专题5-立体几何-数学(文科)-浙江省专用
2018高考数学(浙江省专用)复习专题测试:第八章 立体几何 §8-4 直线、平面垂直的判定和性质

考点
A.A1E⊥DC1
答案
垂直的判定和性质
)
1.(2017课标全国Ⅲ文,10,5分)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则 (
B.A1E⊥BD
C.A1E⊥BC1
D.A1E⊥AC
C ∵A1B1⊥平面BCC1B1,BC1⊂平面BCC1B1,∴A1B1⊥BC1,又BC1⊥B1C,且B1C∩A1B1=B1,∴
5.(2017课标全国Ⅲ文,19,12分)如图,四面体ABCD中,△ABC是正三角形,AD=CD. (1)证明:AC⊥BD; (2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE 与四面体ACDE的体积比.
解析
(1)取AC的中点O,连接DO,BO.
A.l1⊥l4
B.l1∥l4
D.l1与l4的位置关系不确定
C.l1与l4既不垂直也不平行 答案
D 由l1⊥l2,l2⊥l3可知l1与l3的位置不确定,
若l1∥l3,则结合l3⊥l4,得l1⊥l4,所以排除选项B、C, 若l1⊥l3,则结合l3⊥l4,知l1与l4可能不垂直,所以排除选项A.故选D.
评析 本题考查了空间直线之间的位置关系,考查学生的空间想象能力、思维的严密性.
8 3 ,求该四棱锥的侧面积 .
(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为
解析
本题考查立体几何中面面垂直的证明和几何体侧面积的计算.
(1)证明:由已知∠BAP=∠CDP=90°, 得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD, 从而AB⊥平面PAD.
(3)因为PA∥平面BDE,平面PAC∩平面BDE=DE, 所以PA∥DE.
高考数文二轮专题突破课件浙江专第部分-专题-第讲-空间几何体

B.2 D.4
答案:B
答案:A
[答案] (1)D (2)B
答案:A
答案:C
课题14 等体积法求空间几何体的体积
答案:6
成
S=2S底+S侧 S=2πr2+2πrl
S=S底+S侧
圆锥
扇形
S=πr2+πrl
体积 V=S底·h V=πr2·h
侧面展开图
表面积
由若干个梯形 棱台
构成
S=S上底+ S下底+S侧
圆台
扇环
S=πr′2+ π(r+r′)l+πr2
球ቤተ መጻሕፍቲ ባይዱ
S=4πr2
体积
A
B
C
D
答案:A
A
B
C
D
答案:C
A.1 C.3
2.多面体与球的切接问题是高考难点,新课标几乎每年 都考,如2013年辽宁T10.
3.空间位置关系的考查多以判断命题真假的形式出现, 如2013年新课标全国卷ⅡT4.
答案:D
答案:D
答案:A
答案:C
答案:D
柱、锥、台、球体的表面积和体积
侧面展开图
表面积
直棱柱
长方形
圆柱
长方形
由若干三角形构 棱锥
高考数文二轮专题突破 课件浙江专第部分 专题
第讲 空间几何体
2024年2月1日星期四
考点 空间几何体的三视图 空间几何体的表面积 空间几何体的体积
球 点、线、面的位置关系
考情
1.三视图几乎是每年必考内容之一,难度不大,一是考 查识图,如2013年四川T2;二是以三视图为载体考查面积、 体积的计算,如2013年重庆T8,2013年新课标全国卷ⅠT8.
高中数学立体几何大题练习(文科)

立体几何大题练习(文科):1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD.(1)求证:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积.【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证;(2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=,设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°,可得BD=a,∠CBD=45°,∠ABD=45°,由余弦定理可得AD==a,则BD⊥AD,由面SAD⊥底面ABCD.可得BD⊥平面SAD,又BD⊂平面SBD,可得平面SBD⊥平面SAD;(2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为,由AD=SD=a,在△SAD中,可得SA=2SDsin60°=a,△SAD的边AD上的高SH=SDsin60°=a,由SH⊥平面BCD,可得×a××a2=,解得a=1,由BD⊥平面SAD,可得BD⊥SD,SB===2a,又AB=2a,在等腰三角形SBA中,边SA上的高为=a,则△SAB的面积为×SA×a=a=.【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题.2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊂平面ABC,AB⊂平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.3.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N分别是B1C1和BC的中点.(1)求证:MB∥平面AC1N;(2)求证:AC⊥MB.【分析】(1)证明MC1NB为平行四边形,所以C1N∥MB,即可证明MB∥平面AC1N;(2)证明AC⊥平面BCC1B1,即可证明AC⊥MB.【解答】证明:(1)证明:在三棱柱ABC﹣A1B1C1中,因为点M,N分别是B1C1,BC的中点,所以C1M∥BN,C1M=BN.所以MC1NB为平行四边形.所以C1N∥MB.因为C1N⊂平面AC1N,MB⊄平面AC1N,所以MB∥平面AC1N;(2)因为CC1⊥底面ABC,所以AC⊥CC1.因为AC⊥BC,BC∩CC1=C,所以AC⊥平面BCC1B1.因为MB⊂平面BCC1B1,所以AC⊥MB.【点评】本题考查线面平行的判定,考查线面垂直的判定与性质,考查学生分析解决问题的能力,属于中档题.4.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅰ)已知PD=DC=AD=2,求点P到平面BMQ的距离.【分析】(1)连结AC交BQ于N,连结MN,只要证明MN∥PA,利用线面平行的判定定理可证;(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离.【解答】解:(1)连结AC交BQ于N,连结MN,因为∠ADC=90°,Q为AD的中点,所以N为AC的中点.…(2分)当M为PC的中点,即PM=MC时,MN为△PAC的中位线,故MN∥PA,又MN⊂平面BMQ,所以PA∥平面BMQ.…(5分)(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,所以V P=V A﹣BMQ=V M﹣ABQ,﹣BMQ取CD的中点K,连结MK,所以MK∥PD,,…(7分)又PD⊥底面ABCD,所以MK⊥底面ABCD.又,PD=CD=2,所以AQ=1,BQ=2,,…(10分)=V A﹣BMQ=V M﹣ABQ=.,…(11分)所以V P﹣BMQ则点P到平面BMQ的距离d=…(12分)【点评】本题考查了线面平行的判定定理的运用以及利用三棱锥的体积求点到直线的距离.5.