素质状况B.调查重庆市冷饮市场某种品牌冰淇淋的质量情况C.调查我校初2021级|某班学生出生日期D.调查我国居民对汽车废气污染环境的看法3.为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼坐上标记,然后放回池塘去,经过一段时间,待有有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现有5条有标记,那么你估计池塘里有多少条鱼()A.500条B.1000条C.1500条D.2000条4.样本7 ,8 ,10 ,14 ,9 ,7 ,12 ,11 ,10 ,8 ,13 ,10 ,8 ,11 ,10 ,9 ,12 ,9 ,13 ,11 ,那么这组样本数据落在8.5~11.5内的频率是()A.0.4B.0.6C.0.5D.0.655.识图:某班学生体重频数分布直方图如下,答复以下问题.该班有多少学生? ()A.40B.56C.381D.不能确定6.某养猪场400头猪质量的频率分布直方图如下图,其中数据不在分点上.由图可知,质量在60.5kg以上的猪的头数为()A.80B.120C.160D.2007.数据:25 ,21 ,23 ,25 ,29 ,27 ,28 ,25 ,27 ,30 ,22 ,26 ,25 ,24 ,26 ,28 ,26 ,25 ,24 ,27.在列频数分布表时,如果取组距为2 ,那么落在24.5~26.5这一组的频率是() A.0.6B.0.5C.0.4D.0.368.将抽查的样本编成组号为①﹣⑧的8个组,如下表:那么抽查的总数和A的值为分别是()A.100 ,0.14B.100 ,0.15C.168 ,0.14D.168 ,0.159.对某市常住人口的学历状况随机调查了8000人,调查结果制做如图的扇形统计图(不完整).那么根据调查结果可以估计该市400万人口中高中学历的人数约是()A.1.2万B.160万C.80万D.40万10.如图,是某校三年级|学生人数分布扇形图,九年级|学生人数为200人,据此可以判断()A.该校三年级|共有学生800人B.该校七年级|有学生280人C.该校八年级|有学生75人D.该校八年级|学生人数所占扇形的圆心角的度数为90°11.在春节期间,小明对自己家7天的家庭开支情况进行了统计,各类支出如下图,用于食物费用为800元,那么本月用于教育的费用为()A.240元B.480元C.300元D.2000元12.2021年南京市有47857名初中毕业生参加升学考试,为了了解这47857名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.47857名考生B.抽取的2000名考生C.47857名考生的数学成绩D.抽取的2000名考生的数学成绩13.2021年唐山市共有中|考生54988人,从中抽取2000名考生的数学成绩进行分析,在这个问题中样本是指()A.2000B.2000名考生C.54988名考生的数学成绩D.2000名考生的数学成绩14.下面是四位同学对他们学习小组将要共同进行的一次统计活动分别设计的活动程序,其中正确的选项是()A.B.C.D.15.用下面的方式获取的数据可信度比拟低的是()A.社会上的传闻B.从<中|国青年报>上摘录的C.看电视新闻得到的D.小组实地考察或测量得到的二、填空题16.为了解某市七年级|学生的身体素质情况,随机抽取了1000名七年级|学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级|学生,身体素质达标的大约有人.17.下面是甲、乙两城市月降水量统计表(单位:mm )现要根据上面的统计表,制作一副适当的统计图表示两个城市的降水量的变化,应选择统计图.18.为了解社区居民的用水情况,小江调查了120户居民,发现人均日用水量在根本标准量(50升)范围内的频率是75% ,那么他所调查的居民超出了标准量的有户.19.体育老师对九年级|(1)班学生"你最|喜欢的体育工程是什么(只写一项)〞的问题进行了调查,把所得数据绘制成频数分布直方图(如图).由图可知,最|喜欢篮球的频率是.20.某学校为鼓励学生课外阅读,制定了"阅读奖励方案〞.方案公布后,随机征求了100名学生的意见,并对持"赞成〞、"反对〞、"弃权〞三种意见的人数进行统计,绘制成如下图的扇形图.那么在这次调查的100名学生中,赞成该方案的学生有人.三、解答题21.为了解全校学生的平均身高,小明调查了座位在自己旁边的3名同学,把他们身高的平均值作为全校学生平均身高的估计.(1)小明的调查是抽样调查吗?(2)如果是抽样调查,指出调查的总体、个体、样本和样本容量.(3)这个调查的结果能较好地反映总体的情况吗?如果不能,请说明理由.22.评价组对某区九年级|教师的试卷讲评课的学生参与度进行评价调查,其评价工程为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了假设干名同学的参与情况,绘制成如下图的扇形统计图和条形统计图(均不完整) ,请根据图中所给信息解答以下问题:(1)在这次评价中,一共抽查了名同学;(2)请将条形统计图补充完整;(3)如果全区有6000名九年级|学生,那么在试卷评讲课中, "独立思考〞的约有多少人?(4)根据统计反映的情况,请你对该区的九年级|同学提出一条对待试卷讲评课的建议.23.为迎接2021年贵阳市初中毕业生学业体育考试,某校进行了九年级|学生学业考试体育模拟考试.为了解本次模拟考试的成绩(分数为整数)情况,现从中随机抽取局部学生的体育成绩分为五个等级| ,其中A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分.根据所分等级|情况制作了如下两个不完整的统计图表:学业模拟专试体育成绩(分数段)根据图表提供的信息,答复以下问题:(1)在统计表中,m的值为,n的值为;(2)将统计图补充完整;(3)如果把成绩在30分以上(含30分)定为合格,那么估计该校今年1600名九年级|学生中体育成绩为合格的学生人数约有多少人?24.父母恩情似海深,人生莫忘父母恩,乐陵市教育局为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它) ,在全市范围内随机抽取了假设干名中小学生进行调查,得到如图表(局部信息未给出):根据以上信息解答以下问题:学生孝敬父母情况统计表:(1)这次被调查的学生有多少人?(2)求表中m ,n ,p的值,并补全条形统计图.(3)假设乐陵市约有64000名中小学生,估计全市全体学生中选择B选项的有多少人?25.收集某校七年级|(1)班学生身高数据(单位:cm ) ,制作以下频数分布表:(1)组距是多少?组数是多少?(2)现要从该班选择身高为159cm以上的30名学生,应在哪些范围的学生中选择?26.某市为了解初中生体重的情况,抽样调查了500名初中生的体重,结合体检标准的四个等级|:A (偏瘦) ,B (正常) ,C (超重) ,D (肥胖) ,对测试结果进行整理,并将测试结果绘成了如图表两幅不完整的统计图表.(1)请补全频数分布表和扇形统计图;(2)假设该市有5000名初中生,根据测试情况,你估计体重为D (肥胖)的学生有多少名?答案1.以下调查方式,你认为最|适宜的是()A.了解漳州市每天的流动人口数,采用抽样调查方式B.了解漳州市百岁以上老人的健康情况,采用抽样调查方式C.了解漳州市中学生课外阅读的情况,采用普查方式D.了解漳州市居民日平均用水量,采用普查方式【考点】【专题】选择题【难度】易【分析】由普查得到的调查结果比拟准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比拟近似.【解答】解:A、解漳州市每天的流动人口数,采用抽样调查方式,故本项正确;B、了解漳州市百岁以上老人的健康情况,是精确度要求高的调查,适于全面调查,故本选项错误;C、了解漳州市中学生课外阅读的情况,采用普查方式所费人力、物力和时间较多,适合抽样调查,故本项错误;D、了解漳州市居民日平均用水量,采用普查方式所费人力、物力和时间较多,适合抽样调查,故本项错误.应选:A.【点评】此题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.下面调查中,适宜采用全面调查方式的是()A.调查全国中小学生身体素质状况B.调查重庆市冷饮市场某种品牌冰淇淋的质量情况C.调查我校初2021级|某班学生出生日期D.调查我国居民对汽车废气污染环境的看法【考点】【专题】选择题【难度】易【分析】由普查得到的调查结果比拟准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比拟近似.【解答】解:A、调查全国中小学生身体素质状况,费人力、物力和时间较多,适合抽样调查,故A错误;B、调查重庆市冷饮市场某种品牌冰淇淋的质量情况,具有破坏性,适合抽样调查,故B错误;C、调查我校初2021级|某班学生出生日期调查范围小,适合普查,故C正确;D、调查我国居民对汽车废气污染环境的看法,费人力、物力和时间较多,适合抽样调查,故D错误;应选:C.【点评】此题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼坐上标记,然后放回池塘去,经过一段时间,待有有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现有5条有标记,那么你估计池塘里有多少条鱼()A.500条B.1000条C.1500条D.2000条【考点】【专题】选择题【难度】易【分析】在样本中"捕捞100条鱼,发现其中5条有标记〞,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【解答】解:设湖中有x条鱼,那么100:5 =x:100 ,解得x =2000 (条).应选:D.【点评】此题考查的是通过样本去估计总体,只需将样本"成比例地放大〞为总体即可.4.样本7 ,8 ,10 ,14 ,9 ,7 ,12 ,11 ,10 ,8 ,13 ,10 ,8 ,11 ,10 ,9 ,12 ,9 ,13 ,11 ,那么这组样本数据落在8.5~11.5内的频率是()A.0.4B.0.6C.0.5D.0.65【考点】【专题】选择题【难度】易【分析】根据频率的意义:每组的频率=小组的频数÷样本容量计算.【解答】解:这组样本数据落在8.5~11.5内的频数是10 ,样本容量为20 ,所以其频率为10:20 =0.5.应选C.【点评】此题考查频率的意义与计算方法.5.识图:某班学生体重频数分布直方图如下,答复以下问题.该班有多少学生? ()A.40B.56C.381D.不能确定【考点】【专题】选择题【难度】易【分析】根据学生体重频数分布直方图即可得出每组人数,将各组人数相加进而求出全班人数.【解答】解:∵39.5﹣44.5的人数为:3人,44.5.5﹣49.5的人数为:8人,49.5.5﹣54.5的人数为:13人,54.5.5﹣59.5的人数为:9人,59.5.5﹣64.5的人数为:5人,64.5.5﹣69.5的人数为:2人,∴该班有学生:3 +8 +13 +9 +5 +2 =40 (人) ,应选:A.【点评】此题主要考查了利用条形统计图求样本总数,利用条形图获取正确的信息,得出各组人数是解题关键.6.某养猪场400头猪质量的频率分布直方图如下图,其中数据不在分点上.由图可知,质量在60.5kg以上的猪的头数为()A.80B.120C.160D.200【考点】【专题】选择题【难度】易【分析】此题求质量在60.5kg以上的猪的头数,实际上是求频数,根据频率的计算公式计算可得答案.【解答】解:400×(0.2 +0.1 ) ,=400×0.3 ,=120.应选B.【点评】此题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.数据:25 ,21 ,23 ,25 ,29 ,27 ,28 ,25 ,27 ,30 ,22 ,26 ,25 ,24 ,26 ,28 ,26 ,25 ,24 ,27.