Calculation of the Unified Glare Rating based on luminance maps for light sources
光学设计人才培训o9—20130420

Source
光源模型√ 光通量√ 光谱√ 发光强度及分布
眩光:就是通常所说的“晃眼”, 它会使人感到刺眼,引起眼睛酸痛 流泪和视力降低,甚至可因明暗不 能适应而丧失明视能力。
图中眩光角所示方向内的光线是引起直接眩光的主要原因。所以控制直接眩光 就是控制此方向内光线的强度,也就是限制灯具45°<γ<85°范围内的亮度。
举例 1: 室内照明: 4×5米房间,使用3×36W隔栅灯9套
平均照度 =光源总光通量×CU×MF/面积
=(2500×3×9)×0.4×0.8÷4÷5 =1080 Lux 结论:平均照度1000Lux以上
Light distribution
Light distribution
透镜配光: 1、非球面透镜的曲面设计本身不是太难,但要同时控制立体角上的光
lighting calculation
0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 0.5 1 1.5 2 2.5 3
lighting calculation
室内平均照度计算:
平均照度(Eav) = 光源总光通量(N*Ф)*利用系数(CU)*维护系数(MF) / 区域面积 (m2) (适用于室内或体育场的照明计算)。 利用系数: 一般室内取0.4,体育取0.3 维护系数: 一般取0.7~0.8
Intensity,illuminance,luminance
发光强度:单位立体角内发出的光通量,表明发光具有方
向性,单位:坎德拉。
光照度:光源发出的光投射到某表面,该表面上的亮暗程度
定义为单位面积上得到的光通量,描述接收面,单位:LUX。
光亮度:单位光源面积在法线方向上,单位立体角内所发
LED配光
亮度计的测量范围

亮度计(luminance meter)是一种用于测量光源、物体表面或显示屏等发光物体的亮度水平的仪器。
亮度通常以坎德拉每平方米(cd/m²)为单位表示。
测量范围取决于具体的亮度计型号和制造商,不同的亮度计可能具有不同的测量范围。
一般来说,亮度计的测量范围通常会涵盖从非常低的亮度值到非常高的亮度值。
以下是一些可能的亮度计测量范围的示例:
1. 低亮度范围:通常从几cd/m²到几千cd/m²。
这个范围适用于测量黑暗环境中的光源、液晶显示屏等低亮度物体。
2. 中等亮度范围:通常从几千cd/m²到几万cd/m²。
这个范围适用于一般照明、电视屏幕、计算机显示器等中等亮度的物体。
3. 高亮度范围:通常从几万cd/m²到数百万cd/m²。
这个范围适用于非常亮的光源,例如聚光灯、激光器、高亮度LED等。
具体的亮度计型号可能会在这些范围之间有所不同,而且不同的应用需要不同的测量范围。
因此,在选择亮度计时,要确保其测量范围适合您的应用需求。
另外,一些高级的亮度计可能具有可扩展的测量范围,可以适应多种不同亮度水平的测量。
光老化等级

光老化等级
光老化等级(Lightfastness rating)是用来描述某种材料或产品在受到光照的情况下,保持其颜色不褪色或退色的能力的指标。
通常使用从1到8的数字等级体现,数字越高就代表着该材料或产品更为耐光。
光老化等级是用来评估某些产品的使用寿命和质量的重要指标之一,特别是对于使用在户外或受到强光照射的产品,如绘画、家具、车辆、建筑等。
需要注意的是,光老化等级只是一种相对的指标,并不意味着该材料或产品永远不会产生任何颜色改变。
它只能提供一个基本的保证,说明该产品可以在特定条件下保持相对长的寿命。
汽车前照灯国家标准解读

保持不动
点亮增加的 光源
当前使用在汽车前照灯上的光源有灯丝灯泡、 气体放电光源和LED模块3种,由于不同的光源有 其固有的不同特性,上述3个前照灯国家标准因其 适用的产品光源不同,也有其各自不同的性能要
求。 1.汽车用灯丝灯泡前照灯
图6增加一个光源的弯道照明照准图示
增加的光源
灯具反射
灯丝灯泡包括白炽灯光源和卤素灯丝灯泡。
61
质量与标准化Q,.mlity and髓oi嘲引di_aSo}s
2013.3
万方数据
表1近光灯主要配光测试点的含义表 测试点 测试点位置 (以角度表示J
浅析可取代采光系数的新天然采光评价参数

摘
要 :天 然 采 光 系 数 ( al h Fco)是 目前 我 国一 种 通 用 的 天 然 采 光评 估参 数 。 然 而 ,随着 人 们 对 天 然 采 光 的 D y gt atr i
要 求 越 来 越 高 ,天 然 采 光 系 数 里 的一 些 固 有 的 缺 点 已经 无 法 满 足 当 前 需 要 。 近 年 来 国际 上 发 展 起 来 一 些 新 的 天 然
Ap l ain o h UDI i e n t td y n lz g w tpc l f c b i ig n a j g C ia pi t f te c o s mo sr e b a ayi t o y ia f e ul n s i N ni , hn . d a n o i d n
采 光 评 价 标 准 ,其 中 以 UsflDa l h 1 mia c ( DI 得 到 较 为 广 泛 的 应 用 。 UsflDal h l mia c UD ) eu yi tI u n n e U ) g 1 eu yi tIu n n e( I g l
是 根 据 全 年 气 候 的 每 小 时 数 据 ,来 描 述 室 内 天 然 采 光 是 否 有 效 的评 估 参 数 ,具 有 较 高 的 准 确 度 。 本 文 以我 国 典 型
rc nl. On sc l d UsflDa l h l mia c ( ee t y ei al eu yi tI u n n e UDI . T eUDIi d sg e oad teitrrtt n e g l ) h s e in d t i h nep eai o
Co p rs n i a e wi y ih a t r t e UDI a p o c m a io s m d t da l tf co , h h g p r a h. Th e u t s g s t a he a lg t fco e r s ls ug e t h t t d y ih a tr c ud b e lc d b h o l e r p a e y t e UDI . Ke r : da l h ;d y ih a t r s f ld yihtil mi a c y wo ds y i t a lg tf co ;u eu a lg lu n n e;smu ai n g i lto
流明度文档

流明度介绍流明度是光源辐射出的可见光的亮度的度量单位。
它用于衡量光源辐射的光功率在人眼感知范围内的能量。
在实际应用中,流明度是评估灯具和光源亮度的重要指标。
了解流明度有助于选择符合需求的适当光源,并做出正确的照明设计。
流明的定义流明(Lumen,简写为lm)是国际标准单位制中的亮度单位,它表示光源所辐射出的光在人眼上产生的感觉亮度。
在国际标准单位制中,流明的定义是:一个辐射强度为1坎德拉(Candela)的光源,辐射出的光通过一个立体角1球面度(Steradian)的方向,其总辐射功率为1流明。
流明度的计算要计算光源的流明度,需要知道光源的辐射功率和光源的光效(lm/W)。
流明度的计算公式为:流明度(lm)= 辐射功率(W) × 光效(lm/W)辐射功率可以通过光源的技术参数或实测数据来获取。
光效是指光源单位功率辐射出的光所产生的流明数。
不同类型的光源光效会有所差异。
流明度的意义流明度是衡量光源亮度的重要指标,它可以帮助我们选择适合的光源和照明方案。
在照明设计中,了解流明度的概念可以帮助我们预测光源在特定环境中的亮度表现。
通过计算流明度,我们可以确定所需的光源数量和布置方式,以达到期望的照明效果。
另外,流明度也可以用来评估不同光源之间的能效。
通过比较不同光源的流明度和耗电量,我们可以选择更能效的光源,从而降低能耗。
流明度的应用流明度在照明领域有广泛的应用。
首先,流明度可以用来评估室内照明的亮度。
在办公室、商场、学校等场所的照明设计中,需要根据使用需求和环境要求选择适当的流明度。
例如,办公室中一般需要较高的亮度以提高工作效率,而博物馆中则需要较低的亮度以保护文物。
其次,流明度也可以用来评估室外照明的亮度。
在道路照明、广场照明、建筑物照明等场景中,需要根据具体需求选择适当的流明度。
例如,道路照明需要提供足够的亮度以保证行车安全,而广场照明则需要营造出舒适的夜间环境。
最后,流明度也可以用来评估特殊场景下的照明需求。
TRACE 700用户指南:系统控制策略与天光照明说明书