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.【分析】(1)证明B1C1∥DE,即可证明B1C1∥平面A1DE;(2)证明DE⊥平面ACC1A1,即可证明平面A1DE⊥平面ACC1A1.【解答】证明:(1)因为D,E分别是AB,AC的中点,所以DE∥BC,…(2分)又因为在三棱柱ABC﹣A1B1C1中,B1C1∥BC,所以B1C1∥DE…(4分)又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE…(6分)(2)在直三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE…(8分)又BC⊥AC,DE∥BC,所以DE⊥AC,…(10分)又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1…(12分)又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1…(14分)【点评】本题考查线面平行、线面垂直、面面垂直的判定,考查学生分析解决问题的能力,属于中档题.6.在四棱锥P﹣ABCD中,PC⊥底面ABCD,M,N分别是PD,PA的中点,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.(1)求证:PA⊥平面CMN;(2)求证:AM∥平面PBC.【分析】(1)推导出MN∥AD,PC⊥AD,AD⊥AC,从而AD⊥平面PAC,进而AD ⊥PA,MN⊥PA,再由CN⊥PA,能证明PA⊥平面CMN.(2)取CD的中点为Q,连结MQ、AQ,推导出MQ∥PC,从而MQ∥平面PBC,再求出AQ∥平面,从而平面AMQ∥平面PCB,由此能证明AM∥平面PBC.【解答】证明:(1)∵M,N分别为PD、PA的中点,∴MN为△PAD的中位线,∴MN∥AD,∵PC⊥底面ABCD,AD⊂平面ABCD,∴PC⊥AD,又∵AD⊥AC,PC∩AC=C,∴AD⊥平面PAC,∴AD⊥PA,∴MN⊥PA,又∵PC=AC,N为PA的中点,∴CN⊥PA,∵MN∩CN=N,MN⊂平面CMN,CM⊂平面CMN,∴PA⊥平面CMN.解(2)取CD的中点为Q,连结MQ、AQ,∵MQ是△PCD的中位线,∴MQ∥PC,又∵PC⊂平面PBC,MQ⊄平面PBC,∴MQ∥平面PBC,∵AD⊥AC,∠ACD=60°,∴∠ADC=30°.∴∠DAQ=∠ADC=30°,∴∠QAC=∠ACQ=60°,∴∠ACB=60°,∴AQ∥BC,∵AQ⊄平面PBC,BC⊂平面PBC,∴AQ∥平面PBC,∵MQ∩AQ=Q,∴平面AMQ∥平面PCB,∵AM⊂平面AMQ,∴AM∥平面PBC.【点评】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.7.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,E、F分别为PC、BD的中点.(1)求证:EF∥平面PAD;(2)求证:面PAB⊥平面PDC.【分析】(1)连接AC,则F是AC的中点,E为PC 的中点,证明EF∥PA,利用直线与平面平行的判定定理证明EF∥平面PAD;(2)先证明CD⊥PA,然后证明PA⊥PD.利用直线与平面垂直的判定定理证明PA⊥平面PCD,最后根据面面垂直的判定定理即可得到面PAB⊥面PDC.【解答】证明:(1)连接AC,由正方形性质可知,AC与BD相交于BD的中点F,F也为AC中点,E为PC中点.所以在△CPA中,EF∥PA,又PA⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD;(2)平面PAD⊥平面ABCD平面PAD∩面ABCD=AD⇒CD⊥平面PAD⇒CD⊥PA正方形ABCD中CD⊥ADPA⊂平面PADCD⊂平面ABCD又,所以PA2+PD2=AD2所以△PAD是等腰直角三角形,且,即PA⊥PD.因为CD∩PD=D,且CD、PD⊂面PDC所以PA⊥面PDC又PA⊂面PAB,所以面PAB⊥面PDC.【点评】本题考查直线与平面垂直的判定,直线与平面平行的判定的应用,考查逻辑推理能力.8.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且PA=AD=2,BD=2,E、F分别为AD、PC中点.(1)求点F到平面PAB的距离;(2)求证:平面PCE⊥平面PBC.【分析】(1)取PB的中点G,连接FG、AG,证得底面ABCD为正方形.再由中位线定理可得FG∥AE且FG=AE,四边形AEFG是平行四边形,则AG∥FE,运用线面平行的判定定理可得EF∥平面PAB,点F与点E到平面PAB的距离相等,运用线面垂直的判定和性质,证得AD⊥平面PAB,即可得到所求距离;(2)运用线面垂直的判定和性质,证得BC⊥平面PAB,EF⊥平面PBC,再由面面垂直的判定定理,即可得证.【解答】(1)解:如图,取PB的中点G,连接FG、AG,因为底面ABCD为菱形,且PA=AD=2,,所以底面ABCD为正方形.∵E、F分别为AD、PC中点,∴FG∥BC,AE∥BC,,,∴FG∥AE且FG=AE,∴四边形AEFG是平行四边形,∴AG∥FE,∵AG⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB,∴点F与点E到平面PAB的距离相等,由PA⊥平面ABCD,可得PA⊥AD,又AD⊥AB,PA∩AB=A,AD⊥平面PAB,则点F到平面PAB的距离为EA=1.(2)证明:由(1)知AG⊥PB,AG∥EF,∵PA⊥平面ABCD,∴BC⊥PA,∵BC⊥AB,AB∩BC=B,∴BC⊥平面PAB,由AG⊂平面PAB,∴BC⊥AG,又∵PB∩BC=B,∴AG⊥平面PBC,∴EF⊥平面PBC,∵EF⊂平面PCE,∴平面PCE⊥平面PBC.【点评】本题考查空间点到平面的距离,注意运用转化思想,考查线面平行和垂直的判定和性质,以及面面垂直的判定,熟练掌握定理的条件和结论是解题的关键,属于中档题.9.在四棱锥P﹣ABCD中,底面ABCD为直角梯形,∠BAD=∠ADC=90°,DC=2AB=2AD,BC⊥PD,E,F分别是PB,BC的中点.求证:(1)PC∥平面DEF;(2)平面PBC⊥平面PBD.【分析】(1)由中位线定理可得PC∥EF,故而PC∥平面DEF;(2)由直角梯形可得BC⊥BD,结合BC⊥PD得出BC⊥平面PBD,于是平面PBC ⊥平面PBD.【解答】证明:(1)∵E,F分别是PB,BC的中点,∴PC∥EF,又PC⊄平面DEF,EF⊂平面DEF,∴PC∥平面DEF.(2)取CD的中点M,连结BM,则AB DM,又AD⊥AB,AB=AD,∴四边形ABMD是正方形,∴BM⊥CD,BM=CM=DM=1,BD=,∴BC=,∴BD2+BC2=CD2,∴BC⊥BD,又BC⊥PD,BD∩PD=D,∴BC⊥平面PBD,又BC⊂平面PBC,∴平面PBC⊥平面PBD.【点评】本题考查了线面平行,面面垂直的判定,属于中档题.10.如图,在三棱锥A﹣BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平ABD面;(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.【分析】(1)利用线面平行的性质可得BD∥EF,从而得出EF∥平面ABD;(2)由AE⊥平面BCD可得AE⊥CD,由BD⊥CD,BD∥EF可得EF⊥CD,从而有CD⊥平面AEF,故而平面AEF⊥平面ACD.【解答】证明:(1)∵BD∥平面AEF,BD⊂平面BCD,平面BCD∩平面AEF=EF,∴BD∥EF,又BD⊂平面ABD,EF⊄平面ABD,∴EF∥平ABD面.(2)∵AE⊥平面BCD,CD⊂平面BCD,∴AE⊥CD,由(1)可知BD∥EF,又BD⊥CD,∴EF⊥CD,又AE∩EF=E,AE⊂平面AEF,EF⊂平面AEF,∴CD⊥平面AEF,又CD⊂平面ACD,∴平面AEF⊥平面ACD.【点评】本题考查了线面平行、线面垂直的性质,面面垂直的判定,属于中档题.。
