数列求和的基本方法和技巧

合集下载

专题--数列求和的基本方法和技巧(学生版)

专题--数列求和的基本方法和技巧(学生版)

数列求和的基本方法与技巧一、利用常用求和公式求和:利用下列常用求和公式求和是数列求和的最基本最重要的方法。

1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+= 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S n k n 5、213)]1(21[+==∑=n n k S nk n 例1 金榜108页典例1二、错位相减法求和:这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求各项是由一个等差数列和一个等比数列的对应项之积构成的数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列。

例2. 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①例3.设数列{}n a 满足21112,32n n n a a a -+=-= ,(1)求数列{}n a 的通项公式;(2)令n n b na =,求数列的前n 项和n S 。

变式练习:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和。

三、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。

形如:①{}n n b a +,其中{}{}⎩⎨⎧是等比数列;是等差数列;n n b a ②()()⎩⎨⎧∈=-==*Nk k n n g k n n f a n ,2,,12, 例 4.已知数列{}n a 的通项公式为,132-+=n a n n 求数列{}n a 的前n 项和.变式练习: 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…1n n c a a +⎧⎫⎨⎬⎩⎭四、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。

数列求和的九种方法

数列求和的九种方法

数列求和的九种方法数列求和是数学中的一项基本技巧,在解题过程中经常会遇到。

为了求和一个数列,我们需要确定数列的通项公式,即根据数列中的规律找到一个表示该数列的函数。

在数列求和的过程中,有许多不同的方法可以使用。

下面将介绍九种常见的数列求和方法:逐项相加法、换元法、望眼法、边缘和法、归纳法、递推法、辅助行法、减法求和法和计算机辅助法。

1.逐项相加法逐项相加法是最基本的数列求和方法,即将数列中的每一项相加得到总和。

这种方法适用于数列的项数较少且没有明显的规律的情况。

2.换元法换元法是将数列中的每一项用一个新的变量表示,从而简化数列求和。

通过代入和逆代(将通项公式反解为原始项)两种方法,将数列求和转化为变量求和,从而计算出数列的总和。

3.望眼法望眼法是通过观察数列中的规律,寻找数列中的重复子列来简化求和。

通过找到重复子列后可以将数列分解为几个相同的子列求和,从而简化计算。

4.边缘和法边缘和法是将数列中的每一项的和用前面项的和表示,从而将数列求和转化为前缀和的计算。

该方法适用于数列中的每一项与前面的项之间有明显的关系的情况。

5.归纳法归纳法是通过数学归纳法的思想,利用数列的递推关系来计算数列的总和。

通过假设前n-1项的和为Sn-1,并推导得到前n项的和Sn的表达式,从而计算数列的总和。

6.递推法递推法是通过数列的递推关系来计算数列的总和。

通过将数列中的每一项与前面的项之间的关系列出,从而将数列的求和转化为递推关系的计算。

7.辅助行法辅助行法是将数列构造成一个表格的形式,通过辅助行的计算来求解数列的总和。

通过辅助行的计算,可以将原本复杂的数列求和转化为简单的表格求和。

8.减法求和法减法求和法是通过将数列求和转化为数列的差的求和来计算数列的总和。

通过将数列中相邻项之间的差进行求和,从而求解数列的总和。

9.计算机辅助法计算机辅助法是利用计算机的计算能力来求解复杂的数列求和问题。

通过编写计算机程序来实现数列求和,从而计算出数列的总和。

数列求和方法

数列求和方法

数列求和方法数列是高中数学的重要组成部分,在高考和各类数学竞赛中发挥着重要作用。

级数求和是级数的重要内容之一。

除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。

今天学姐就简单介绍一下数列求和的基本方法和技巧。

第一类:公式法用以下几种常见的求和公式求和,是数列求和最基本也是最重要的方法。

第二类:乘公比错项相减(等差×等比)这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

解析:数列{cn}是由数列{an}与{bn}对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行分类讨论,最后再综合成三种情况。

第三类:裂项相消法这就是分解组合思想在数列求和中的具体应用。

裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如:分析:第一,要观察通项的类型。

在对拆分项求和时,我们应该特别注意第一项和第二项是否像例2那样被保留,或者像例3那样被保留四项。

第四类:倒序相加法这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)。

解析:这种类型的关键是抓住距离数列首尾等距离的两项之和相等这一特征进行逆序相加。

这个例子不仅使用了逆序加法,还使用了拆分项的消去法。

在数列问题中,要学会灵活运用不同的方法去解决。

第五类:分组求和法有一种数列,既不是等差数列,也不是等比数列。

这类数列如果适当分解,可以分解成几个等差、等比例或常见的数列,然后分别求和,再组合。

第六类:拆项求和法同学们如果想知道更多解题技巧,可以到()领一份《逆向学习法》,包含高中九大科目高分技巧与答题模板,例如“十分钟搞定数学选择题”、“玩转物理电磁场”等等,已经帮助很多同学考上了理想的大学,感兴趣的同学们抓紧领取吧!。