在列频数分布表时,如果取组距为2 ,那么落在24.5~26.5这一组的频率是() A.0.6B.0.5C.0.4D.0.36【考点】【专题】选择题【难度】易【分析】找到属于24.5~26.5这个范围的数,数一下有几个,然后除以总数据个数,就是这一组的频率.【解答】解:25 ,25 ,25 ,26 ,25 ,26 ,26 ,25共有8个数据位于这20个数里.所以频率为:=0.4.应选C.【点评】此题考查频率的概念,频率=,关键是准确找到这组数据里面的频数和总数.8.将抽查的样本编成组号为①﹣⑧的8个组,如下表:那么抽查的总数和A的值为分别是()A.100 ,0.14B.100 ,0.15C.168 ,0.14D.168 ,0.15【考点】【专题】选择题【难度】易【分析】总数=频数÷频率,A等于总体1减去其他七组的频率,这样就可求出解.【解答】解:14÷0.14 =100 ,1﹣0.14﹣11÷100﹣0.12﹣13÷100﹣0.13﹣12÷100﹣10÷100 =0.15 ,应选B.【点评】此题考查频率表,关键知道总数=频数÷频率,且总体为1.9.对某市常住人口的学历状况随机调查了8000人,调查结果制做如图的扇形统计图(不完整).那么根据调查结果可以估计该市400万人口中高中学历的人数约是()A.1.2万B.160万C.80万D.40万【考点】【专题】选择题【难度】易【分析】根据扇形统计图先求出高中学历的人数所占的百分比,再乘以总人数,即可得出该市高中学历的人数.【解答】解:根据扇形统计图可得:该市高中学历的人数所占的百分比是:1﹣3%﹣32%﹣38%﹣17% =10% ,那么该市400万人口中高中学历的人数约是:400万×10% =40万.应选D.【点评】此题考查扇形统计图及相关计算.读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映局部占总体的百分比大小.10.如图,是某校三年级|学生人数分布扇形图,九年级|学生人数为200人,据此可以判断()A.该校三年级|共有学生800人B.该校七年级|有学生280人C.该校八年级|有学生75人D.该校八年级|学生人数所占扇形的圆心角的度数为90°【考点】【专题】选择题【难度】易【分析】利用扇形图中九年级|学生人数所占扇形统计图的百分比,进而求出三个年级|的总人数,再根据图求出八年级|学生人数所占扇形统计图的百分比为25% ,又知整个扇形统计图的圆心角为360度,再由360乘以25%即可得到答案.【解答】解:由图可知九年级|学生人数所占扇形统计图的百分比为:40% ,再由九年级|学生人数为200人,得出三个年级|学生人数为:200÷40% =500 (人) ,故A选项错误;根据七年级|学生人数所占扇形统计图的百分比为:35% ,故该校七年级|有学生:500×35% =175 (人) ,故B选项错误;由图可知八年级|学生人数所占扇形统计图的百分比为:1﹣35%﹣40% =25% ,故该校八年级|有学生:500×25% =125 (人) ,故C选项错误;该校八年级|学生人数所占扇形的圆心角的度数为:360°×25% =90° ,故D选项正确;应选:D.【点评】此题考查了扇形统计图的知识,从扇形图上可以清楚地看出各局部数量和总数量之间的关系,读懂图是解题的关键.11.在春节期间,小明对自己家7天的家庭开支情况进行了统计,各类支出如下图,用于食物费用为800元,那么本月用于教育的费用为()A.240元B.480元C.300元D.2000元【考点】【专题】选择题【难度】易【分析】因为用于食物的支出是800元,所占百分比为40% ,那么可求出小明家本月的总开支,再乘以教育支出所占百分比即可求得结果.【解答】解:总支出为800÷40% =2000元,∴教育支出为2000×24% =480元,应选B.【点评】此题考查扇形统计图及相关计算.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.12.2021年南京市有47857名初中毕业生参加升学考试,为了了解这47857名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.47857名考生B.抽取的2000名考生C.47857名考生的数学成绩D.抽取的2000名考生的数学成绩【考点】【专题】选择题【难度】易【分析】根据样本的定义:从总体中取出的一局部个体叫做这个总体的一个样本进行解答即可.【解答】解:这个问题中样本是所抽取的2000名考生的数学成绩,应选D.【点评】此题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一局部个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量.13.2021年唐山市共有中|考生54988人,从中抽取2000名考生的数学成绩进行分析,在这个问题中样本是指()A.2000B.2000名考生C.54988名考生的数学成绩D.2000名考生的数学成绩【考点】【专题】选择题【难度】易【分析】根据样本的定义:从总体中取出的一局部个体叫做这个总体的一个样本解答.【解答】解:∵从54988考生中抽取2000名考生的数学成绩进行分析,∴这个问题中样本是2000名考生的数学成绩.应选D.【点评】此题是总体、个体、样本、样本容量,熟记样本的定义是解题的关键.14.下面是四位同学对他们学习小组将要共同进行的一次统计活动分别设计的活动程序,其中正确的选项是()A.B.C.D.【考点】【专题】选择题【难度】易【分析】根据统计调查的步骤即可设计成C的方案.数据处理应该是属于整理数据,数据表示应该属于描述数据.【解答】解:统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据应选:C.【点评】掌握统计调查的一般步骤.15.用下面的方式获取的数据可信度比拟低的是()A.社会上的传闻B.从<中|国青年报>上摘录的C.看电视新闻得到的D.小组实地考察或测量得到的【考点】【专题】选择题【难度】易【分析】根据实际问题逐项判断即可得到答案.【解答】解:A、社会上的传闻很多是人们道听途说的,可信度比拟低;B、从报纸上摘录的信息,因为中|国青年报是国|家正规报纸,所以可信度很高;C、电视上的新闻报道的大都是事实事件,所以可信度很高;D、小组实地考察或测量得到的可信度很高.应选A.【点评】此题考查了调查收集数据的过程与方法,通过此题也使学生了解了获得信息的方式方法.16.为了解某市七年级|学生的身体素质情况,随机抽取了1000名七年级|学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级|学生,身体素质达标的大约有人.【考点】【专题】填空题【难度】中【分析】根据题意计算出身体素质达标的人数所占百分比,然后再计算出该市12万名七年级|学生身体素质达标的人数.【解答】解:120000×=114000 ,故答案为:114000.【点评】此题主要考查了利用样本估计总体,关键是掌握用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.17.下面是甲、乙两城市月降水量统计表(单位:mm )现要根据上面的统计表,制作一副适当的统计图表示两个城市的降水量的变化,应选择统计图.【考点】【专题】填空题【难度】中【分析】根据统计图的特点进行分析可得:扇形统计图表示的是局部在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个工程的具体数目.【解答】解:现要根据上面的统计表,制作一副适当的统计图表示两个城市的降水量的变化,应选择折线统计图,故答案为:折线.【点评】此题考查了统计图的选择,利用扇形统计图、折线统计图、条形统计图各自的特点来判断是解题关键.18.为了解社区居民的用水情况,小江调查了120户居民,发现人均日用水量在根本标准量(50升)范围内的频率是75% ,那么他所调查的居民超出了标准量的有户.【考点】【专题】填空题【难度】中【分析】根据频数=频率×总数,即可求得.【解答】解:人均日用水量在根本标准量(50升)范围内的频率是75% ,那么超出了标准量的频率是1﹣75% ,因而超出了标准量的户数是:120×(1﹣75% ) =30 (户) ,故答案为:30.【点评】此题主要考查频数与频率,熟知频率之和为1且频数=频率×总数是关键.19.体育老师对九年级|(1)班学生"你最|喜欢的体育工程是什么(只写一项)〞的问题进行了调查,把所得数据绘制成频数分布直方图(如图).由图可知,最|喜欢篮球的频率是.【考点】【专题】填空题【难度】中【分析】由频数之和等于数据总数计算出学生总数,再由频率=计算最|喜欢篮球的频率.【解答】解:读图可知:共有(4 +12 +6 +20 +8 ) =50人,最|喜欢篮球的频数为20 ,是最|喜欢篮球的频率是=0.4.故此题答案为:0.4.【点评】此题考查频率、频数的关系频率=.20.某学校为鼓励学生课外阅读,制定了"阅读奖励方案〞.方案公布后,随机征求了100名学生的意见,并对持"赞成〞、"反对〞、"弃权〞三种意见的人数进行统计,绘制成如下图的扇形图.那么在这次调查的100名学生中,赞成该方案的学生有人.【考点】【专题】填空题【难度】中【分析】首|先求得赞成方案的所占百分比,然后用总人数乘以这个百分比即可.【解答】解:由扇形统计图可知赞成的百分比为:1﹣20%﹣10% =70% ,那么100名学生中赞成该方案的学生约有100×70% =70人.故答案为:70.【点评】此题考查的是扇形统计图的运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映局部占总体的百分比大小.21.为了解全校学生的平均身高,小明调查了座位在自己旁边的3名同学,把他们身高的平均值作为全校学生平均身高的估计.(1)小明的调查是抽样调查吗?(2)如果是抽样调查,指出调查的总体、个体、样本和样本容量.(3)这个调查的结果能较好地反映总体的情况吗?如果不能,请说明理由.【考点】【专题】解答题【难度】难【分析】(1)根据调查的人数与调查的总体进行比拟即可得到答案;(2)总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一局部个体,而样本容量那么是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首|先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一局部对象找出样本,最|后再根据样本确定出样本容量.(3)从调查的人数占上进行说明即可.【解答】解:(1)小明的调查是抽样调查;(2)调查的总体是全校同学的身高;个体是每个同学的身高;样本是从中抽取的3名同学的身高;样本容量是3.(3)这个调查的结果不能较好的反映总体的情况,因为抽样太片面.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.22.评价组对某区九年级|教师的试卷讲评课的学生参与度进行评价调查,其评价工程为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了假设干名同学的参与情况,绘制成如下图的扇形统计图和条形统计图(均不完整) ,请根据图中所给信息解答以下问题:(1)在这次评价中,一共抽查了名同学;(2)请将条形统计图补充完整;(3)如果全区有6000名九年级|学生,那么在试卷评讲课中, "独立思考〞的约有多少人?(4)根据统计反映的情况,请你对该区的九年级|同学提出一条对待试卷讲评课的建议.【考点】【专题】解答题【难度】难【分析】(1)根据专注听讲的人数是224人,所占的比例是40% ,即可求得抽查的总人数;(2)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(3)利用6000乘以对应的比例即可;(4)从有效提高学习效率方面提出意见或建议.【解答】解:(1)调查的总人数是:224÷40% =560 (人) ,故答案是:560;(2) "讲解题目〞的人数是:560﹣84﹣168﹣224 =84 (人).。