高二文科数学《立体几何》经典练习题(含解析)-

FAEOB DM(第2题图)A 1B 1C 1DA BCDE高二文科数学《立体几何》大题训练试题1.(本小题满分14分)如图的几何体中,AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形, 22AD DE AB ===,F 为CD 的中点.(1)求证://AF 平面BCE ; (2)求证:平面BCE ⊥平面CDE 。
2.(本小题满分14分)如图,AB 为圆O 的直径,点E 、F 在圆O 上,AB ∥EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且2AB =,1AD EF ==.(1)求证:AF ⊥平面CBF ;(2)设FC 的中点为M ,求证:OM ∥平面DAF ;(3)求三棱锥F -CBE 的体积.3.(本小题满分14分)如图所示,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90ADE ∠=o ,DE AF //,22===AF DA DE .(Ⅰ)求证://AC 平面BEF ;(Ⅱ)求四面体BDEF 的体积.4.如图,长方体1111D C B A ABCD -中,11==AA AB ,2=AD ,E 是BC 的中点.(Ⅰ)求证:直线//1BB 平面DE D 1;(Ⅱ)求证:平面AE A 1⊥平面DE D 1;(Ⅲ)求三棱锥DE A A 1-的体积.5.(本题满分14分)如图,己知BCD ∆中,090BCD ∠=,1,BC CD AB BCD ==⊥平面,060,,AC,AD ADB E F ∠=分别是上的动点,且AE AF==,(0<<1)AC ADλλ (1)求证:不论λ为何值,总有EF ABC;⊥平面(2)若1=,2λ求三棱锥A-BEF 的体积.6.(本小题满分13分)如图,已知三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 的中点, D 为PB 的中点,且△PMB 为正三角形. (1)求证:DM ∥平面APC ;AB C DFEB AEDCFABCD图2BCD 图1(2)求证: BC ⊥平面APC ;(3)若BC =4,AB =20,求三棱锥D —BCM 的体积.7、(本小题满分14分)如图1,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,2,1AB AD CD ===.将ADC ∆沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示.(1) 求证:BC ⊥平面ACD ;(2) 求几何体D ABC -的体积.8、(本小题满分14分)已知四棱锥P ABCD - (图5) 的三视图如图6所示,PBC ∆为正三角形,PA 垂直底面ABCD ,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P ABCD -的体积;(3)求证:AC ⊥平面PAB ;参考答案1.(本小题满分14分) (1)证明:取CE 的中点G ,连结FG BG 、.∵F 为CD 的中点,∴//GF DE 且12GF DE =.∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴//AB DE ,∴//GF AB .又12AB DE =,∴GF AB =. …………3分∴四边形GFAB 为平行四边形,则//AF BG .……………5分∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴//AF 平面BCE .…………7分(2)证明:∵ACD ∆为等边三角形,F 为CD 的中点,∴AF CD ⊥…………9分∵DE ⊥平面ACD ,AF ACD ⊂平面,∴DE AF ⊥.……………10分又CD DE D ⋂=,∴AF ⊥平面CDE .……………………………12分 ∵//BG AF ,∴BG ⊥平面CDE .…………………………………13分 ∵BG ⊂平面BCE , ∴平面BCE ⊥平面CDE .………………14分2.解:(1)Θ平面ABCD ⊥平面ABEF ,CB AB ⊥,平面ABCD I 平面ABEF AB =,CB ∴⊥平面ABEF , ∵AF ⊂平面ABEF ,∴AF CB ⊥,……… 2分又AB 为圆O 的直径,∴AF BF ⊥, ∴AF ⊥平面CBF . ……… 4分B AEDC FG(2)设DF 的中点为N ,则MN//12CD ,又AO //12CD , 则MN//AO ,四边形MNAO 为平行四边形,∴//OM AN ,又AN ⊂平面DAF ,OM ⊄平面DAF ,∴//OM 平面DAF . …… 8分(3)∵BC ⊥面BEF ,∴13F CBE C BEF BEF V V S BC --∆==⨯⨯,B 到EF 的距离等于O 到EF 的距离,过点O 作OGEF ⊥于G ,连结OE 、OF , ∴OEF ∆为正三角形,∴OG 为正OEF ∆的高,∴OG==……… 11分∴13F CBEC BEF BEFV V S BC --∆==⨯⨯ ……12分1111113232EF OG BC =⨯⨯⨯⨯=⨯⨯=。
2020高考数学核心突破《专题5 立体几何 第3讲 空间向量及其在立体几何中的应用》

专题五 第3讲1.如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,所成二面角A ′-CD -B 的平面角为α,则( B )A .∠A ′DB ≤α B .∠A ′DB ≥αC .∠A ′CB ≤αD .∠A ′CB ≥α解析 若CD ⊥AB ,则∠A ′DB 为二面角A ′-CD -B 的平面角,即∠A ′DB =α.若CD 与AB 不垂直,在△ABC 中,过A 作CD 的垂线交线段CD 或CD 的延长线于点O ,交于BC 于E ,连结A ′O ,则∠A ′OE 为二面角A ′-CD -B 的平面角,即∠A ′OE =α,∵AO =A ′O ,∴∠A ′AO =α2.又A ′D =AD ,∴∠A ′AD =12∠A ′DB .而∠A ′AO 是直线A ′A 与平面ABC 所成的角,由线面角的性质知∠A ′AO <∠A ′AD ,则有α<∠A ′DB .综合有∠A ′DB ≥α,故选B.2.如图,在三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD 和BC 的中点,则异面直线AN, CM 所成的角的余弦值是 78.解析 连接DN ,取DN 的中点H ,连接HM ,由N ,M ,H 均为中点,知|cos ∠HMC |即为所求.因为AB =AC =BD =CD =3,AD =BC =2,又M ,N 为AD ,BC 的中点,所以CM ⊥AD ,AN ⊥BC ,所以CM =CD 2-MD 2=22,AN =AC 2-NC 2=22,MH =12AN =2,HC =NC 2+NH 2=3,则cos ∠HMC =CM 2+MH 2-HC 22CM ·MH =78.