DaylightingDaylighting systems can significantly reduce both lightingconsumption and cooling-energy consumption by reducing theelectric-lighting heat gain in the building. However, daylightingcan also cause increased heating-energy consumption,something that must be considered when evaluating addingdaylighting to a building. Different control strategies, windowconfigurations, surface reflectivities, and so forth, can greatlyinfluence the energy savings provided by these systems.Note: Daylight is typically defined as diffuse light and is verydifferent from sunlight (direct solar radiation).The TRACE700 Daylighting algorithm is identical to that used bythe DOE-2 computer program except for the user interface. It iscomprised of three main stages, as follows.1 A preprocessor calculates a set of daylight factors (interiorilluminance divided by exterior horizontal illuminance) for lateruse in the hourly-loads calculation. The program automaticallycalculates the three-dimensional coordinates of one or tworeference points in a space, using either the room and glassdimensions or optional aspect ratios defined by the user. Thealgorithm then integrates over the area of each window to obtainthe contribution of direct light from the window to theilluminance at the reference points, and the contribution of lightfrom sky and ground, which enters the window and reflects fromthe walls, floor, and ceiling before reaching the reference points.Taken into account are such factors as window size andorientation, glass visible transmittance, inside surface reflectanceof the space, sun-controlled devices such as blinds andoverhangs, and the illuminance distribution of the sky. Becausethis distribution depends on the position of the sun and the of 20different solar altitude and azimuth values, covering the annualrange of sun positions.2An hourly daylight-illuminance glare calculation is performed. The illuminance contribution from each window is found byinterpolating the stored daylight factors using the current-hoursun position and cloud cover, and then multiplying by the current-hour exterior horizontal illuminance obtained from the Step1calculation. If applicable, the solar-gain threshold is tested todetermine whether the window blinds or drapes should beclosed to maintain a user-defined comfort level. Adding theilluminance contributions from all the windows (includingskylights) then gives the total illumination (daylight effect) at each reference point.3Stepped and continuously dimming control systems are simulated to determine the electrical lighting energy needed to make up the difference, if any, between the daylighting level and the required illuminance. The effect of the diminished lighting level (and possibly reduced solar heat gain if the internal shading device is employed) is calculated and passed to the load phase.Application considerations■Daylighting does not necessarily mean an increase in the amount of fenestration on a building. Proper placement and configuration for the fenestration is as important to a properly designeddaylighting system as the amount of fenestration.■When designing a building with daylighting, be aware of the possible increase in solar heat gain and the possibility of glare from sunlight.Related reading■For additional information related to daylighting, refer to Daylight in Buildings: A Source Book on Daylighting Systems andComponents at: /iea21/Sample scenarioDaylighting controls will be added to all of the perimeter rooms ina building. All windows were input using dimensions (rather thanpercent glass), and a standard stepped controller will be used.The user would like to find the savings that daylighting willprovide for the building.Note: Assuming that the other default inputs are acceptable, this scenario can be modeled in TRACE700 with as few as threeinputs.Two alternatives are not required to model daylighting. However, to determine the effects of daylighting on a model, two alternatives are recommended and will be used in this example.To model daylighting:1Start by modeling the firstalternative completely. It isrequired that all glass beinput using the samemethod (percent ordimensions) for daylighting.For more-accuratemodeling of daylighting, thedimensions method isrecommended. AfterAlternative 1 has beencompleted, a secondalternative can be createdwith daylighting.2To create the secondalternative, click CopyAlternative on theAlternatives Setup menuto create a copy of Alternative 1.3With the second alternativecreated, the templatesfrom Alternative 1 must be copied so that the designand system section ofAlternative 2 will berecalculated withdaylighting. Right-clickAlternative 2 and clickT emplates on the list. Tomake the copy of thetemplates editable, selectCreate T emplates for thisAlternative based onAlternative 1 and click OK .4To activate Daylighting, clickCreate DaylightingDefinition on the Actionsmenu. The DaylightingParameters screen