第六章《数据与统计图表》各节知识点及典型例题专题讲义

2015最新版第六章《数据与统计图表》各节知识点及典型例题专题讲义第一节、数据的收集与整理第二节、条形统计图和折线统计图第三节、扇形统计图第四节、频数与频率第五节、频数直方图章节知识框图【课本相关知识点】1、数据收集可以通过直接观察、测量、实验和调查等手段得到,也可以通过查阅文献资料、使用互联网查询等间接途径得到2、将数据分类、排序是整理数据的常用方法;当然分组、编码也是整理数据的常用方法。
3、人们根据研究自然现象或社会现象的需要,对所有的考察对象作调查,这种调查叫做全面调查。
4、抽样调查:人们在研究自然现象或社会现象时,往往会遇到不方便、不可能或不必要对所有的对象进行调查,而是从所有对象中抽取一部分作调查分析,这就是抽样调查。
特别注意:①抽样调查要具有广泛性(要具有相当的样本容量)和代表性(各个阶层或类型对象都要具有),即样本容量要恰当,因此对象不宜太少;②调查对象应随意抽取,即每个个体被选中的机会都相等。
5、在统计中,我们把所要考察的对象的全体叫做总体,把组成总体的每一个考察对象叫做个体。
从总体中取出的一部分个体叫做这个总体的一个样本,样本中个体的数目叫做样本的容量。
样本的容量是不带单位的。
6、对数据收集和整理后,就可以制作统计表。
一个完整的统计表不能缺少标题(统计表的名称)、标目、数据(有单位要注明单位)以及制表日期【典型例题】【题型一】数据的收集方法例1、如果就下列情况进行统计,你准备采用哪种方式来收集数据?填在后面的横线上(1 )学校足球队队员的身高______________(2)每年到杭州西湖观光旅游的人数 _____________(3)A、B、C三种品牌电池的使用寿命 _____________(4)明天7时〜8时进入易初莲花超市的人数 ______________________【题型二】根据实际情况对数据进行整理例2、某乡镇企业生产部门有技术工人10人,生产部为了合理制定每月的生产定额,统计了这10人某月的加工零件个数如下:40, 80, 50, 75, 50, 70, 50, 40, 35, 50(1)为了使这组数据更为直观,你将怎样处理这组数据?(2 )若生产定额能够使大多数人都能完成即为合理的生产定额,假如你是生产部负责人,你认为每月的生产定额应定为多少比较合理?练习、(2011?南昌)以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25000所,其中小学12500 所,初中2000所,髙中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200 万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1 )整理数据:请设计一个统计表,将以上数据填入表格中.(2 )分析整理后的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?(师生比在校学生数)=在职教师: 【题型三】利用数据的收集与整理知识解决实际问题例3、 (2003?安徽)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基(1 )该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平•问风景区是怎样计算的?(2 )另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4% •问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?【题型四】样本的选择例4、下列抽样调查中所选的样本合适吗?(1)张老师为了解全班50名学生对英语单词的掌握情况,抽查了5名学生进行检查(2)为了解我国中学多媒体的普及情况,在北京市做了抽样调查练习、某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样比较合理的是( )A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况【题型五】总体、个体、样本及样本容量的区别例5、我市去年参加某次数学考试的人数为45368人,为了了解考生数学成绩情况,从中抽取了500名考生的数学成绩进行统计分析。
难点详解沪科版八年级数学下册第20章数据的初步分析同步测评试题(含解析)

八年级数学下册第20章数据的初步分析同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙、丙、丁四名同学进行立定跳远测试,每人10次立定跳远成绩的平均数都是2.25米,方差分别是20.72S =甲,20.75S =乙,20.68S =丙,20.61S =丁,则这四名同学立定跳远成绩最稳定的是( ).A .甲B .乙C .丙D .丁2、数据2,5,5,7,x ,3的平均数是4,则中位数是( )A .6B .5C .4.5D .43、在爱心一日捐活动中,我校初三部50名教师参与献爱心,以下是捐款统计表,则该校初三教师捐款金额的中位数,众数分别是( )A .100,100B .100,150C .150,100D .150,1504、某公司欲招收职员一名,从学历、经验和工作态度三个方面对甲、乙、丙、丁四名应聘者进行了初步测试,测试成绩如表:如果将学历、经验和工作态度三项得分依次按30%,30%,40%的比例确定各人的最终得分,那么最终得分最高的是()A.甲B.乙C.丙D.丁5、下列说法中正确的是()A.样本7,7,6,5,4的众数是2B.样本2,2,3,4,5,6的中位数是4C.样本39,41,45,45不存在众数D.5,4,5,7,5的众数和中位数相等6、甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,四人的方差分别是S甲2=0.63,S乙2=2.56,S丙2=0.49,S丁2=0.46,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁7、水果店内的5个苹果,其质量(单位:g)分别是:200,300,200,240,260关于这组数据,下列说法正确的是()A.平均数是240 B.中位数是200C.众数是300 D.以上三个选项均不正确8、小颖同学参加学校举办的“抗击疫情,你我同行”主题演讲比赛,她的演讲内容、语言表达和形象风度三项得分分别为86分、90分、80分,若这三项依次按照50%,40%,10%的百分比确定成绩,则她的成绩为()A .84分B .85分C .86分D .87分9、小明在七年级第二学期的数学成绩如下表.如果按如图所示的权重计算总评得分,那么小明该学期的总评得分为( )A .86分B .87分C .88分D .89分10、某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为2206S =甲,2198S =乙,2156S =丙,则成绩波动最小的班级( )A .甲B .乙C .丙D .无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据:2,5,7,3,5的众数是________.2、对于两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的______,方差则反映一组数据在平均数左右的______,因此从平均数看或从方差看,各有长处.3、某农科所通过大量重复的实验,发现某种子发芽的频率在0.85附近波动,现有1000kg 种子中发芽的大约有_______kg .4、已知一组数据:7、a 、6、5、5、7的众数为7,则这组数据的中位数是_________.5、小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是20.6S =小刘,2 1.4S =小李,那么两人中射击成绩比较稳定的是_________.三、解答题(5小题,每小题10分,共计50分)1、甲、乙、丙三名候选人要参加学校学生会干部竞选,按程序分别进行答辩、笔试和民主投票.答辩、笔试成绩如下表所示,学生民主投票每张选票只限填写甲、乙、丙中的一人,且每张选票记1分.统计得票后,绘出如下所示不完整的统计图.答辩、笔试成绩统计表根据以上信息,请解答下列问题.(1)参加投票的共有________人,乙的得票率是________.(2)补全条形统计图.(3)学校将答辩、笔试和学生投票三项得分按4:4:2的比例确定每位候选人的总成绩,总成绩最高者当选,试通过计算说明哪位候选人当选.2、抗美援朝战争是新中国的立国之战,中国人民志愿军打破了美军不可战胜的神话.电影《长津湖》将这一段波澜壮阔的历史重新带进了人们的视野,并一举拿下了国庆档的票房冠军,激发了大家的爱国热情.因此,某校开展了抗美援朝专题知识竞赛,所有同学得分都不低于80分,现从该校八、九年级中各抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x(分)表示,共分成四个等级,A:80≤x<85;B:85≤x<90;C:90≤x<95;D:95≤x<100),下面给出了部分信息:八年级抽取的学生C等级的成绩为:92,92,93,94九年级抽取的学生D等级的成绩为:95,95,95,97,100八,九年级抽取的学生竞赛成绩统计表:请根据相关信息,回答以下问题:(1)填空:a=,b=,并补全九年级抽取的学生竞赛成绩条形统计图;(2)根据以上数据,请判断哪个年级的同学竞赛成绩更好,并说明理由(一条即可);(3)规定成绩在95分以上(含95分)的同学被评为优秀,已知该校八年级共有1200人参加知识竞赛,请计算该校八年级约有多少名同学被评为优秀?3、某校开展了以“不忘初心,奋斗新时代”为主题的读书活动,校德育处对本校八年级学生九月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了抽样调查,随机抽取八年级部分学生,对他们的“读书量”(单位:本)进行了统计,并将统计结果绘制成了如下统计图:(1)本次所抽取学生九月份“读书量”的众数为______本,中位数为______本;(2)求本次所抽取学生九月份“读书量”的平均数.4、“网上购物”已成为现代人们的生活方式.某电商平台在A地区随机抽取了100位居民进行调查,获得了他们每个人近七天“网上购物”消费总金额(单位:元),整理得到右边频率统计表:(1)求被调查居民“网上购物”消费总金额不低于500元的频率;x=)为准,求该(2)假设同一组中的数据用该组数据所在范围的组中值(如100200≤<一组,取150x地区消费总金额的平均值;(3)若A地区有100万居民,该平台为了促销,拟对消费总金额不到200元的居民提供每人10元的优惠,试估计该平台在A地区拟提供的优惠总金额.5、12月,我校初2022届学生进行了一次体育机器模拟测试(包含跳绳、立定跳远、实心球三项,共计满分50分).测试完成后,为了解初2022届学生的体育训练情况,在初2022届的学生中随机抽取了20名男生,20名女生的本次体育机考的测试成绩,对数据进行整理分析,并给出了下列信息:20名女生的测试成绩统计如下:44,47,48,45,50,49,45,60,48,49,50,50,44,50,43,50,44,50,49,45.抽取的20名男生的测试成绩扇形统计图如下:其中,抽取的20名男生的测试成绩中,D组的成绩如下:47,48,48,47,48,48.抽取男生与女生的学生的测试成绩的平均数、中位数、众数如下表所示:a______,b=______,c=______;(1)根据以上信息可以求出:=(2)结合以上的数据分析,针对本次的体育测试成绩中,你认为此次的体育测试成绩男生与女生谁更好?请说明理由(理由写出一条即可);(3)若初2022届学生中男生有700人,女生有900人,(规定49分及以上为优秀)请估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数.-参考答案-一、单选题1、D【分析】平均数相同,方差值越小越稳定,比较四名同学方差值的大小即可.【详解】解:∵2222S S S S >>>乙甲丁丙∴丁同学的成绩最稳定故选D .【点睛】本题考查了方差.解题的关键在于理解方差值越小的数据越稳定.2、D【分析】先计算出x 的值,再根据中位数的定义解答.【详解】解:∵2,5,5,7,x ,3的平均数是4,∴2557346x +++++=⨯,∴x =2,数据有小到大排列为2,2,3,5,5,7,∴中位数是3542+=,故选:D.【点睛】此题考查已知平均数求某一数据,求中位数,根据平均数的公式求出未知数的值是解题的关键.3、C【分析】根据中位数和众数的定义:一组数据中,出现次数最多的数就叫这组数据的众数。