故异面直线AN ,CM 所成角的余弦值为78.3.已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b·e 1=2,b·e 2 =52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=__1__,y 0=__2__,|b |= 22 .解析 ∵e 1,e 2是单位向量,e 1·e 2=12,∴cos 〈e 1,e 2〉=12,又∵0°≤〈e 1,e 2〉≤180°,∴〈e 1,e 2〉=60°.不妨把e 1,e 2放到空间直角坐标系Oxyz 的平面xOy 中,设e 1=(1,0,0),则e 2=⎝⎛⎭⎫12,32,0,再设OB →=b =(m ,n ,r ),由b·e 1=2,b·e 2=52,得m =2,n =3,则b=(2,3,r ).而x e 1+y e 2是平面xOy 上任一向量,由|b -(x e 1+y e 2)|≥1知点B (2,3,r )到平面xOy 的距离为1,故可得r =1,则b =(2,3,1),∴|b |=2 2.又由|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1,知x 0e 1+y 0e 2=(2,3,0),解得x 0=1,y 0=2.4.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为 25.解析 如图,建立空间直角坐标系Axyz ,设AB =2,QM =m (0≤m ≤2),则F (2,1,0),E (1,0,0),M (0,m,2)(0≤m ≤2).AF →=(2,1,0),ME →=(1,-m ,-2), cos θ=|cos 〈AF →,ME →〉|=⎪⎪⎪⎪⎪⎪AF →·ME →|AF →|·|ME →|=⎪⎪⎪⎪⎪⎪⎪⎪2-m 5·m 2+5=|m -2|5m 2+25.设y =(m -2)25m 2+25,则y ′=2(m -2)(5m 2+25)-(m -2)2·10m (5m 2+25)2=(m -2)[(10m 2+50)-(m -2)·10m ](5m 2+25)2=(m -2)(50+20m )(5m 2+25)2.当0<m <2时,y ′<0,∴y =(m -2)25m 2+25在(0,2)上单调递减.∴当m =0时,y 取最大值, 此时cos θ取最大值,(cos θ)max =|0-2|5×02+25=25. 5.如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,M 为AB 的中点,O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .解析 由题意,AB ,AD ,AE 两两垂直,以A 为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝⎛⎭⎫12,0,0,O ⎝⎛⎭⎫12,12,12.(1)OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0), 所以OM →·BA →=0,所以OM →⊥BA →.因为棱柱ADE -BCF 是直三棱柱,所以AB ⊥平面BCF ,所以BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,所以OM ∥平面BCF . (2)设平面MDF 与平面EFCD 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).因为DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0), 由n 1·DF →=n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,解得⎩⎨⎧y 1=12x 1,z 1=-12x 1,令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12.同理可得n 2=(0,1,1). 因为n 1·n 2=0,所以平面MDF ⊥平面EFCD .6.(教材回归)如图,四棱锥P -ABCD 中,底面ABCD 为梯形,PD ⊥底面ABCD ,AB ∥CD ,AD ⊥CD ,AD =AB =1,BC = 2.(1)求证:平面PBD ⊥平面PBC ;(2)设H 为CD 上一点,满足CH →=2HD →,若直线PC 与平面PBD 所成的角的正切值为63,求二面角H -PB -C 的余弦值.解析 (1)证明:由AD ⊥CD ,AB ∥CD ,AD =AB =1,可得BD = 2. 又BC =2,所以CD =2,所以BC ⊥BD .因为PD ⊥底面ABCD ,所以PD ⊥BC ,又PD ∩BD =D , 所以BC ⊥平面PBD , 所以平面PBD ⊥平面PBC .(2)由(1)可知∠BPC 为PC 与平面PBD 所成的角, 所以tan ∠BPC =63,所以PB =3,PD =1. 由CH →=2HD →及CD =2,可得CH =43,DH =23.以点D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立如图所示空间直角坐标系.则B (1,1,0),P (0,0,1),C (0,2,0),H ⎝⎛⎭⎫0,23,0. 设平面HPB 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧HP →·n =0,HB →·n =0,即⎩⎨⎧-23y 1+z 1=0,x 1+13y 1=0,取y 1=-3,则n =(1,-3,-2). 设平面PBC 的法向量为m =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧PB →·m =0,BC →·m =0,即⎩⎪⎨⎪⎧x 2+y 2-z 2=0,-x 2+y 2=0,取x 2=1,则m =(1,1,2). 又cos 〈m ,n 〉=m·n |m||n|=-217, 故观察图形知二面角H -PB -C 的余弦值为217. 7.(母题营养)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点.(1)求证:MN ∥平面ABCD ; (2)求二面角D 1-AC -B 1的正弦值;(3)设E 为棱A 1B 1上的点.若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E的长.解析 如图,以A 为原点建立空间直角坐标系,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),A 1(0,0,2),B 1(0,1,2),C 1(2,0,2),D 1(1,-2,2).又因为M ,N 分别为B 1C 和D 1D 的中点,得M ⎝⎛⎭⎫1,12,1,N (1,-2,1).(1)证明:依题意,可得n =(0,0,1)为平面ABCD 的一个法向量.MN →=⎝⎛⎭⎫0,-52,0,由此可得MN →·n =0,又因为直线MN ⊄平面ABCD ,所以MN ∥平面ABCD .(2)AD 1→=(1,-2,2),AC →=(2,0,0). 设n 1=(x 1,y 1,z 1)为平面ACD 1的法向量, 则⎩⎪⎨⎪⎧n 1·AD 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧x 1-2y 1+2z 1=0,2x 1=0.