shouldopen, displaying where thedaylighting definitions willbe created and added tothe spaces. TheDaylighting Parametersscreen should open to theGeneral tab.Note: Inside Visible Reflectivity forFloor, Wall, and Partition aredefined via the Advanced tab in theConstruction library and can beoverridden on the ConstructionParameters tab.Note: Recommended values and typical ranges for these values can be obtained by accessing Help (press F1).5Daylighting GeometryT ype , AtmosphericMoisture , AtmosphericT urbidity , and InsideVisible Reflectivity areinput from the General tab.Note: Select the DaylightingGeometry Type that reflectshow the glass was input, inthis example, as GLAS-DIM .a The Daylighting Geometry Type tells the program how the glass was input and is used to determine the fraction of the available daylight, passingthrough the glazing area, that can be used to offset the power consumption of the electric lights.b The Atmospheric Moisture represents the amount of perceptible water vapor in the atmosphere and affects the calculation of the luminance of clear skies (this is not the amount of rainfall).c The Atmospheric Turbidity is a measure of aerosols (particulate pollutants and water droplets) in the atmosphere and affects the calculation of theluminance of clear skies.d The Inside Visible Reflectivity is the fraction of visible (not solar) light that is reflected, rather than absorbed, by the opaque surface. This value is used to help calculate the luminance of both natural and electric lighting within aspace.Note: Inside Visible Reflectivity for Floor , Wall , and Partition aredefined via the Advanced tab in theConstruction library and can beoverridden on the ConstructionParameters tab.a The Percent of Space Affected represents the fraction of the space floor area for which the lights are controlled by the specified daylighting controls.b The Lighting Setpoint represents the design lighting level in the space, in footcandles.c The Lighting Control Type is the type of daylighting control being used in thetemplate (continuous or stepped). Depending on the Lighting Control Typeselected, either input the Minimum Power and Lighting Percent or the Light Control Steps to simulate how the selected controls will operate.d The Light Control Probability is the probability that manually controlled,stepped controls are utilized.Note: Under the Geometry section, input the Reference Height (A) of the daylight sensor. All other values under the Geometry section will be auto-calculated if not input. Multiple templates can be created and used in the same file and even in the same space.6Click the DaylightingControls tab, whichcontains standard and user-defined Daylighting ControlStrategies. No inputs arerequired on this tab for theexample scenario becauseit is using a default controltype.Note: To create a customcontrols template, click Copyand enter a description. Thisactivates the fields under theControls and Geometrysections.Note: Values under theControls section should beinput starting at the top and working down:a The Daylighting Schedule acts as an on/off switch. Utilization percenthours > 1percent means the daylighting controls are available, whileutilization percent hours = 0 means the daylighting controls are deactivated and no daylight reduction of lighting energy is allowed that hour. Typically, the schedule will be available 100percent, off 0percent , or a custom schedule that neglects daylighting during design but applies it during energy analysis (for details on creating schedules, refer to “Create schedules” on page 2–19).b The Daylighting Reference Points are used to select the templates created on the Daylighting Controls tab. Up to two Daylighting Reference Points areallowed per space.c The Perimeter Depth is used to calculate the distance of the Daylighting Reference Point from the perimeter wall. In addition, if the glass dimension method is used, Perimeter Depth is used to estimate the field of view seen by the daylighting sensor. Perimeter Depth can be selected as the room length or width, or manually input for each space.6Click the RoomParameters tab to selectthe Alternative , theDaylighting Schedule , theDaylighting ReferencePoints , and the PerimeterDepth .7For this Daylighting schedule, choose Available(100%) and click Y es toapply this schedule to allrooms.8For Daylighting