中考数学专项复习(频数分布直方图(2))练习 试题

币仍仅州斤爪反市希望学校频数分布直方图〔02〕一、填空题1.八年级〔1〕班全体学生参加了举办的平安知识竞赛,如图是该班学生竞赛成绩的频数分布直方图〔总分值为100分,成绩均为整数〕,假设将成绩不低于90分的评为优秀,那么该班这次成绩到达优秀的人数占全班人数的百分比是.二、解答题2.小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息答复以下问题:〔1〕求m的值;〔2〕从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.3.为了进一步了解某校九年级学生的身体素质,体育老师从该年级各班中随机抽取50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出如图表.表:组别次数x 频数频率第1组80≤x<100 4 0.08第2组100≤x<120 6 0.12第3组120≤x<140 18 0.36第4组140≤x<160 a b第5组160≤x<180 10 0.2合计﹣﹣50 1〔1〕求表中a和b的值:a= ;b= .〔2〕请将频数分布直方图补充完整:〔3〕假设在1分钟内跳绳次数大于等于120次认定为合格,那么从全年级任意抽测一位同学为合格的概率是多少?〔4〕今年该校九年级有320名学生,请你估算九年级跳绳工程不合格的学生约有多少人?4.某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量〔单位:吨〕,并将调查数据进行如下整理:4.0 4.0 7.0频数分布表分组划记频数2.0<x≤正正11<x≤5.0 195.0<x≤<x≤8.08.0<x≤合计2 50〔1〕把上面频数分布表和频数分布直方图补充完整;〔2〕从直方图中你能得到什么信息?〔写出两条即可〕;〔3〕为了鼓励节约用水,要确定一个用水量的HY,超出这个HY的局部按倍价格收费,假设要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?5.某班在一次班会课上,就“遇见路人摔倒后如何处理〞的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图.组别 A B C D处理方式迅速离开马上救助视情况而定只看热闹人数m 30 n 5请根据表图所提供的信息答复以下问题:〔1〕统计表中的m= ,n= ;〔2〕补全频数分布直方图;〔3〕假设该校有2000名学生,请据此估计该校学生采取“马上救助〞方式的学生有多少人?分组频数频率50.5~60.5 4 0.0860.5~70.5 14 0.2870.5~80.5 1680.5~90.590.5~100.5 10 0.20合计 1.00〔1〕填写频率分布表中的空格,并补全频率分布直方图;〔2〕假设成绩在70分以上〔不含70分〕为心理健康状况良好,同时,假设心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否那么就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.7.为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩〔即60秒跳绳的个数〕从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答以下问题.〔1〕跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出初三年级学生关于60秒跳绳成绩的一个什么结论?〔2〕假设用各组数据的组中值〔各小组的两个端点的数的平均数〕代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩〔结果保存整数〕;〔3〕假设从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在同一组的概率.组别分数段频数频率一50.5~60.5 16 0.08二60.5~70.5 30 0.15三70.5~80.5 50 0.25四80.5~90.5 m 0.40五90.5~100.5 24 n〔1〕本次抽样调查的样本容量为,此样本中成绩的中位数落在第组内,表中m= ,n= ;〔2〕补全频数分布直方图;〔3〕假设成绩超过80分为优秀,那么该校八年级学生中汉字听写能力优秀的约有多少人?9.为创立“国家园林城〞,某校举行了以“爱我〞为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答以下问题:〔1〕请补全频数分布直方图;〔2〕假设依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,那么从成绩80≤x<90的选手中应抽多少人?〔3〕比赛共设一、二、三等奖,假设只有25%的参赛同学能拿到一等奖,那么一等奖的分数线是多少?10.关于体育选考工程统计图工程频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1〔1〕求出表中a,b,c的值,并将条形统计图补充完整.表中a= ,b= ,c= .〔2〕如果有3万人参加体育选考,会有多少人选择篮球?11.如图是某数学兴趣小组参加“奥数〞后所得成绩绘制成的频数,频率分布表和频数分布直方图.请你根据图表提供的信息,解答以下问题〔成绩取整数,总分值为100分〕分组 0﹣1 1﹣3 3﹣5 5﹣7 7﹣100 合计频数 1 5 6 30 b 50 频率 0.02 a 0.12 0.60 0.16 1 〔1〕频数、频率分布表中a= ,b= .〔2〕补全频数分布直方图.〔3〕假设在80分以上的小组成员中选3人参加下一轮竞赛,小明本次竞赛的成绩为90分,他被选中的概率是多少?〔4〕从该图中你还能获得哪些数学信息?〔填写一条即可〕12.我某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图〔如图〕.〔1〕请你求出该班的总人数,并补全频数分布直方图;〔2〕该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.13.为了提高学生书写汉字的能力,增强保护汉字的意识,我举办了首届“汉字听写大赛〞,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,假设每正确听写出一个汉字得1分,根据测试成绩绘制出局部频数分布表和局部频数分布直方图如图表:组别成绩x分频数〔人数〕第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成以下各题:〔1〕求表中a的值;〔2〕请把频数分布直方图补充完整;〔3〕假设测试成绩不低于40分为优秀,那么本次测试的优秀率是多少?〔4〕第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.14.为了了解“通话时长〞〔“通话时长〞指每次通话时间〕的分布情况,小强收集了他家1000个“通话时长〞数据,这些数据均不超过18〔分钟〕.他从中随机抽取了假设干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.0<x≤3 3<x≤6 6<x≤9 9<x≤12 12<x≤15 15<x≤18 “通话时长〞〔x分钟〕次数36 a 8 12 8 12根据表、图提供的信息,解答下面的问题:〔1〕a= ,样本容量是;〔2〕求样本中“通话时长〞不超过9分钟的频率:;〔3〕请估计小强家这1000次通话中“通话时长〞超过15分钟的次数.15.某公司为了解员工对“六五〞普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计〔成绩均为整数,总分值100分〕,并依据统计数据绘制了如下尚不完整的统计表.解答以下问题:组别分数段/分频数/人数频率1 50.5~60.52 a2 60.5~70.5 6 0.153 70.5~80.5 b c4 80.5~90.5 12 0.305 90.5~100.56 0.15合计40 1.00〔1〕表中a= ,b= ,c= ;〔2〕请补全频数分布直方图;〔3〕该公司共有员工3000人,假设考查成绩80分以上〔不含80分〕为优秀,试估计该公司员工“六五〞普法知识知晓程度到达优秀的人数.16.九年级〔1〕班开展了为期一周的“敬老爱亲〞社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间〔单位:小时〕分成5组:≤x<1 B.1≤x<1.5 C.≤x<2 D.2≤x<≤x<3;并制成两幅不完整的统计图〔如图〕:请根据图中提供的信息,解答以下问题:〔1〕这次活动生做家务时间的中位数所在的组是;〔2〕补全频数分布直方图;〔3〕该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.17.第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生〔也请你一起〕结合统计图完成以下问题:〔1〕全班学生是多少人?〔2〕成绩不少于90分为优秀,那么全班成绩的优秀率是多少?〔3〕假设不少于100分可以得到A+等级,那么小明得到A+的概率是多少?18.某校八年级一班进行为期5天的图案设计比赛,作品上交时限为周一至周五,班委会将参赛逐天进行统计,并绘制成如下列图的频数直方图.从左到右各矩形的高度比为2:3:4:6:5.且周三组的频数是8.〔1〕本次比赛共收到件作品.〔2〕假设将各组所占百分比绘制成扇形统计图,那么第五组对应的扇形的圆心角是度.〔3〕本次活动共评出1个一等奖和2个二等奖,假设将这三件作品进行编号并制作成反面完全相同的卡片,并随机抽出两张,请你求出抽到的作品恰好一个一等奖,一个二等奖的概率.19.黔东南州某校为了解七年级学生课外学习情况,随机抽取了局部学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如下列图的男生频数分布直方图:学习时间t〔分钟〕人数占女生人数百分比0≤t<30 4 20%30≤t<60 m 15%60≤t<90 5 25%90≤t<120 6 n120≤t<150 2 10%根据图表解答以下问题:〔1〕在女生的频数分布表中,m= ,n= .〔2〕此次调查共抽取了多少名学生?〔3〕此次抽样中,学习时间的中位数在哪个时间段?〔4〕从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?20.某对本校初生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过小时,该校数学课外兴趣小组对本校初生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图〔如图〕的一局部.