数列求和的七种基本方法

数列求和的七种基本方法

数列求和的七种基本方法数列求和是数学中常见的问题之一,它在各个领域都有广泛的应用。

本文将介绍数列求和的七种基本方法,包括等差数列求和、等比数列求和、算术平方平均数列求和、等差等比混合数列求和、调和数列求和、几何级数求和和级数求和。

通过了解和掌握这些方法,相信读者能更好地解决数列求和问题。

一、等差数列求和等差数列是指一个数列中的每两个相邻的项之差都相等。

求和等差数列的公式为:Sn = n(a1+an)/2,其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数。

二、等比数列求和等比数列是指一个数列中的每两个相邻的项之比都相等。

求和等比数列的公式为:Sn=a1(1-q^n)/(1-q),其中Sn是数列的和,a1是第一个数,q是公比,n是项数。

三、算术平方平均数列求和算术平方平均数列是指一个数列中的每两个相邻的项的算术平方平均数都相等。

求和算术平方平均数列的公式为:Sn=n(2a1+(n-1)d)/2,其中Sn是数列的和,n是项数,a1是第一个数,d是公差。

四、等差等比混合数列求和等差等比混合数列是指一个数列中的每两个相邻的项之比和差都相等。

求和等差等比混合数列的公式为:Sn = (a1+an)/2*n+(q^n-1)/(q-1),其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数,q是公比。

五、调和数列求和调和数列是指一个数列中的每一项的倒数都与它的序号之比都相等。

求和调和数列的公式为:Sn=Hn/a,其中Sn是数列的和,Hn是调和数列的第n项,a是常数。

六、几何级数求和几何级数是指一个数列中的每个数都与前一项的比值都相等。

求和几何级数的公式为:Sn=a*(1-q^n)/(1-q),其中Sn是数列的和,a是第一个数,q是比值,n是项数。

七、级数求和级数是无穷多个数连加的结果,求和级数的公式为:Sn=a/(1-r),其中Sn是级数的和,a是第一个数,r是比值。

这七种基本的数列求和方法能够解决大部分数列求和问题。

数列求和的八种方法及题型

数列求和的八种方法及题型

数列求和的八种方法及题型1、抽象加法法:把等差数列的元素抽象为某一个相同的数值(称为项数,式子为S),通过加法求出所求等差数列的和。

例题:这样一个等差数列:2、4、6、8……100,求这一数列的和是多少?答案:抽象加法法:元素个数n = 99,公差d = 2,首项a = 2。

由公式S=n*(a+l)/2可得:S = 99*(2+100)/2 = 99*102/2 = 4950。

2、数值加法法:直接对元素逐一加法求和。

例题:计算这一等差数列的和:1、3、5、7……99?答案:数值加法法:元素个数n = 49,即:1+3+5+7+...+99=49*100/2=4900。

3、改编组合法:将数列改编为组合形式,将大式化简,从这个组合计算其和。

例题:求这一等差数列的和:2、5、8、11……99?答案:改编组合法:元素个数n = 48,公差d = 3,首项a = 2。

将其转换为组合:2+48d ,即2+(48*3)=150,由公式S=n*(a+l)/2可得:S = 48*(2+150)/2 = 48*152/2 = 7344。

4、数表法:把数列列成表,统计其和。

例题:求这一等差数列的和:3、5、7、9……99?答案:数表法:数列:3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99和:3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+ 45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83 +85+87+89+91+93+95+97+99=24505、立方法:一种特殊情形——这一数列两个元素的值等于这两个元素之间的位数的立方和。