ReferencePoint 1, choose StdStepped Controller andclick Y es to apply this to allrooms.Note: If daylighting is added toa space that has nofenestration, then thedaylighting controls will be ignored for that space.Only glass types used in the file will appear under the Glass Library Member menu.Refer to online Help for a tablewith typical Inside VisibleReflectivity values.The Overall Visible Transmittance can be obtained by multiplying the Visible Transmittance of the shading device by the Visible Transmittance of the unshaded glass.The Visible Transmissivity represents visible transmittance of the glass at normal incidence. Do not confuse visible (daylight) transmittance with total solar transmittance, which determines how much solar radiation is transmitted. The Inside Visible Reflectivity is the fraction of visible (not solar) light that is reflected on the inside surface of the glazing. This value is used to help calculate the luminance due to both natural and electric lighting within a space. 10The Glass Parameters tab allows the user to input theVisible Transmissivity andthe Inside VisibleReflectivity. No inputs arerequired on this tab for theexample scenario.11The Internal ShadeParameters tab allows theuser to input the VisibleTransmissivity and theInside Visible Reflectanceof the glass and internalshade combination atnormal incidence. No inputsare required on this tab forthe example scenario.12 When completed, click OKand the DaylightingParameters will close. Thesecond alternative can nowbe calculated and theeffects of daylighting canbe seen by comparing the output reports.Additional Items1User-defined templates are available only for the file in which they were created.2Typical values and explanations for all fields can be found by pressing F1 to access online Help.3Daylighting can affect all sections of the building simulation (depending on the daylighting schedule selected on the Room Parameters tab). For cooling-load design, the cooling load and airflow will both change based on the lower lighting load, possible increased solar loads, changes in plenum temperature, andchanges in time of peak. The heating-design simulation will also be affected, but the effects may be smaller than the effects on the cooling-design simulation, due to the typical neglecting of the solar and internal loads in heating-design calculations. InTRACE700, two alternatives (one with daylighting and onewithout daylighting) can be used compare the overall effects of daylighting on the rooms, systems, plants, and life-cycle costs.The checksums reports can be used to view the effects on the design calculations for the rooms and systems—usually areduction in cooling capacity and airflows occurs. The energy consumption reports can be used to view the effects on theplants—usually lower lighting energy, lower cooling energy, and possibly higher heating energy (because the heat given off by the lights in the spaces is less). The economic reports can be used to see the reduction in utility costs and the effects on the life-cycle cost for the building.Note: For conservativeness, it may be desirable to disregarddaylighting during the sizing calculations. This can be done by creating a custom utilization schedule, which can be selected on the Room Parameters tab (refer to step 8 of the daylightingexample for the location of the daylighting utilization schedule).The custom schedule would have the cooling-design and heating-design daytypes input as midnight-to-midnight 0percent (to turn off the daylighting controls during the design simulation). The Weekday, Saturday, and Sunday daytypes in the custom schedule would define the hours that daylighting controls should beavailable to operate as Available100%. For example, Weekday to Sunday could be set to 100percent from midnight to midnight, to have the daylighting controls available to reduce the lightingpower during any hour of the energy-analysis simulation. It isrecommended that a full 8760 simulation be performed if thedaylighting controls are going to be neglected during the design simulation.4For additional information related to creating custom schedules, refer to “Creating schedules” on page6–134.5For additional information related to performing a full 8760 simulation, refer to “Adding weather locations and activating the 8760 calculation methodology” on page6–164.6For additional information related to daylighting, visit: /or/Task21/LBL_11353/titlepg.html。