时间〔小时〕频数〔人数〕频率0≤t<0.5 4 0.10.5≤t<1 a 0.31≤t<10 0.25≤t<2 8 b2≤t< 6 0.15合计 1〔1〕在图表中,a= ,b= ;〔2〕补全频数分布直方图;〔3〕请估计该校1400名初生中,约有多少学生在小时以内完成了家庭作业.21.某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.次数70≤x<90 90≤x<110 110≤x<130 130≤x<150 150≤x<170人数8 23 16 2 1根据所给信息,答复以下问题:〔1〕本次调查的样本容量是;〔2〕本次调查中每分钟跳绳次数到达110次以上〔含110次〕的共有的共有人;〔3〕根据上表的数据补全直方图;〔4〕如果跳绳次数到达130次以上的3人中有2名女生和一名男生,从这3人中抽取2名学生进行经验交流,求恰好抽中一男一女的概率〔要求用列表法或树状图写出分析过程〕.22.为了了解某地初中三年级学生参加消防知识竞赛成绩〔均为整数〕,从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数分布直方图,请结合图形解答以下问题:〔1〕指出这个问题中的总体;〔2〕求竞赛成绩在8﹣8这一小组的频率;〔3〕如果竞赛成绩在90分以上〔含90分〕的同学可以获得奖励,请估计该地初三年级约有多少人获得奖励.23.某老师对本班所有学生的数学考试成绩〔成绩为整数,总分值为100分〕作了统计分析,绘制成如下频数、频率分布表和频数分布直方图,请你根据图表提供的信息,解答以下问题:分组4~5 5~6 6~7 7~8 8~100.5频数 2 a 20 16 8频率0.04 0.08 0.40 0.32 b 〔1〕求a,b的值;〔2〕补全频数分布直方图;〔3〕老师准备从成绩不低于80分的学生中选1人介绍学习经验,那么被选中的学生其成绩不低于90分的概率是多少?24.在开展“美丽泉城,创卫我同行〞活动中,某校建议七年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,随机调查了局部同学的劳动时间,并用得到的数据绘制不完整的统计图表,如下列图:劳动时间〔时〕频数〔人数〕频率0.5 12 0.121 30 0.3x 0.42 18 y合计m 1〔1〕统计表中的m= ,x= ,y= .〔2〕被调查同学劳动时间的中位数是时;〔3〕请将频数分布直方图补充完整;〔4〕求所有被调查同学的平均劳动时间.25.为增强环境保护意识,争创“文明卫生城〞,某企业对职工进行了一次“生产和居住环境满意度〞的调查,按年龄分组,得到下面的各组人数统计表:各组人数统计表组号年龄分组频数〔人〕频率第一组20≤x<25 50 0.05第二组25≤x<30 a 0.35第三组30≤x<35 300 0.3第四组35≤x<40 200 b第五组40≤x≤45 100 0.1〔1〕求本次调查的样本容量及表中的a、b的值;〔2〕调查结果得到对生产和居住环境满意的人数的频率分布直方图如下列图.规定:本次调查满意人数超过调查人数的一半,那么称调查结果为满意.如果第一组满意人数为36,请问此次调查结果是否满意;并指出第五组满意人数的百分比;〔3〕从第二组和第四组对生产和居住环境满意的职工中分别抽取3人和2人作义务宣传员,在这5人中随机抽取2人介绍经验,求第二组和第四组恰好各有1人被抽中介绍经验的概率.26.为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水平安〞为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如下列图.〔1〕试估计该小区5月份用水量不高于12t的户数占小区总户数的百分比;〔2〕把图中每组用水量的值用该组的中间值〔如0~6的中间值为3〕来替代,估计该小区5月份的用水量.27.为了估计鱼塘中成品鱼〔个体质量在0.5kg及以上,下同〕的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如表:质量/kg 0.5 0.6 0.7 1.0 1.6数量/条 1 8 15 18 5 1 2然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.〔1〕请根据表中数据补全如图的直方图〔各组中数据包括左端点不包括右端点〕.〔2〕根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?〔3〕根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?〔4〕请你用适当的方法估计鱼塘中成品鱼的总质量〔精确到1kg〕.28.某花店方案下个月每天购进80只玫瑰花进行销售,假设下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x〔0<x≤80〕表示下个月内每天售出的只数,y〔单位:元〕表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内场销售量的频率分布直方图〔每个组距包含左边的数,但不包含右边的数〕如下列图:〔1〕求y关于x的函数关系式;〔2〕根据频率分布直方图,计算下个月内销售利润少于320元的天数;〔3〕根据历史资料,在70≤x<80这个组内的销售情况如下表:销售量/只70 72 74 75 77 79天数 1 2 3 4 3 2计算该组内平均每天销售玫瑰花的只数.29.某校举行“汉字听写〞比赛,每位学生听写汉字39个.比赛结束后随机抽查局部学生的听写结果,以下是根据抽查结果绘制的图1统计图的一局部.组别听写正确的个数x 组中值A 0≤x<8 4B 8≤x<16 12C 16≤x<24 20D 24≤x<32 28E 32≤x<40 36根据以上信息解决以下问题:〔1〕本次共随机抽查了名学生,并补全图2条形统计图;〔2〕假设把每组听写正确的个数用这组数据的组中值代替,刚被抽查学生听写正确的个数的平均数是多少?〔3〕该校共有3000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所本次比赛听写不合格的学生人数.30.九〔1〕班同学为了解2021年某小区家庭月均用水情况,随机调查了该小区局部家庭,并将调查数据进行如下整理.请解答以下问题:月均用水量x〔t〕频数〔户〕频率0<x≤5 6 0.125<x≤10 0.2410<x≤15 16 0.3215<x≤20 10 0.2020<x≤25 425<x≤30 2 0.04〔1〕把上面的频数分布表和频数分布直方图补充完整;〔2〕求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;〔3〕假设该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?。
浙江06-09

06浙江本部分包括两种类型的试题:一、数字推理:共5 5题。
给你一个数列,但其中缺少一项,要求你仔细观察数列规律,然后从四个供选择的选项中选择你认为最合理的一项,来填补缺项。
或给你一个数字,填入四个数列的空缺项中,选出你认为最具有排列规律的那个数列。
请开始答题26、1/9,1,7,36,()A、74B、86C、98D、12527、1,3,8,16,27,()A、39B、41C、43D、4528、67,75,59,91,27,()A、155B、147C、136D、12829、8,48,120,224,360,()A、528B、562C、626D、68230、2,2,4,6,10,(),26A、9B、16C、16D、20二、数学运算:共15 5题。
每道题呈现一道算术式,或表述数字关系的一段文字或几何图形,要求你迅速、准确地计算或论证出答案请开始答题::31、9e2006的个位数是:(9e2006表示9的2006次方)A、1B、2C、8D、932、1/3+1/15+1/35 +1/63 +1/99+1/143+1/195+1/255的值是:A、6/17B、6/19C、8/17D、8/1933、商场促销前先将商品提价20%,再实行“买400送200”的促销活动(200元为购物券,使用购物券时不循环赠送)。
问在促销期间,商品的实际价格是不提价商品原价格的几折?A、7折B、8折C、9折D、以上都不对34、有1角、2 2角、5 5角和1 1元的纸币各1张,现在从中抽取至少1张,问可以组成不同的几种币值?A、18种B、17种C、16种D、15 种35.物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。
某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了?()A.2小时B.1.8小时C.1.6小时D.0.8小时36.某一天,小张发现办公桌上的台历已经有7天没有翻了,就一次翻了7张,这7张的日期加起来之和是77,那么这一天是( )。
初一数学统计试题

初一数学统计试题1.调查某城市的空气质量,应选择 (抽样、全面)调查。
【答案】抽样【解析】根据普查与抽样调查的特点进行解答即可.【考点】全面调查与抽样调查2.为了了解一批产品的质量,从中抽取300个产品进行检验,在这个问题中,被抽取的300个产品叫做()A.总体B.个体C.总体的一个样本D.普查方式【答案】C.【解析】总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目.根据题意:300个产品的质量叫做总体的一个样本.故选C.【考点】总体、个体、样本、样本容量.3.下列调查中,适合采用全面调查(普查)方式的是()A.对漓江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查【答案】C.【解析】A:漓江水污染的情况,由于范围较大,适合用抽样调查;故此选项错误;B、对端午节期间市场上粽子质量情况的调查,数量较大;不容易掌控,适合抽样调查,故此选项错误;C:对某班50名同学体重情况的调查,数量少,范围小,采用全面调查;故此选项正确;D:对某类烟花爆竹燃放安全情况的调查,具有破坏性,应选择抽样调查;故此选项错误;故选C.【考点】全面调查与抽样调查.4.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).则扇形统计图(2)中表示”足球”项目扇形的圆心角度数为().A.45°B.60°C.72°D.108°【答案】C.【解析】总人数是:20÷40%=50(人),则足球的人数所占的比例是:×100%=20%,则扇形统计图(2)中表示”足球”项目扇形的圆心角度数为360°×20%=72°.故选C.【考点】1.条形统计图2.扇形统计图.5.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A.极差是20B.中位数是91C.众数是98D.平均数是91【答案】D【解析】将改组数据按顺序排列,得出中位数是91,众数是98,平均数是(91+78+98+85+98)÷5=90,极差是98-78=20,由此看出,D是错误的。
2022年最新精品解析沪科版八年级数学下册第20章数据的初步分析定向测试试题(含答案解析)