不妨设z 1=1,可得n 1=(0,1,1).设n 2=(x 2,y 2,z 2)为平面ACB 1的法向量,则⎩⎪⎨⎪⎧n 2·AB 1→=0,n 2·AC →=0,又AB 1→=(0,1,2),得⎩⎪⎨⎪⎧y 2+2z 2=0,2x 2=0.不妨设z 2=1,可得n 2=(0,-2,1). 因此有cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-1010, 于是sin 〈n 1,n 2〉=31010.所以二面角D 1-AC -B 1的正弦值为31010.(3)依题意,可设A 1E →=λA 1B 1→,其中λ∈[0,1], 则E (0,λ,2),从而NE →=(-1,λ+2,1). 又n =(0,0,1)为平面 ABCD 的一个法向量, 由已知,得cos 〈NE →,n 〉=NE →·n |NE →|·|n |=1(-1)2+(λ+2)2+12=13,整理得λ2+4λ-3=0, 又因为λ∈[0,1],解得λ=7-2. 所以,线段A 1E 的长为7-2.8.如图,在四棱锥S -ABCD 中,底面ABCD 为梯形,AD ∥BC ,AD ⊥平面SCD ,AD =DC =2,BC =1,SD =2,∠SDC =120°.(1)求SC 与平面SAB 所成角的正弦值;(2)求平面SAD 与平面SAB 所成的锐二面角的余弦值.解析 如图,在平面SCD 中,过点D 作DC 的垂线交SC 于E ,以D 为原点,DA ,DC ,DE 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.则有D (0,0,0),S (0,-1,3),A (2,0,0),C (0,2,0),B (1,2,0). (1)设平面SAB 的法向量为n =(x ,y ,z ),∵AB →=(-1,2,0),AS →=(-2,-1,3),AB →·n =0,AS →·n =0,∴⎩⎪⎨⎪⎧-x +2y =0,-2x -y +3z =0,取y =3,得n =(23,3,5). 又SC →=(0,3,-3),设SC 与平面SAB 所成角为θ, 则sin θ=|cos 〈SC →,n 〉|=2323×210=1020,故SC 与平面SAB 所成角的正弦值为1020. (2)设平面SAD 的法向量为m =(a ,b ,c ), ∵DA →=(2,0,0),DS →=(0,-1,3),则有⎩⎪⎨⎪⎧2a =0,-b +3c =0,取b =3,得m =(0,3,1).∴cos 〈n ,m 〉=n·m|n|·|m|=8210×2=105, 故平面SAD 与平面SAB 所成的锐二面角的余弦值是105.9.(数学文化)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P -ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,过棱PC 的中点E ,作EF ⊥PB 交于点F ,连结DE ,DF ,BD ,BE .(1)证明:PB ⊥平面DEF 试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.解析 (1)如图,以D 为原点,射线DA ,CD ,DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系.设PD =DC =1,BC =λ,则D (0,0,0),P (0,0,1),B (λ,1,0),C (0,1,0),PB →=(λ,1,-1), 因为点E 是PC 的中点,所以E ⎝⎛⎭⎫0,12,12,DE →=⎝⎛⎭⎫0,12,12, 于是PB →·DE →=0,即PB ⊥DE . 又已知EF ⊥PB ,而DE ∩EF =E , 所以PB ⊥平面DEF .因PC →=(0,1,-1),DE →·PC →=0,所以DE ⊥PC , 所以DE ⊥平面PBC .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB . (2)由PD ⊥平面ABCD ,知DP →=(0,0,1)是平面ABCD 的一个法向量. 由(1)知,PB ⊥平面DEF ,所以BP →=(-λ,-1,1)是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则cos π3=⎪⎪⎪⎪⎪⎪BP →·DP →|BP →|·|DP →|=⎪⎪⎪⎪⎪⎪1λ2+2=12, 解得λ=2,所以DC BC =1λ=22.故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =22.10.(考点聚焦)如图,在四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长. 解析 以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2). (1)因为AD ⊥平面P AB ,所以AD →是平面 P AB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2),设平面PCD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1. 所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面P AB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),Q 是线段BP 上的动点,设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝⎛⎭⎫1t -592+209≤910. 当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010. 因为y =cos x 在⎝⎛⎭⎫0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值. 又因为|BP |=12+22=5,所以|BQ |=25|BP |=255.。
专题15:立体几何高考真题浙江卷赏析(原卷版)

专题15:立体几何高考真题浙江卷赏析(原卷版)题型一:三视图1.2019年浙江省高考数学试卷祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .322.2017年全国普通高等学校招生统一考试数学(浙江卷)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A .+12πB .+32πC .3+12πD .3+32π 3.2014年全国普通高等学校招生统一考试文科数学(浙江卷) 某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cm D .4033cm4.2014年全国普通高等学校招生统一考试文科数学(浙江卷) 某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .B .C .D .5.2014年全国普通高等学校招生统一考试理科数学(浙江卷) 某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A .90B .129C .132D .138题型二:点线面的基本关系6.2011年浙江省普通高等学校招生统一考试文科数学若直线l 不平行于平面a ,且l a ⊄,则 A .a 内的所有直线与l 异面 B .a 内不存在与l 平行的直线 C .a 内存在唯一的直线与l 平行 D .a 内的直线与l 都相交7.