数列求和的8种常用方法

数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。

下面将介绍数列求和的8种常用方法。

1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。

例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。

例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。

首项与末项之和等于和的平均数乘以项数。

例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。

等差数列的和等于首项乘以项数,再加上项数与公差之积的和。

例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。

5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。

平均数等于数列中的第一项与最后一项的平均值。

例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。

首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。

例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。

可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。

例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。

高中数学:求数列前n项和的七种方法和技巧

高中数学:求数列前n项和的七种方法和技巧我们不要关心求数列n项和的问题会不会在高考题或有关考试题中出现,当然出现的机会确是很高的。

关键的是通过学习和探讨求数列前n项和的方法去领悟学习和思考的方法。

几种求和的方法把数学变形和分析、归纳总结、化繁为简、化难为易等思想融合在一起,使思维得到一次系统的训练和提高。

头脑的开化和思维的提升才是学习的主要目的。

求数列前n项的和,通常有下列七种方法和技巧。

一、利用等差数列和等比数列的求和公式例1、求数列例2、求数列5, 55,555,5555,…,,……的前项和。

解:∵∴二、用倒序相加法推导等差数列的前n项和公式的方法是倒序相加法。

这个方法可以类推到一般,只要前n项具有与两端等距离项的和相等的数列这种特征都可用这种方法求和。

例3、已知是等差数列,求和。

解:∵①即②由①+②,得:∵∴由等差数列的性质,易得:故于是三、利用错位相减法错位相减法是一种常用的数列求和方法,主要应用于等比数列与等差数列相乘的形式。

形如,其中为等差数列,为等比数列,公比为q;列出,再把所有式子同时乘以等比数列的公比,即;然后错一位,两式相减即可。

例4、求数列的前n求和(x≠0,x≠1)。

解:设①则②由①-②,得:于是四、用化差相减法适用于分式形式的通项公式,基本原理是把一项拆成两个或多个的差的形式,即,然后累加时中间的许多项可以抵消。

裂项凑错位相加特征,注意前后式子相等,如果不相等就要乘以一个系数。

常用公式:,,,(a≠0),例5、求数列的前n求和。

解:例6、求数列。

解:∵∴基本原理点拨:代数式变形凑相消特征:,由此可联想求更高次方幂的n项和。

如:至此,一般规律就出现了,通过变形整理便可求出的n 项的和,以此类推,求n次方幂的问题就能彻底解决。

从而五、利用组合数求和公式法利用这个组合数公式,求某些特殊数列的前n和颇为方便。

因为,则。

例7、求数列解:∵,∴例8、求数列。

解:∵。

∴,六、用数学归纳法例9、求数列的前n项和。

数列求和7种方法(方法全_例子多)

1、等差数列求和公式:
2、等比数列求和公式:
3、 4、
5、
[例1]已知 ,求 的前n项和.
解:由等比数列求和公式得 (利用常用公式)
= = =1-
[例2]设Sn=1+2+3+…+n,n∈N*,求 的最大值.
解:由等差数列求和公式得 , (利用常用公式)
∴ =
= =
∴ 当 ,即n=8时,
二、错位相减法求和

题1已知函数
(1)证明: ;
(2)求 的值.
解:(1)先利用指数的相关性质对函数化简,后证明左边=右边
(2)利用第(1)小题已经证明的结论可知,
两式相加得:
所以 .
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
.
练习题2。 =
答案:
求数列通项公式的常用方法
(1)求差(商)法
[练习]数列 满足 ,求
注意到 ,代入得 ;又 ,∴ 是等比数列,
时,
(2)叠乘法
如:数列 中, ,求
解 ,∴ 又 ,∴ .
(3)等差型递推公式
由 ,求 ,用迭加法
时, 两边相加得

[练习]数列 中, ,求 ( )
已知数列 满足 , ,求 。
(1)求数列 和 的通项公式;
(2)若数列{ 前n项和为 ,问 > 的最小正整数n是多少?
0.【 成等比数列, ,所以 ;
又公比 ,所以 ;
又 , , ;
数列 构成一个首相为1公差为1的等差数列, ,
当 , ;
( );
(2)

数列求和的基本方法

数列求和的基本方法数列是高中数学的重要内容,又是学习高等数学的基础,在高考中占有重要的地位。

近年来高考中的数列题难度有降低的趋势,主要以考查等差数列和等比数列为主,解答题则主要考查求数列通项与求和为主,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。

下面,具体谈谈数列求和的基本方法和技巧.一、公式法求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn[例1] 已知5log 1log 25-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 分析,先由已知等式求出x 的值,再利用等比数列的求和公式进行求和。