八年级数学下册第20章数据的初步分析定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是()A.2 B.11.1% C.18 D.2 182、如果在一组数据中23,25,28,22出现的次数依次为2,5,3,4,并且没有其他的数据,则这组数据的众数是()A.5 B.4.5 C.25 D.243、5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是()A.7 B.8 C.9 D.104、为庆祝中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如表,其中有两个数据被遮盖.下列关于成的统计量中、与被遮盖的数据无关的是()A.平均数B.中位数C.中位数、众数D.平均数、众数5、某养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生羊的只数是()A.180 B.140 C.120 D.1106、某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是()A.8 B.13 C.14 D.157、甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是92分,方差分别是20.85S =甲,20.72S =乙,20.63S =丙,20.35S =丁,则这5次测试成绩最稳定的是( )A .甲B .乙C .丙D .丁8、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为( )A .89B .90C .91D .929、一组数据1、2、2、3中,加入数字2,组成一组新的数据,对比前后两组数据,变化的是( )A .平均数B .中位数C .众数D .方差10、13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在方差计算公式222212201(15)(15)(15)20s x x x ⎡⎤=-+-++-⎣⎦中,可以看出15表示这组数据的______________.2、当今最常用的购物软件“手机淘宝”的英语翻译为“mobile phone Taobao ”,其中字母“o ”出现的频率为__________.3、超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是____分.4、某校组织一次实验技能竞赛,测试项目有理论知识测试、实验技能操作A 、实验技能操作B ,各项满分均为100分,并将这三项得分分别按4:3:3的比例计算最终成绩.在本次竞赛中张同学的三项测试成绩如下:理论知识测试:80分;实验技能操作A :90分;实验技能操作B :75分;则该同学的最终成绩是______分.5、若一组数据1x ,2x ,…n x 的平均数是2,方差是1.则132x +,232x +,…32n x +的平均数是_______,方差是_______.三、解答题(5小题,每小题10分,共计50分)1、为积极响应“弘扬传统文化”的号召,某校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”.根据调查结果绘制成的统计图(部分)如下图所示:大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表:请根据调查的信息分析: (1)补全频数分布直方图.(2)活动启动之初学生“一周诗词诵背数量”的中位数为______首.(3)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数.(4)选择适当的统计量,从某一个角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.2、某学校要调查学生关于“新冠肺炎”防治知识的了解情况,从七、八年级各随机抽取了10名学生进行测试(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x <85,B.85≤x<90,C.90≤x<95,D.95≤x≤100)七年级10名学生的成绩是:80,86,99,96,90,99,100,82,89,99.八年级10名学生的成绩在C组中的数据是:94,90,93.七、八年级抽取的学生成绩统计表根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握“新冠肺炎”知识较好?请说明理由.(3)该校七、八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的学生人数是多少?3、甲、乙两支篮球队进行了5场比赛,比赛成绩(整数)绘制成了折线统计图(如图,实、虚线未标明球队):(1)填写下表:(2)如果从两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、方差以及获胜场数这三个方面分别进行简要分析,你认为选派哪支球队参赛更有可能取得好成绩?4、近几年,中学体育课程改革受到全社会的广泛关注,《体育与健康课程标准》中明确指出:“健康体魄是青少年为祖国和人民服务的基本前提”.某校为了解九年级学生的锻炼情况,随机抽取一班与二班各10名学生进行一分钟跳绳测试,若一分钟跳绳个数为m ,规定0160m <<“不合格”,160185m ≤<“及格”,185200m ≤<“良好”,200m ≥“优秀”.对于学生一分钟跳绳个数相关数据收集、整理如下:一分钟跳绳次数(单位:个)一班:204 198 190 190 188 198 180 173 163 198二班:203 200 190 186 200 183 169 200 159 190数据分析:两组样本数据的平均数、众数、中位数如下表所示:二班学生一分钟跳绳成绩扇形统计图应用数据:+=______.(1)根据图表提供的信息,2a b(2)根据以上数据,你认为该年级一班与二班哪个班的学生一分钟跳绳成绩更好?请说明理由(写出一条理由即可);(3)该校九年级共有学生2000人,请估计一分钟跳绳成绩为“优秀”的共有多少人?5、八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.-参考答案-一、单选题1、A【分析】根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案.【详解】解:CoronaVriusDisease中共有18个字母,其中r出现2次,∴频数是2,故选A.【点睛】本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.2、C【分析】根据众数的的定义:一组数据中,出现次数最多的那个数称为众数,即可得出答案.【详解】解:由题意可知:25出现了5次,出现次数最多,所以众数为25.故选:C.【点睛】本题主要是考查了众数的定义,熟练掌握众数的定义,是解决该题的关键.3、C【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【详解】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故选:C.【点睛】此题考查了平均数和一元一次方程的应用,解题的关键是正确分析题目中的等量关系列方程求解.4、C【分析】通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择.【详解】解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人),成绩为100分的,出现次数最多,因此成绩的众数是100,成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98,因此中位数和众数与被遮盖的数据无关,故选:C.【点睛】本题主要考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提.5、B【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决.【详解】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故选B.【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.6、C【分析】根据众数的定义:一组数据中出现次数最多的那个数,称为这组数据的众数,据此结合条形图可得答案.【详解】解:由条形统计图知14岁出现的次数最多,所以这些队员年龄的众数为14岁,故选C.【点睛】本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义.7、D【分析】根据方差越大,则数据的离散程度越大,稳定性也越小;反之,则数据的离散程度越小,稳定性越好,进而分析即可.【详解】解:∵20.85S =甲,20.72S =乙,20.63S =丙,20.35S =丁,∴S 丁2<S 丙2<S 乙2<S 甲2,∴成绩最稳定的是丁.故选:D .【点睛】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.8、B【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【详解】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选:B .【点睛】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.9、D【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】 解:由题意得:原来的平均数为1122324x +++==, 加入数字2之后的平均数为21223225x ++++==, ∴平均数没有发生变化,故A 选项不符合题意;原数据处在最中间的两个数为2和2,∴原数据的中位数为2,把新数据从小到大排列为1、2、2、2、3,处在最中间的数是2,∴新数据的中位数为2,故B 选项不符合题意;原数据中2出现的次数最多,∴原数据的众数为2,新数据中2出现的次数最多,∴新数据的众数为2,故C 选项不符合题意; 原数据的方差为()()()22221112222320.54s ⎡⎤=-+⨯-+-=⎣⎦, 新数据的方差为()()()22222112322320.45s ⎡⎤=-+⨯-+-=⎣⎦, ∴方差发生了变化,故D 选项符合题意;故选D .【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.10、D【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】解:共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选:D.【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题1、平均数【分析】方差是由每个数据与平均值的差的平方之和除以总数得到,由此判断即可.【详解】解:根据方差计算公式可知,公式中15是这组数据的平均数,故答案为:平均数.【点睛】本题考查方差公式的理解,理解方差公式中每个数据的含义是解题关键.2、4 17【分析】用字母“o”出现的个数除以总的字母个数即可得出答案.【详解】解:∵字母“o”出现的次数为4,∴该英语中字母“o”出现的频率为417;故答案为:417.【点睛】此题主要考查了频率,关键是掌握频率的定义,频率=频数÷数据总数.3、78【分析】根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.【详解】解:根据题意,该应聘者的总成绩是:53270908078101010⨯+⨯+⨯=(分)故答案为78【点睛】此题考查加权平均数,解题的关键是熟记加权平均数的计算方法.4、81.5【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【详解】解:该同学的最终成绩是:80490375381.5433⨯+⨯+⨯=++(分).故答案为:81.5.