不舒适眩光与不舒适眩光评价
·VCP 等于 70 或以上 , ·当在室内纵向或横向看时 , 灯具于与垂线成 45°、55°、65°、75°和 85°角处的最大灯具亮度 (最亮 的 615cm2 ) 与平均灯具亮度之比 ≯5∶1 。 ·灯具横向和纵向最大亮度不超过表 1 中的值 :
Discomfort Glare and Discomfort Glare Rating
Yang Gongxia2 Yang Xudong2
(11 Tongji University , Shangxia 200092 ; 21 Shanghai Euhte lighting company L TD. , shanghai 200235)
不舒适眩光是照明设计中的一个重要指标 , 在 原《工业企业照明设计标准》 ( GB 50034 - 92) 和原 《民用建筑照明设计标准》 ( GBJ133 - 90) 以及现 《建筑照明设计标准》 ( GB50034 - 2004) 中均把它作 为重要的照明质量指标 , 并提供了相应的计算方法 和图表进行评价 , 前两个标准中按照当时 CIE 的建 议使用亮度限制曲线 , 后者随着目前 CIE 的新建议 也改用 UGR 系统 (统一眩光值) 。CIE 为什么从亮 度限制曲线改成 UGR 的原因 , 在新标准中未加说 明 。下面作者拟把 UGR 的发展过程作一回顾 , 指出 UGR 较其他三种方法 ( GI、VCP 和亮度限制曲线) 好的部分 , 并介绍 Dr. Einhorn 领导的技术委员会 ( TC 3 - 01) 为此做的补充工作 , 供同行们参考 。
Abstract
Discomfort Glare is an important aspect of interior lighting quality. In the past National Lighting Standard ( GB50034292 and GBJ 133290) , the Luminance Curve method was used. But in the new National Lighting Standard ( GB5003422004) , the Luminance Curve Method has been substituted by the UGR method. The writers have reviewed the development of the methods for the evaluation of discomfort glare , and compared the calculative results of GI , VCP and LCM with the result of subjective discomfort glare evaluation. If has been slowed that the correlation coefficient of UGR is the highest among them. It showed that the UGR is a best mathmetical model to simulate the glare sensation of human being fill now. Doing to broaden the use of UGR not restricted to the regular array of fluorescent lamps in offices. The writers have remedied the use of UGR from the minutes of TC 32 01 meetings for reference.
cvia流明标准
cvia流明标准
CVIA流明是中国首个投影行业亮度标准,由中国电子视像行业协会、当贝等上下游企业共同编制完成。
其有着更严格的测试标准和要求,是目前国内主流的投影仪亮度单位。
CVIA亮度标准规定了投影机光输出技术要求和测试方法,采用一个色度照度计,在保持精确的色度精度与色温范围时进行测量,测量的长度范围必须大于等于两米,并且最小刻度要保持在0.001m,测量时需将投影仪调整到规定的工作状态,先输入全白场信号,然后用色度计测量投影面中心点的相关色温及色偏差值Duv,最后根据要求进行相关测量得出光输出亮度数值。
CVIA流明越高,代表投影仪越亮。
该标准的出现,有利于规范投影仪市场,提高产品质量,为消费者提供更准确的亮度指标。
Luma Lighting产品指南说明书
Public lightingLumaProduct guideKeeping up with the city’s heartbeatPublic lightingPublic lightingLuma IntroductionWide choiceChoice of lens optics to match international road and street geometries. Combination of lenses and tilt adjustment options ensure high project flexibility.Energy savingsDedicated lumenpackages deliver energy savings of over 50%, with a related reduction in CO 2 emissions.Fully programmableTo suit requiredlumen (consult L -Tune).Low maintenance thanks to long life of LED light source.The Luma range by Philips checks all these boxes: compromise-free LED lighting that offers high-performance illumination for real-world lighting needs. This affordable alternative to existing conventional lighting solutions generates big energy savings and minimizes maintenance costs. It covers the complete field of illuminance (S) and luminance (ME) lighting classifications, up to ME1.Tailored to your needsThe Luma family includes five separate sub-ranges for specific applications, all of which work seamlessly together to give your city a coherent and consistent “light signature”:• L uma 3 is the largest (with up to 200 LEDs per luminaire) and is suitable for highways and other settings that require powerful high-elevation lighting • L uma 2 is slightly smaller (up to 120 LEDs); it is the perfect solution for heavy-usage urban traffic routes• L uma 1 (up to 80 LEDs) scales down to applications along smaller residential or suburban streets • L uma Mini (up to 40 LEDs) had more compact and elegant design – a perfect fit for lower installation heights like footpaths and bicycle lanes • L uma Micro (up to 20 LEDs) is the smallest and newest member of the family; it enables high-resolution lighting in very small spaces like alleyways and side streetsEach of these Luma versions can be outfitted with a variety of LED configurations and lens optics and has different tilt adjustment options. This built-in versatility can accommodate a variety of road and street geometries and adapt the distance between individual light posts to suit the environment, maximizing the spacing wherever possible. And as Luma uses LEDGINE-O technology, it has excellent thermal and optic characteristics, which further helps to reduce energy usage.City planners think big when it comes to lighting. In