(2013•浙江)设m 、n 是两条不同的直线,α、β是两个不同的平面,( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥β C .若m ∥n ,m ⊥α,则n ⊥α D .若m ∥α,α⊥β,则m ⊥β8.2014年全国普通高等学校招生统一考试文科数学(浙江卷) 设、是两条不同的直线,、是两个不同的平面,则( )A .若,,则B .若,,则C .若,,,则D .若,,,则9.2015年全国普通高等学校招生统一考试文科数学(浙江卷)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβD .若//αβ,则//l m10.2016年全国普通高等学校招生统一考试文科数学(浙江卷)已知互相垂直的平面αβ,交于直线l.若直线m ,n 满足m ∥α,n ⊥β,则 A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n题型三:夹角问题11.浙江省2019年普通高等学校招生全国统一考试数学试题已知三棱锥P ABC -中,ABC ∆为正三角形,PA PB PC >>,且P 在底面ABC 内的射影在ABC ∆的内部(不包括边界),二面角PAB C ,二面角P BC A --,二面角P AC B --的大小分别为α,β,γ,则( ) A .αβγ>>B .γαβ>>C .αγβ<<D .αβγ<<12.2015年全国普通高等学校招生统一考试理科数学(浙江卷)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD ∆',所成二面角A CD B '--的平面角为α,则( )A .A DB α∠'≤ B .A DB α∠'≥C .A CB α∠'≤D .A CB α∠'≤13.2017年全国普通高等学校招生统一考试数学(浙江卷)如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B14.2018年全国普通高等学校招生统一考试数学(浙江卷)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( ) A .123θθθ≤≤ B .321θθθ≤≤ C .132θθθ≤≤ D .231θθθ≤≤15.2020年浙江省高考数学试卷如图,三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.。
专题15 立体几何高考真题浙江卷赏析(解析版)-2021年高考数学立体几何中必考知识专练
专题15:立体几何高考真题浙江卷赏析(解析版)题型一:三视图1.2019年浙江省高考数学试卷祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .32【答案】B 【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查. 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.2.2017年全国普通高等学校招生统一考试数学(浙江卷)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A .+12πB .+32πC .3+12πD .3+32π 【答案】A 【解析】由三视图可知几何体为半个圆锥和一个三棱锥的组合体, ∴2111V 1213322π⎛⎫=+ ⎪⎝⎭=12π+,故选A. 3.2015年全国普通高等学校招生统一考试文科数学(浙江卷) 某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cm D .4033cm 【答案】C 【解析】试题分析:由三视图可知该几何体是四棱柱与同底的四棱锥的组合体,所以其体积为,故应选C.考点:三视图及体积的计算.4.2014年全国普通高等学校招生统一考试文科数学(浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.B.C.D.【答案】B【解析】试题分析:由三视图知,原几何体是由一个长方体与一个三棱柱组成,其体积为,故选B.考点:根据三视图还原几何体,求原几何体的体积,容易题.5.2014年全国普通高等学校招生统一考试理科数学(浙江卷)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是A.90B.129C.132D.138【答案】D【解析】试题分析:分析题意可知,该几何体为三棱柱与长方体的组合,其表面积=⨯+⨯+⨯⨯+⨯⨯⨯+⨯+⨯-=S c m (644363)212342435332138(2),故选D.考点:1.三视图;2.空间几何体的表面积.题型二:点线面的基本关系6.2011年浙江省普通高等学校招生统一考试文科数学,则若直线l不平行于平面a,且l aA.a内的所有直线与l异面B.a内不存在与l平行的直线C.a内存在唯一的直线与l平行D.a内的直线与l都相交【答案】B【解析】试题分析:根据线面关系的定义,我们根据已知中直线l不平行于平面α,且l⊄α,判断出直线l与α的关系,利用直线与平面相交的定义,我们逐一分析四个答案,即可得到结论.解:直线l不平行于平面α,且l⊄α,则l与α相交l与α内的直线可能相交,也可能异面,但不可能平行故A,C,D错误故选B.考点:平面的基本性质及推论.7.(2013•浙江)设m、n是两条不同的直线,α、β是两个不同的平面,()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β【答案】C【解析】A、m∥α,n∥α,则m∥n,m与n可能相交也可能异面,所以A不正确;B、m∥α,m∥β,则α∥β,还有α与β可能相交,所以B不正确;C、m∥n,m⊥α,则n⊥α,满足直线与平面垂直的性质定理,故C正确.D、m∥α,α⊥β,则m⊥β,也可能m∥β,也可能m∩β=A,所以D不正确;故选C.8.2014年全国普通高等学校招生统一考试文科数学(浙江卷)设、是两条不同的直线,、是两个不同的平面,则()A .若,,则B .若,,则C .若,,,则D .若,,,则【答案】C 【解析】试题分析:对A ,若,,则或或,错误;对B ,若,,则或或,错误;对C ,若,,,则,正确; 对D ,若,,,则或或,错误.故选C.考点:空间中的线线、线面、面面的位置关系,容易题.9.2015年全国普通高等学校招生统一考试文科数学(浙江卷)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m【答案】A 【解析】试题分析:由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得l β⊥,l α⊂ 可得αβ⊥考点:空间线面平行垂直的判定与性质 10.2016年全国普通高等学校招生统一考试文科数学(浙江卷)已知互相垂直的平面αβ,交于直线l.若直线m ,n 满足m ∥α,n ⊥β,则 A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n【答案】C 【解析】 试题分析:由题意知,l l αββ⋂=∴⊂,,n n l β⊥∴⊥.