【点睛】此题考查了加权平均数,熟记加权平均数的计算公式是解题的关键.5、8 9【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x1,x2,…x n的平均数是2,∴数据3x1+2,3x2+2,…+3x n+2的平均数是3×2+2=8;∵数据x1,x2,…x n的方差为1,∴数据3x1,3x2,3x3,……,3x n的方差是1×32=9,∴数据3x1+2,3x2+2,…+3x n+2的方差是9.故答案为:8、9.【点睛】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.三、解答题1、(1)见解析(2)4.5(3)850(4)见解析【分析】(1)根据5首的人数和圆心角的度数求出抽取的学生数量,再求出4首的人数即可;(2)把数据从小到大排列,求中间两个数的平均数即可;(3)求出大赛后一个月一周诗词诵背6首(含6首)以上的比例,乘以全校学生数即可;(4)求出两次调查的平均数,比较大小即可.(1)解:由题意得抽查的这部分学生的数量为20÷60360=120(名),大赛启动之初,一周诗词诵背数量为4首的人数为120×135360=45(名),补全统计图如图所示:(2)解:活动启动之初学生“一周诗词诵背数量”共抽样调查了120人,处在第60位和第61位的数据分别为4首和5首,中位数为(4+5)÷2=4.5(首),故答案为:4.5.(3)解:大赛后一个月,一周诗词诵背6首(含6首)以上的的人数为4025201200850120++⨯=(人),答:估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数为850人.(4)解:活动启动之初的平均数为1534542051661371185120⨯+⨯+⨯+⨯+⨯+⨯=(首);大赛后一个月的平均数为1031041554062572086120⨯+⨯+⨯+⨯+⨯+⨯=(首);大赛后一个月学生“一周诗词诵背数量”的平均数高于活动启动之初学生“一周诗词诵背数量”的平均数,该校经典诗词诵背系列活动的效果非常好,提高了学生背诵诗词的能力.【点睛】本题考查条形统计图、扇形统计图以及平均数和中位数的计算公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2、(1)40,93.5,99;(2)八年级掌握得更好,理由见解析;(3)780人【分析】(1)由八年级学生成绩的扇形统计图可求得得分在C组的百分比,根据各百分比的和为1即可求得a的值;由扇形统计图可求得八年级得分在各个组的人数,从而可求得中位数b;根据七年级10名学生成绩中出现次数最多的是众数,则可得c;(2)两个年级得分的平均数相同,但八年级得分的方差较小,根据方差的特征即可判断八年级学生掌握得更好;(3)求出两个年级得分的优秀率做为全校得分的优秀率,即可求得得分为优秀的学生人数.【详解】(1)由八年级学生成绩的扇形统计图,成绩在C组的学生所占的百分比为:3100%30%10⨯=,则%110%20%30%40%a=---=∴a=40八年级得分在A组的有:10×20%=2(人),得分在B组的有:10×10%=1(人),得分在D组的有:10×40%=4(人)由此可知,得分的中位数为:939493.52b+==七年级10名学生的成绩中99分出现的次数最多,即众数为99,故c=99(2)八年级学生掌握得更好理由如下:因为两个年级的平均数相同,而八年级的众数与中位数都比七年级的高,说明八年级高分的学生更多;八年级成绩的方差比七年级的方差小,说明八年级成绩的波动更小,成绩更接近.(3)两个年级得分的优秀率为:67100%65% 20+⨯=1200×65%=780(人)所以参加此次调查活动成绩优秀的学生人数约为780人【点睛】本题是统计图与统计表的综合,考查了扇形统计图,方差、中位数、众数,样本估计总体等知识,读懂统计图,从中获取信息是关键.3、(1)90,28.4,87;(2)选派甲球队参赛更能取得好成绩【分析】(1)根据统计图可得甲队5场比赛的成绩,然后把5场比赛的成绩求和,再除以5即可得到平均数;根据中位数定义:把所用数据从小到大排列,取位置处于中间的数可得中位数;根据方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],进行计算即可;(2)利用表格中的平均数和方差进行比较,然后根据条形图可得甲乙两队各胜多少场,再进行比较即可.【详解】解:(1)甲的平均数是:15×(82+86+95+91+96)=90;甲队的方差是:15×[(82﹣90)2+(86﹣90)2+(95﹣90)2+(91﹣90)2+(96﹣90)2]=28.4;把乙队的数从小到大排列,中位数是87;故答案为:90,28.4,87;(2)从平均分来看,甲乙两队平均数相同;从方差来看甲队方差小,乙队方差大,说明甲队成绩比较稳定;从获胜场数来看,甲队胜3场,乙队胜2场,说明甲队成绩较好,因此选派甲球队参赛更能取得好成绩.【点睛】本题考查统计图、平均数、中位数,以及方差,关键是掌握方差公式S 2=1n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 4、(1)270(2)我认为一班学生一分钟跳绳成绩更好,理由见解析(3)500人【分析】(1)根据优秀率的计算公式及中位数的定义分别求出a 、b 的值再计算即可;(2)利用表格中的平均数比较得到一班成绩较好;(3)用总人数2000乘以两个班级总的优秀率即可.(1)解:二班优秀的有4人,成绩分别为:203,200,200,200∴优秀率为a %=100%41040%⨯=, ∴a =40;一班成绩由低到高排列为163,173,180,188,190,190,198,198,198,204,居中的两个数为190,190,故中位数b =190,∴2270a b +=.故答案为:270;(2)解:我认为一班学生一分钟跳绳成绩更好,理由如下:一班学生一分钟跳绳平均数188.2大于二班学生一分钟跳绳平均数188,所以一班学生一分钟跳绳成绩更好.(3) 解:由一分钟跳绳次数得,一班二班优秀的占比为520, ∴所以九年级一分钟跳绳优秀的学生大约为5200050020⨯=人. 【点睛】 此题考查了统计运算,掌握优秀率的计算公式,中位数的定义,利用数据分析得到结论,计算总体中某部分的数量,能读懂统计表并正确分析数据是解题的关键.5、(1)9.5,10;(2)平均成绩9分,方差1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:110×(10×4+8×2+7+9×3)=9,则方差是:110×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1 n[(x1−x)2+(x2−x)2+…+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.。
全国中小学教师教育技术水平考试(NTET)
全国中小学教师教育技术水平考试(NTET)教学人员考试大纲(初级)(最终上报稿)中华人民共和国教育部考试中心2006年4月目录简介 (2)总体要求 (5)考试内容 (5)基本知识 (6)一、基本概念及理论 (6)二、教育技术应用的意义 (6)教案设计 (7)一、教案设计流程 (7)二、电子教案的设计与制作 (8)资源准备 (9)一、资源准备的基础知识 (9)二、数字教学资源的获取与存放 (9)三、教学演示课件的制作 (10)教学实施 (11)一、教学实施的基础知识 (11)二、教学设施的使用 (11)三、教学中的交流 (12)教学评价 (12)一、教学评价的基础知识 (12)二、对学生学习的评价 (13)三、对教师教学的评价 (14)附录1:题型示例 (15)附录2:考试大纲与能力标准双向对应细目表 (19)附录3:中小学教师教育技术能力标准(试行) (24)简介一、考试性质全国中小学教师教育技术水平考试(N ational Teacher’s Skill T est of Applied E ducational T echnology in Secondary and Elementary School, NTET,以下简称NTET)由中华人民共和国教育部推出,教育部考试中心主办。
与《中小学教师教育技术能力标准(试行)》(以下简称“能力标准”)对应,NTET分为教学人员、技术人员和管理人员三大类,教学人员水平考试又分为初、中、高三级。
本大纲适用于教学人员(初级)。
二、考试目的以“能力标准”为依据,以全面提高中小学教师教育技术应用能力、促进技术在教学中的有效、规范应用为目的,构建全国统一规范的教师教育技术水平考试认证体系,全面提高广大教师实施素质教育的水平,最终促进教师队伍的专业发展。
三、组织机构为加强考试实施的组织管理,由全国中小学教师教育技术能力建设计划项目领导小组负责实施考试的宏观指导,协调解决实施过程中的重大问题。
新人教版七年级数学下册第十章数据的收集、整理与描述题单元测试题(含答案解析)
人教版七年级下期第10章《数据的收集、整理与描述》(有答案)人教版七年级下期第10章《数据的收集、整理与描述》(有答案)一.选择题(共6小题)1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.下列调查中,适合采用普查方式的是()A.调查市场上婴幼儿奶粉的质量情况B.调查黄浦江水质情况C.调查某个班级对青奥会吉祥物的知晓率D.调查《直播南京》栏目在南京市的收视率3.下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况4.为了检查一批灯管的使用寿命,从中抽取了10只进行检测,以下说法正确的是()A.这一批灯管是总体B.10只灯管是总体的一个样本C.每只灯管是个体D.10只灯管的使用寿命是总体的一个样本5.为了了解某地区12 000名初中毕业生参加中考的数学成绩,从中抽取了500名考生的数学成绩进行统计分析,下列说法正确的是()A.个体是指每个考生B.12000名考生是个体C.500名考生的成绩是总体的一个样本D.样本是指500名考生6.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量二.填空题(共8小题)7.学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下,已知该校七年级学生有800名,那么中号校服应订制套.8.已知一组数据是连续的整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是.9.某镇卫生部门2014年4月份对镇所辖学校的中小学生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值为.10.如图是某市20132016-年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.11.图1表示某地区2003年12个月中每个月的平均气温,图2表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):.12.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为.(填序号)13.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于.14.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是8,频率是0.2,那么该班级的人数是人.三.解答题(共6小题)15.2013年我国中东部地区先后遭遇多次大范围雾霾天气,其影响范围、持续时间、雾霾强度历史少见,给人们生产生活造成了严重影响.为此“雾霾天气的主要成因”就成为某校环保小组调查研究的课题,他们随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题;(1)填空:m=,n=,扇形统计图中表示E组的扇形圆心角等于度.