cities where human activity is everywhere it is important to guide traffic down well-lit roads. Technical infrastructure is a major long-term investment and when you’re planning ahead the lifetime costs of the lighting system need to be considered. Additionally public lighting requires energy consumption, so the more energy-efficient and sustainable the better it is.LED lights the wayPublic lightingLumaFamily rangeLuma MiniPost-top Ø 76 mmLuma MicroPost-top Ø 76 mmLuma MiniSide-entry Ø 32-60 mmPost-top Ø 60 mmLuma MicroSide-entry Ø 32-60 mmPost-top Ø 60 mmLuma 1Post-top Ø 76 mmLuma 1Side-entry Ø 32-60 mmPost-top Ø 60 mmLuma 2Post-top Ø 76 mmLuma 2Side-entry Ø 42-60 mmPost-top Ø 60 mmLuma 3Post-top Ø 76 mmLuma 3Side-entry Ø 42-60 mmPost-top Ø 60 mmVisual comfort along city streetsThe high-fidelity color rendering andexceptional luminance uniformity willgive your city streets a consistent lookthroughout. And to give the Luma familya more creative and inspirationalappearance, you can combine itwith the standard Philips pole andbracket portfolio.Family rangeI can create theperfect lightingfor every street –and it’s all Luma!Luma features a completely flat design and LEDGINE-Olens optics. This gives you perfect glare controland helps prevent light pollution according to glareclassifications up to G*6.6712346758 m 7 m 6 m5 m 4 m 3 m 2 m 8 m 7 m6 m5 m 4 m 3 m 2 m Public lighting LumaComplete setsThe Luma family can be combined with our standard pole and bracket portfolio to give it a more creative and inspirationalappearance. Below some examples, but we have more complete set configurations available.Complete setsBatio bracket1 L uma2 + Batio L1000bracket + Aloa/Accante pole + Luma Mini + Batio L600 rear bracket 2-4 Luma 1 + Batio L600 bracket + Aloa/Accante pole 3-6 L uma 2 + Batio L1000 bracket + Aloa/Accante pole 5 Luma 1 + Batio L1000 bracket + Aloa/Accante pole 7Luma Mini + Batio L1000 wall bracketSpline bracket1 L uma2 + Spline L1200 bracket + Aloa/Accante pole + Luma Mini + Spline L1000 rear bracket 2-4 Luma 1 + Spline L1000 bracket + Aloa/Accante pole 3-5 Luma 2 + Spline L1200 bracket + Aloa/Accante pole 6 Luma Mini + Spline L1000 wall bracket 7Luma 2 + Spline L1200 wall bracket• Pedestrian crossing • Roundabout123456789101112131415169 m8 m7 m6 m5 m4 mLumaIn perspective1-3Luma Micro/Mini suitable for mounting heights of 4–5–6 m, for instance on residential streets or cycle paths.4-8 L uma 1 suitable for mounting heights of6–8–10 m, for instance on main residential streets or urban traffic roads.9-13 L uma 2 suitable for mounting heights of8–10–12–15–18 m, for instance on main urban traffic roads or highways.14-16 L uma 3 suitable for mounting heights of10–12–15–18 m, for instance on highways.LEDGINE optimizedStandardized optics StandardengineTailor-madesolutionsLighting performanceDedicated spigot for post-top Ø 76 mm.564321Rivas, Spain9125c 5b 48b 76118a 28c 1b 31091a 22Designed for serviceabilityService tag application.The greatest value of thePhilips Service tag is that itto save precioustime and avoid human errors”Network controls StarSense Wireless with RF antenna StarSense Wireless is a networked control systembased on two-way wireless communication usingthe latest in mesh network technology. The systemenables individual light points to be controlledremotely and to be managed via online platformslike CityTouch.Main specificationsProduct features SpecificationsType Luma Micro (BGP615)Luma Mini (BGP621)Luma 1 (BGP623)Luma 2 (BGP625)Luma 3 (BGP627)Light source Built-in LED moduleColor temperature3,000 K (warm white), 4,000 K (neutral white),5,700 K (cool white)Color Rendering Index70 (cool white and neutral white), 80 (warm white)Luminous flux 1.250 to 60.000 lm depending on LED configuration and color temperature (HOTFLUX),(please note improvements and updates are made and released continuously)Power9 W up to 425 W depending on LED configuration and color temperatureLuminaire efficacy Please note improvements and updates are made and released continuouslyLumen maintenance Tunable via L-tune (highest L-value possible)CLO CLO is availableWarranty 5 yearsOptic DM10, DM11, DM12, DM30, DM31, DM50, DM70, DN10, DN11, DW10, DW50,DX10, DX50, DX51, DX70, DS50, DPR1, DPL1Optical cover Flat Glass (FG)ULOR0%Installation Post-top Ø 60 mm (dedicated spigot for post-top Ø 76 mm only)Luma