故选C .【考点】空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.题型三:夹角问题11.浙江省2019年普通高等学校招生全国统一考试数学试题已知三棱锥P ABC -中,ABC ∆为正三角形,PA PB PC >>,且P 在底面ABC 内的射影在ABC ∆的内部(不包括边界),二面角PAB C ,二面角P BC A --,二面角P AC B --的大小分别为α,β,γ,则( ) A .αβγ>> B .γαβ>>C .αγβ<<D .αβγ<<【答案】C 【分析】作出三个二面角,再根据PA PB PC >>,确定二面角大小. 【详解】设P 在底面ABC 内的射影为O ,过O 分别作AB,BC,CA 垂线,垂足分别为D,E,F,则PDO α=∠,PEO β=∠,PFO γ=∠,从而tan PO OD α=,tan PO OE β=,tan POOFγ=, 因为PA PB PC >>,所以OA OB OC >>, O D OF OE >>,即tan tan tan αγβ<<,即αγβ<<,选C. 【点睛】本题考查二面角,考查基本分析与判断能力,属中档题.12.2015年全国普通高等学校招生统一考试理科数学(浙江卷)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD ∆',所成二面角A CD B '--的平面角为α,则( )A .A DB α∠'≤ B .A DB α∠'≥C .A CB α∠'≤D .A CB α∠'≤【答案】B 【详解】设ADC θ∠=,设2AB =,则由题意1AD BD ==,在空间图形中,设A B t '=,在A DB ∆'中,2222222112cos 22112A D DB AB t t A DB A D DB +-+--∠===⨯'⨯''⨯, 在空间图形中,过A '作AN DC ⊥,过B 作BM DC ⊥,垂足分别为N ,M , 过N 作//NP MB ,连结A P ',∴NP DC ⊥,则A NP ∠'就是二面角A CD B '--的平面角,∴A NP α∠'=, 在Rt A ND ∆'中,cos cos DN A D A DC θ=∠='',,同理,sin BM PN θ==,cos DM θ=,故2cos BP MN θ==, 显然BP ⊥面A NP ',故BP A P ⊥',在Rt A BP ∆'中,2222222(2cos )4cos A P A B BP t t θθ=-==-'-', 在A NP ∆'中,222cos cos 2A N NP A P A NP A N NP α'''∠'+-==⨯2222sin sin (4cos )2sin sin t θθθθθ+--=⨯ 222222222222cos 2cos 1cos cos 2sin 2sin sin sin sin t t A DB θθθθθθθθ+--==+=∠+', ∵210sin θ>,22cos 0sin θθ≥,∴cos cos A DB α≥∠'(当2πθ=时取等号), ∵,[0,]A DB π∠∈',而cos y x =在[0,]π上为递减函数,∴A DB α≤∠',故选B.考点:立体几何中的动态问题13.2017年全国普通高等学校招生统一考试数学(浙江卷)如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B 【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<,所以选B .【名师点睛】立体几何是高中数学中的重要内容,也是高考重点考查的考点与热点.这类问题的设置一般有线面位置关系的证明与角度距离的计算等两类问题.解答第一类问题时一般要借助线面平行与垂直的判定定理进行;解答第二类问题时先建立空间直角坐标系,运用空间向量的坐标形式及数量积公式进行求解. 14.2018年全国普通高等学校招生统一考试数学(浙江卷)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( ) A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤【答案】D 【分析】分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系. 【详解】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO 、SN 、OM ,则SO 垂直于底面ABCD ,OM 垂直于AB ,因此123,,,SEN SEO SMO θθθ∠=∠=∠= 从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OMθθθ==== 因为SN SO EO OM ≥≥,,所以132tan tan tan ,θθθ≥≥即132θθθ≥≥,选D.【点睛】线线角找平行,线面角找垂直,面面角找垂面.15.2020年浙江省高考数学试卷如图,三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I )证明:EF ⊥DB ;(II )求DF 与面DBC 所成角的正弦值.【答案】(I )证明见解析;(II )3【分析】(I )作DH AC ⊥交AC 于H ,连接BH ,由题意可知DH ⊥平面ABC ,即有DH BC ⊥,根据勾股定理可证得BC BH ⊥,又//EF BC ,可得DH EF ⊥,BH EF ⊥,即得EF ⊥平面BHD ,即证得EF DB ⊥;(II )由//DF CH ,所以DF 与平面DBC 所成角即为CH 与平面DBC 所成角,作HG BD ⊥于G ,连接CG ,即可知HCG ∠即为所求角,再解三角形即可求出DF 与平面DBC 所成角的正弦值. 【详解】(Ⅰ)作DH AC ⊥交AC 于H ,连接BH . ∵平面ADFC ⊥平面ABC ,而平面ADFC平面ABC AC =,DH ⊂平面ADFC ,∴DH ⊥平面ABC ,而BC ⊂平面ABC ,即有DH BC ⊥. ∵45ACB ACD ∠=∠=︒,∴2CD BC CH ==⇒=.在CBH 中,22222cos 45BH CH BC CH BC BC =+-⋅︒=,即有222BH BC CH +=,∴BH BC ⊥.由棱台的定义可知,//EF BC ,所以DH EF ⊥,BH EF ⊥,而BH DH H =,∴EF ⊥平面BHD ,而BD ⊂平面BHD ,∴EF DB ⊥.(Ⅱ)因为//DF CH ,所以DF 与平面DBC 所成角即为与CH 平面DBC 所成角. 作HG BD ⊥于G ,连接CG ,由(1)可知,BC ⊥平面BHD , 因为所以平面BCD ⊥平面BHD ,而平面BCD平面BHD BD =,HG ⊂平面BHD ,∴HG ⊥平面BCD .即CH 在平面DBC 内的射影为CG ,HCG ∠即为所求角.在Rt HGC △中,设BC a =,则CH =,BH DH HG a BD ⋅===,∴sin3HG HCG CH ∠===.故DF 与平面DBC 所成角的正弦值为3.中学教育【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题.中学教育。
高中文科数学立体几何知识点总结
立体几何学问点整理(文科)一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。
mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。
mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。
若αα⊥⊥ml,,则ml//。
方法四:用向量方法:若向量l和向量m共线且l、m不重合,则ml//。
2.线面平行:方法一:用线线平行实现。
ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。
αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。
若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。
3.面面平行:方法一:用线线平行实现。
βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。
βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlmll三.垂直关系: 1. 线面垂直:方法一:用线线垂直实现。
αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,方法二:用面面垂直实现。
αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。
βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。
3. 线线垂直:方法一:用线面垂直实现。
m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。
PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量l 和向量m 的数量积为0,则m l ⊥。
三. 夹角问题。
(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
步骤2:解三角形求出角。
(常用到余弦定理) 余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。
浙江版高三数学二轮复习精品资料文科第二部分解答题3立体几何
知识点3:立体几何 【5年真题】04(19)如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB=2,AF=1,M 是线段EF 的中点. (Ⅰ)求证AM∥平面BDE ; (II )求证AM⊥平面BDF ; (III )求二面角A —DF —B 的大小;05(18)如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC .(Ⅰ)求证:OD ∥平面PAB ;(II )求直线OD 与平面PBC 所成角的大小.PODC06(17)如图,在四棱锥ABCD P -中,底面为直角梯形,︒=∠90,//BAD BC AD ,⊥PA 底面ABCD ,且BC AB AD PA 2===,N M ,分别为PB PC ,的中点.(Ⅰ) 求证:DM PB ⊥;(II ) 求BD 与平面ADMN 所成的角。
07(20) 在如图所示的几何体中,⊥EA 平面ABC ,⊥DB 平面ABC ,BC AC ⊥,且AE BD BC AC 2===,M 是AB 的中点.(I )求证:EM CM ⊥;(II )求DE 与平面EMC 所成的角的正切值.E DCMAB08(20)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∠∠︒903︒60ABCD1,2==ADABE CD ADE∆AE⊥ADE ABCE D-⊥BE ADE BDABCD BDADCDCB⊥=,⊥PA ABCD NM,PCAB,//MN PAD︒=∠45PDA ⊥MN PCD111CBAABC-12AAAB=D11CA//1BC DAB1⊥CA1DAB1 ABCDP-.,21,,//PCBCABDCADABADABCD⊥==⊥BCPA⊥PB M//CM PAD ABCDP-ABCD⊥PAD ABCD PDPA=PD ABCD︒45⊥PA PDC E AB PD Q//EQ?PBC Q ABCDP-⊥PAD ABCD DCAB//PAD∆82==ADBD542==DCAB M PC⊥MBD PAD ABCDP-1111DCBAABCD-PADABCDP∆-,P ABCD AD E442,90===︒=∠DCADBCADC PACD⊥BP ABCD ABCDP-1111DCBAABCD-6,2==PAAB11DBPA⊥PA11BBDDθABCV-⊥VC ABC DBCAC,⊥AB BCAC=)20(πθθ<<=∠VDC⊥VAB VCDθBC VAB 6πABCDP-ABCD⊥PA ABCD FEABC,,60︒=∠PCBC,PDAE⊥H PDEH PAD26ABCDP-ABCDP-⊥PA ABCD ADAB⊥CDAC⊥︒=∠60ABC BCABPA==E PC AECD⊥⊥PD ABE CPDA--ABCDABDEBADDCAB⊥︒=∠==,45,1,3ADE∆DE EBAE⊥,,ABAC M AB⊥BCAEC EM ACDABCDABDEBADDCAB⊥︒=∠==,45,1,3ADE∆DE EBAE⊥ABAC,⊥ADE ACD AB M EMC1:2:=MECBADCMEVVM AD EMC FE,ABCD CDAB,G EF,GAB∆GCD∆CDAB,,1ABG∆CDG2∆21GG⊥ABG1ABCD ADGG//21ADGG<212BG⊥ABG121ADGG 12=AB25=BC8=EG2BG21ADGG6F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE。
高考命题的最高境界——以2009年浙江省高考文科立体几何解答题为例
相 互转 化 的过 程认识 空 间几何 体. 些数 学 活动是 这 培 养学 生空 间想象 能 力 的有效 途 径. 只有 这 样 , 立 体 几何 的教 学 目标才 更加 全面. 教师 和学 生应 该 了解 正视 图 、 视 图 、 视 图 侧 俯 的“ 放 ” 置 , 摆 位 以及 “ 长对 正 、 高平 齐 、 相 等 ” 宽 的 要求 , 但尺 寸 、 条 、 线 具体 怎么 画不作 严格 要求 .
-
3 0・
中学教研 ( 学) 数
20 0 9盎
高 考 命 题 的 最 高 境 界
— —
以 20 0 9年浙江省高考文科立体几何解答题 为例
●何豪明 ( 衢州高级中 学 浙江衢州 340) 2 6 0
增加 三 视 图的有关 内容 , 于进一 步培 养学 生 对 的 空 间想 象 能力 和 几 何 直观 能力 具 有重 要 的促 进 作用 , 全 面 把 握 空 间几 何 体 结 构 特 征 的 重 要 途 是 径. 相对 以往 的立体 几 何 内容来 说 , 这方 面 比较 薄
在 教学 中, 把握 “ 观感 受 、 作 确 认 ” 应 直 操 的要
求, 不要在证 明、 应用上做过多 的文章 ,进一步 的 “
提高” 以在选修系列 ( 可 。 考生不作要求 ) 文科 的学
习 中完 成. 22 三视 图的教 学 建议 .
“ 三垂线定理 ” 在整个高中立体几何 中的地位和作
一
面 A C E ∥D ,C= C= B ,B C A B
E B = 2 DC = 2. L AC = B
背 了“ 课标 ” 的要求.
在教学中, 很多 内容“ 到为止” 要求不高 , 点 ,