解:由212log log 5log 1log 5525=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) 法一 ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88=n ,即n =8时,501)(max =n f法二∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++501346421=+⨯≤nn 当且仅当n n 64=,即n=8时,501)(max =n f 二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:1322)12(2725231-∙-+⋅⋅⋅+⨯+⨯+⨯+=n n n S ………………………①解:由题可知,{12)12(-∙-n n }的通项是等差数列{2n -1}的通项与等比数列{12-n }的通项之积①式两边都乘以2得2nn n S 2)12(.........................252321.....32∙-++⨯+⨯+⨯=……. ② (错位) ①-②得 nn n n S 2)12()2222(21)21(132∙--+⋅⋅⋅++++=-- (相减)再利用等比数列的求和公式得:n n n n S 2)12(21)21(22111∙----⋅+=-- ∴ nn n S 2)32(3∙-+=[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=………………………………........…①143222262422.......21++⋅⋅⋅+++=n n nS ………………………………② (错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (相减)1122212+---=n n n∴ 1224-+-=n n n S三、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)111)1(1+-=+=n n n n a n (2))121121(21)12)(12(1+--=+-=n n n n a n (3)))(11(1)(1k n n k k n n a n +-=+=(4)n n n n a n -+=++=111(5)若{n a }为等差数列,且公差为d, 0≠n a ,则)11(1111nn n n n a a d a a b -=∙=--[例5] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n=)1()23()12(n n -++⋅⋅⋅+-+- (裂项求和) =11-+n [例6] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又11+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(42121+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(4+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(4+-n = 14+n n 四、倒序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(倒序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例7] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (倒序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89 (相加)∴ S =44.5五、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例8] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- 以上五种数列求和的基本方法,在高考中时有出现,特别是公式法,错位相减法,裂项相消法,分组求和法更是考查的重点。

数列求和方法总结

数列求和的基本方法与技巧一、利用常用求和公式求和:利用下列常用求和公式求和是数列求和的最基本最重要的方法。

1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+= 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S n k n 5、213)]1(21[+==∑=n n k S n k n [例1]已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.二、错位相减法求和:这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求“等差比”数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例2] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S …[例3]已知数列}{n a 的前n 项和为n S ,且22n S n n =+,*N n ∈,数列}{n b 满足*,3lo g 42N n b a n n ∈+=. (1)求n a ,n b ; (2)求数列}{n n b a 的前n 项和n T .这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)111)1(1+-=+=n n n n a n (2)()1111;n a n n k k n n k ⎛⎫==- ⎪++⎝⎭(3))121121(21)12)(12(1+--=+-=n n n n a n (4))!1(1!1)!1(+-=+n n n n (5)n n n n a n -+=++=111 (6)()11.n a n k n kn k n ==+-++ (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)121121)12)(12(211---=--++n n n n n (8)n n n n tan )1tan()1cos(cos 1sin -+=+ (7) ,2)1(12121)1()1(221)1(21nn n n n n n n n n n n n n a +-⋅=⋅+-+=⋅++=- [例4] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例5]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++[例6](2010山东理科18) 已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令112-=n n a b (n ∈N *),求数列{}n b 的前n 项和n T .[例7]已知数列}{n a 的各项均为正数,n S 为其前n 项和,且332-=n n a S ,*N n ∈(1)求数列}{n a 的通项公式;(2)设133log log 1+=n n n a a b ,求数列}{n b 前n 项和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 即直接用等差、等比数列的求和公式求和。

1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、 )12)(1(6112++==∑=n n n k S nk n222221(1)(21)1236nk n n n k n =++=++++=∑5、 213)]1(21[+==∑=n n k S nk n2333331(1)1232nk n n k n =+⎡⎤=++++=⎢⎥⎣⎦∑ 1、 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得n n x x x x S +⋅⋅⋅+++=32 =xx x n--1)1(=211)211(21--n =1-n 21 2、 已知数列{},n nn a a x =,(x ≠0),n s 数列的前n 项和,求n s 。