(2)若该市人口约有800万人,请你估计其中持D组“观点”的市民人数;(3)治理雾霾天气需要每个人的环保行动和参与,作为一名中学生的你能为“应对雾霾天气,保护环境”做些什么?请你写出来.(只需写出一条措施或建议即可)16.某校有1000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被污染渍盖住)(1)本次调查的个体是;(2)求扇形统计图中,乘私家车部分对应的圆心角的度数;(3)请估计该校1000名学生中,选择骑车和步行上学的一共有多少人?17.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩进行统计.请你根据尚未完成的频数分布表和频数分布直方图,解答下列问题:(1)填充频数分布表的空格;(2)补全频数直方图,并绘制频数分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?18.网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对1235-岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中1823-岁部分的圆心角;(3)据报道,目前我国1235-岁的人数.-岁网瘾人数约为2000万,请估计其中122319.某校为开展每天一小时阳光体育活动,准备组建篮球、排球、羽毛球、乒乓球四个兴趣小组,并规定每名学生只能参加1个小组,且不能不参加.该校对九年级学生报名情况进行了抽样调查,并将所得数据绘制成了如下两幅统计图:根据图中的信息,解答下列问题:(1)本次调查共抽样了名学生;(2)补全条形统计图;(3)若该校九年级共有450名学生,试估计报名参加排球兴趣小组的人数.20.班主任张老师为了了解本班学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)该班共有名学生;(2)在张老师的鼓励下,该班学生第二天的发言次数比前一天明显增加,图2是全班第二天发言次数变化的人数的扇形统计图七年级数学下册数据收集与整理解答题专项练习1、某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,“主动质疑”对应的圆心角为度;(3)将条形统计图补充完整;(4)如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?2、我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.3、某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).请根据上面两个不完整的统计图回答以下4个问题:(1)这次抽样调查中,共调查了名学生.(2)补全条形统计图中的缺项.(3)在扇形统计图中,选择教师传授的占%,选择小组合作学习的占%.(4)根据调查结果,估算该校1800名学生中大约有人选择小组合作学习模式.4、2017年3月27日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整致,满分为10分)进行统计,绘制了图中两幅不完整的统计图.(1)a= ,n= ;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?5、为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?6、某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.根据以上信息解决下列问题:(1)在统计表中,m= ,n= .(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.7、某校为了解九年级1 000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两种尚不完整的统计图.解答下列问题:(1) 这次抽样调查的样本容量是________,并补全频数分布直方图;(2) C组学生的频率为________,在扇形统计图中D组的圆心角是________度;(3) 请你估计该校九年级体重超过60 kg的学生大约有多少名.8、某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有________名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?9、初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?10、某中学为了搞好对“传统文化学习”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为________人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在________组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.参考答案1、解:(1)本次调查的样本容量为224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360°×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)60000×=18000(人),答:在试卷评讲课中,“独立思考”的初三学生约有18000人.2、解:(1)140÷28%=500(人),故答案为:500;(2)A的人数:500﹣75﹣140﹣245=40(人);补全条形图如图:(3)75÷500×100%=15%,360°×15%=54°,故答案为:54;(4)245÷500×100%=49%,3600×49%=1764(人).3、解:(1)由题意可得,本次调查的学生有:300÷60%=500(名),故答案为:500;(2)由题意可得,教师传授的学生有:500﹣300﹣150=50(名),补全的条形统计图如右图所示;(3)由题意可得,选择教师传授的占: =10%,选择小组合作学习的占: =30%,故答案为:10,30;(4)由题意可得,该校1800名学生中选择合作学习的有:1800×30%=540(名),故答案为:540.4、解:(1)∵本次调查的总人数为30÷10%=300(人),∴a=300×25%=75,D组所占百分比为×100%=30%,所以E组的百分比为1﹣10%﹣20%﹣25%﹣30%=15%,则n=360°×15%=54°,故答案为:75、54;(2)B组人数为300×20%=60(人),补全频数分布直方图如下:(3)2000×(10%+20%)=600,答:该校安全意识不强的学生约有600人.5、解:(1)80÷40%=200(人).∴此次共调查200人.(2).∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图.(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人6、(1)m=30,n=20;(2)90°(3)“听写正确的个数少于24个”的人数有:10+15+25=50 (人).900×=450 (人).答:这所学校本次比赛听写不合格的学生人数约为450人.7、(1) 样本容量是4÷8%=50;B组的频数为12,补全频数分布直方图如图所示。
【3套试卷】人教版人教新版三年级上学期《第9章数学广角--集合》单元测试卷(含答案)
人教版人教新版三年级上学期《第9章数学广角--集合》单元测试卷(含答案)一、填一填。
(18分)1.明明排队去做操,从前数起明明排第9,从后数起明明排第4,这排小朋友一共有()人。
2.用4,5,7可以组成()个不同的两位数,其中最大的数是(),最小的数是()。
3.王刚爱吃的水果有:苹果、梨、枣、香蕉、葡萄。
李磊爱吃的水果有:桃、苹果、草莓、枣、石榴。
他们都爱吃的水果有()种。
4.三(1)班参加歌唱兴趣小组的有12人。
参加舞蹈兴趣小组有18人,两个小组都参加的有8人,只参加一个兴趣小组的有()人。
5.三(3)班有45人,每人至少订一种刊物,订《漫画大王》的有37人,订《红树林》的有29人,两种刊物都订的有()人。
6.第十五届世界杯足球赛共有32支球队分成8个小组比赛。
(1)每个小组有()支球队。
(2)小组内每两支球队进行一场比赛,每组要进行()场比赛。
二、选择。
(5分)三年级(2)班有56名学生,这个月进行了两次数学测试:第一次得100分的学生的学号是6,9,15,16,27,33,56;第二次得100分的学生的学号是:7,9,16,27,36,40,48,51,53。
1.第一次得100分的有( )人。
A.5B.7C.9D.32.第二次得100分的有( )人。
A.5B.7C.9D.33.两次都得100分的有( )人。
A.3B.5C.7D.94.只在第一次得100分的有( )人。
A.2B.3C.4D.65.只得过一次100分的有()人。
A.15B.13C.10D.9三、在图中填上合适的数。
(6分)1.两个圈里都有的数有多少个?请你用画图的方法表示出来。
2.你还能提出其他数学问题并解答吗?四、计算。
(41分)1.口算。
(8分)45+55= 147+353= 200+4000= 4500+2500= 324×2=200-178= 3000-1800= 460-360= 5680-4560= 78×0=27÷9= 700×6= 56÷7= 400×3= 214×3=59÷9= 132×3= 200×8= 36÷5= 760+0= 2.笔算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全校共206名参加品德与社会考试,其中合格的人数为191名,占总人数的92.7%,其中有
2个班级合格率达到100%,分别是三(1)、三(2)班。
试题分析:
三年级:本次考试共五大题型:选择、判断、填空、简单、问答。所考查的知识点涉及范围
广,难易度始终,反映了平时的所学,主要还是考查学生的基本生活礼仪问题及常识。 整
体来说,学生的做题情况还是不错的,也有个别学生在个别小题当中出现丢分现象,具体情
况如下:
四年级:
五年级:
六年级:
问题与分析:1、基础知识把握不准确,观点理解不到位。如单项选择的第八题有不少同学
选错,就是因为没能准确理解“调节情绪的方法”这一知识点所导致的。
2、重点知识掌握不牢固,以至于容易混淆。如单项选择的第九小题有不少同学选错,
就是因为没把“追求高雅生活情趣的条件和途径”这一知识点搞清楚所导致的。
3、思维能力、从材料中获取信息能力、概括归纳能力差在思想品德的解题中,如果学生对
知识点掌握不牢固、概括归纳能力差,在答题时就会出现零乱、啰嗦或不完整。如(第四题
第二问)“发掘潜能的方法”学生就由于此原因而失分。
4、回答问题角度单一、重复,不能多角度、多层次的分析问题。
5、答题不够规范,语言表达不明确,条例不清。
拓展与措施:
1、强化基础知识教学,狠抓基础知识的落实。 2、注重能力培养特别是要注重对学生学习
方法的指导,使学生学会学习,逐步掌握学习思想品德的一些基本技能和方法,。 3、加
强审题能力的训练。教会学生审准答题方向,选择题怎么做,材料分析题怎么做,让学生明
确回答相关问题的要领,从而增强学生的思维能力和应试能力。 4、指导学生注意答题的
条理性。一是要分层回答,不能东拉西扯;二是书写要分段落,不要一句到底,不能乱写乱
划。 5、加强养成教育,平时教学中不要放松对学生的严格要求,督促学生养成认真读题、
认真答题、认真写字的好习惯。 总之,争取通过努力,使学生的能力与习惯都有一个大幅
度的提高
知识的涵盖面全,重视对学生基础知识和基本技能的考查,充分考查了学生掌握课本知识的
程度,考查了学生判断行为正确与否的能力,