Micro/Mini, Luma 1: side-entry Ø 32–60 mmLuma 2, Luma 3: side-entry Ø 42–60 mmStandard tilt adjustments post-top 0, 5, 10° and side-entry -10, -5, 0°Special spigot for post-top +10, +15 and +20° and side-entry -20, -15, -10, -5, 0°Controls system input DALIDriver Philips Xitanium DEC DriverInrush current driver40 W: 65 A/100 µs; 75 W: 80 A/150 µs; 100 W: 80 A/150 µs; 150 W: 108 A/140 µsIntelligence control LumiStep (LS), DynaDimmer (DDF), LineSwitch (D11), DALI (D9),StarSense RF Wireless, CityTouch ReadyMains voltage210–240 V / 50–60 HzElectrical class Class I–IIMaterial Housing: die-cast aluminum, non corrosiveCover: toughened glassGear tray: aluminumSpigot: die-cast aluminumColor Futura Gris 900 Sablé or Futura Gris 150 SabléOther RAL or Akzo Nobel Futura colors or duo-colors available on requestIP-rating IP66IK-rating IK09Weight Luma Micro, 7.6 kg, Luma Mini, 9.5 kg, Luma 1, 11 kg, Luma 2, 15.5 kg,Luma 3, 19.5 to 20.5 kg depending on driversScX Luma Micro: 0.049 m2, Luma Mini: 0.055 m2, Luma 1: 0.057 m2, Luma 2: 0.067 m2, Luma 3: 0.079 m2 Electrical connection M20 cable gland with strain relief, for cable Ø 10–14 mmOperating temperature range- 20 °C < Ta < 35 °CSurge protection 4 kV, 10 kV optionalMaintenance From below by opening the housing with a single quick-release clipOptions Wired for cell (WFC), mini Photocell or NEMA socket - including cable Specification tableLuminaireversionFamilycodeNo.LEDsCWMin/MaxlumenNWMin/MaxlumenWWMin/MaxlumenPowersystem (W)Min/Max Luma Micro BGP615121,250—3,8001,250—3,8001,150—3,2009—29202,100—6,2002,100—6,2001,850—5,20014—48Luma Mini BGP621121,250—3,8001,250—3,8001,150—3,2009—29202,100—6,2002,100—6,2001,850—5,40014—51303,100—9,4003,100—9,4002,800—7,80022—70404,100—12,5004,100—12,5003,700—10,50027—95Luma 1BGP623202,100—6,4002,100—6,4001,700—5,00014—45282,900—8,8002,900—8,8002,400—7,20019—62404,200—12,5004,200—12,5003,400—10,00026—88485,000—15,0005,000—15,0004,000—12,00031—106606,200—18,5006,200—18,5005,000—15,00038—130687,000—21,0007,000—21,0005,800—17,00042—146808,200—24,0008,200—24,0006,600—20,00049—172 Luma 2BGP625606,200—19,0006,200—19,00050,00—15,00038—130808,400—25,0008,400—25,0006800—20,00050—17610010,500—31,00010,500—31,0008,400—25,00063—21512012,500—37,00012,500—37,00010,000—30,00075—255 Luma 3BGP62710010,500—31,00010,500—31,0008,400—25,00064—22012012,500—37,00012,500—37,00010,000—30,00075—26014014,500—43,00014,500—43,00012,000—35,00087—30016016,500—49,00016,500—49,00013,500—40,000102—34518018,500—54,00018,500—54,00015,000—45,000114—38520021,000—60,00021,000—60,00016,500—49,000124—4253130。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CalculationoftheUnifiedGlareRatingbasedonluminancemapsforuniformandnon-uniformlightsources
GertjanH.Scheira,*,PeterHanselaera,PeterBrackea,GeertDeconinckb,WouterR.Ryckaerta
aKULeuveneESATeLight&LightingLaboratory,GebroedersDeSmetstraat1,9000Ghent,Belgium
bKULeuveneESATeELECTA,KasteelparkArenberg10ebox2445,3001Leuven,Belgium
articleinfoArticlehistory:Received8August2014Receivedinrevisedform16October2014Accepted25October2014Availableonline31October2014Keywords:DiscomfortglareUGRLuminancemapIntensitydistributionLuminancecameraSub-divisibilityabstractInEurope,discomfortglareforinteriorlightinginstallationsisassessedwiththeUnifiedGlareRating(UGR).UGRisvalidforawiderangeofuniformlightsourcesbuttheassessmentofdiscomfortglarefromnon-uniformluminaireswithcurrentglareindicesisquestioned.LEDluminairesoftenexhibitanon-uniformluminancedistributionwithalternatingareasofhighandlowluminance.WithagrowingmarketshareofLEDluminairesforinteriorlighting,abetterassessmentofdiscomfortglarefromnon-uniformlightsourcesbecomesessential.Inthepresentpaper,theUGRformulaiscalculatedalternativelyfromtheluminancedistribution.Individualpixelsofaluminancemapcanbeconsideredasindividuallightsourcesortheycanbecombinedtoformlargersources.Foruniformlightsources,theUGRisindependentofthedivisionoftheluminancemap.Fornon-uniformlightsources,theUGRvalueisstronglydependentonthecombinationoftheindividualpixelsanddifferencesofupto17.3UGRunitsforthesameluminaireareobtained.TheUGRcalculatedfromluminancemapsiscomparedwiththeoriginalUGRfromtheluminousintensitydistributionandtheUGRdevelopedforsmalllightsources.Inconclusion,theassessmentofdiscomfortglarefromnon-uniformlightsourceswithUGRcalculatedfromluminancemapsisquestioned.©2014ElsevierLtd.Allrightsreserved.