解:当x=1时,n s n = 当x ≠1时,{}na 为等比数列,公比为x 由等比数列求和公式得nn x x x x S +⋅⋅⋅+++=32=xx x n --1)1( 3、 (07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +== ,,,,求数列{}n b 的前n 项和T .解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a q q ==,.又37S =,可知2227q q ++=,即22520q q -+=,解得12122q q ==,.由题意得12q q >∴=,.11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +== ,,,,由(1)得3312n n a += 3ln 23ln 2n n b n ∴==, 又13ln 2n n n b b +-={}n b ∴是等差数列. 12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+=故3(1)ln 22n n n T +=. 4、 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n =n n 64341++=50)8(12+-n n 501≤∴ 当88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.5、 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+6、 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①(设制错位)14322226242221++⋅⋅⋅+++=n n nS ………………………………② ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 1122212+---=n n n ∴ 1224-+-=n n n S7、 (07高考全国Ⅱ文21)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S . 解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=.122135232112222n n n n n S ----=+++++ ,①3252321223222n n n n n S ----=+++++ ,②②-①得22122221222222n n n n S ---=+++++- ,221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭ 1111212221212n n n ----=+⨯--12362n n -+=-.8、 等比数列{n a }的前n 项和为n S ,已知对任意的n N +∈,点(,)n n S 均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(11)当b=2时,记 1()4n nn b n N a ++=∈ 求数列{}n b 的前n 项和n T解:因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.所以得n n S b r =+,当1n =时,11a S b r ==+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-,又因为{n a }为等比数列, 所以1r =-, 公比为b , 所以1(1)n n a b b -=- (2)当b=2时,11(1)2n n n a b b --=-=,111114422n n n n n n n b a -++++===⨯则234123412222nn n T ++=++++ 3451212341222222n n n n n T +++=+++++ 相减,得23451212111112222222n n n n T +++=+++++- 31211(1)112212212n n n -+⨯-++--12311422n n n +++=--所以113113322222n n n n n n T ++++=--=-9、 函数2()f x x x =+,当[,1]()x n n n N *∈+∈时,()f x 的所有整数值的个数为()g n(1)求()g n 的表达式(2)设321123423(),(1)()n n n n n n a n N S a a a a a g n *-+=∈=-+-++- ,求n S(3)设12(),2n n n ng n b T b b b ==+++ ,若()n T l l z <∈,求l 的最小值 解:(1)当[,1]()x n n n N *∈+∈时,函数()f x 单调递增,则()f x 的值域为22[,32]()()23n n n n n N g n n *+++∈⇒=+(2)由(1)得2n a n =当n 为偶数时22222212341(12)(34)[(1)]n n n S a a a a a a n n -=-+-++-=-+-++-- =(1)(123)2n n n +-++++=-当n 为奇数时2222222123421()(12)(34)[(2)(1)]n n n n S a a a a a a a n n n --=-+-++-+=-+-++---+ ==2(1)(1231)2n n n n +-++++-+=1(1)(1)2n n n n S ++∴=- (3)由()2n n g n b =得23579232222n n n T +=++++ 234115792322222nn n T ++=++++ 两式相减得 12311523222727()()22222222n n n n n n T ++++=-++++=- 2772n n n T +⇒=-,则由277,2nnn T l l z +=-<∈,可得l 的最小值为7 10、 (2010四川理)(21)(本小题满分12分)已知数列{a n }满足a 1=0,a 2=2,且对任意m 、n ∈N *都有a 2m -1+a 2n -1=2a m +n -1+2(m -n )2(Ⅰ)求a 3,a 5;(Ⅱ)设b n =a 2n +1-a 2n -1(n ∈N *),证明:{b n }是等差数列;(Ⅲ)设c n =(a n+1-a n )q n -1(q ≠0,n ∈N *),求数列{c n }的前n 项和S n .本小题主要考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.解:(1)由题意,零m =2,n=1,可得a 3=2a 2-a 1+2=6 再令m =3,n =1,可得a 5=2a 3-a 1+8=20… (2)当n ∈N *时,由已知(以n +2代替m )可得a 2n +3+a 2n -1=2a 2n +1+8于是[a 2(n +1)+1-a 2(n +1)-1]-(a 2n +1-a 2n -1)=8 即 b n +1-b n =8所以{b n }是公差为8的等差数列………………………………………………5分(3)由(1)(2)解答可知{b n }是首项为b 1=a 3-a 1=6,公差为8的等差数列则b n =8n -2,即a 2n +=1-a 2n -1=8n -2 另由已知(令m =1)可得a n =2112n a a ++-(n -1)2.那么a n +1-a n =21212n n a a +-+-2n +1 =822n --2n +1=2n 于是c n =2nq n -1.当q =1时,S n =2+4+6+……+2n =n (n +1) 当q ≠1时,S n =2·q 0+4·q 1+6·q 2+……+2n ·qn -1.两边同乘以q ,可得 qS n =2·q 1+4·q 2+6·q 3+……+2n ·q n.上述两式相减得 (1-q )S n =2(1+q +q 2+……+q n -1)-2nq n=2·11n q q ---2nq n =2·11(1)1n n n q nq q+-++-所以S n =2·12(1)1(1)n nnqn q q +-++-综上所述,S n =12(1)(1)(1)12(1)(1)n n n n q nq n q q q ++=⎧⎪-++⎨≠⎪-⎩…………………………12分 11、(安庆市四校元旦联考)(本题满分16分)各项均为正数的数列{}n a 中,n S a ,11=是数列{}n a 的前n项和,对任意*∈N n ,有 )(222R p p pa pa S n n n ∈-+=;⑴求常数p 的值; ⑵求数列{}n a 的通项公式;⑶记n nn n S b 234⋅+=,求数列{}n b 的前n 项和T 。

相关文档
最新文档