1.IntroductionDiscomfortglareisdefinedbytheInternationalCommissiononIllumination(CIE)intheinternationallightingvocabularyas:“glarethatcausesdiscomfortwithoutnecessarilyimpairingthevisionofobjects”[1]andbytheIlluminatingEngineeringSocietyofNorthAmerica(IESNA)as“asensationofannoyanceorpaincausedbyhighluminanceinthefieldofview”[2].Researchershaveattemptedtoquantifytheamountofdiscomfortglareeversincethebeginningofthepreviouscentury[3],butevennow,thephysio-logicalandpsychophysicalmechanismsarenotfullyunderstood.Amultitudeofglareindiceshavebeendeveloped,dependingontheapplication.GlarefromwindowscanbeassessedwiththeDaylightGlareindex(DGI)byHopkinson[4].WienoldandChris-toffersen[5]furtherrefinedtheDGIandproposedtheDaylightGlareProbability(DGP).Fortheassessmentofdiscomfortglareininteriorlighting,theCIEproposedtheUnifiedGlareRating(UGR)[6].In
NorthAmerica,GuthdevelopedanalternativeindexcalledtheVi-sualComfortProbability(VCP)[7,8].OlderglareratingsforindoorlightingaretheBritishGlareIndex(BGI)andtheCIEGlareIndex(CGI)[9].InEurope,theUGRisgenerallyacceptedfortheassessmentofdiscomfortglareininteriorlightingandisincludedintheEuro-peanstandardforindoorworkplacelightingEN12464-1[10].Thecalculationofmostoftheabovementionedindicesarebasedonthefarfieldluminousintensitydistribution,whichap-proximatesanynon-uniformsourceasauniformpointsource.Sincenon-uniformlightsourceswerenottakenintoaccountforthedevelopmentofthetraditionalglareindices[11],thevalidityofthedeterminationofdiscomfortglarefromnon-uniformlightsourceswithcurrentglareindicesisunderdiscussion[11e19].LEDlumi-nairesoftenexhibitanon-uniformluminancedistributionwithareasofhighluminancealternatingwithrelativelydarkzones.WithagrowingmarketshareofLEDluminairesforinteriorlighting,abetterassessmentofdiscomfortglareforthesenon-uniformlightsourcesbecomesessential.Asanattempttotacklesomeproblems,theCIEdevelopedamethodforsmall,largeandcomplexsources[20],butdiscussionaboutthevalidityremains[21],asstatedbyaCIEreporter[22]:*Correspondingauthor.
E-mailaddress:Gertjan.scheir@kuleuven.be(G.H.Scheir).
ContentslistsavailableatScienceDirectBuildingandEnvironment
journalhomepage:www.elsevier.com/locate/buildenv
http://dx.doi.org/10.1016/j.buildenv.2014.10.0270360-1323/©2014ElsevierLtd.Allrightsreserved.
BuildingandEnvironment84(2015)60e67‘YourreporterhasreferredtoUGRasa“leakyboat”.Isittime,therefore,todevelopanewsystemratherthantotryfurtherpatchthe“leaks”.’
ThepresentstudyisdesignedtoevaluatetheappropriatenessofthecalculationofUGRforuniformandnon-uniformlightsourcesbasedonluminancemaps.Nowadays,luminancemapscaneasilybemeasured[23]andarealreadyusedfortheevaluationofdiscomfortglarefromdaylightenvironments[5,24e26]andindoorapplications[19,27e29].Moreover,theCIEproposed[30]touseluminancemapsfortheassessmentofvisualdiscomfort.Startingfromahighresolutionluminancemap,asingleluminairecanbedividedintomultiplesections.TheeffectofselectingdifferentcombinationsofpixelsfromtheluminancemapandconsideringthesegroupsaspartialindividualluminairesonthecalculatedUGRvalueisstudied.IftheUGRvaluedependsonthenumberofsub-divisionsandgroupingalgorithm,UGRcalculationbasedonlumi-nancemapsisnotrobust.Finally,acomparisonhasbeenmadebetweentheUGRvaluecalculatedfromtheluminancemap,theluminousintensitydistributionandbyapplyingthealternativeUGRformuladevelopedforsmalllightsources.