单晶高温合金dd6高温显微组织演化规律研究
DD6合金1100℃低周疲劳行为

DD6合金1100℃低周疲劳行为张仕朝;李旭东;于慧臣;侯学勤【摘要】The total strain-controlled low cycle fatigue(LCF)behaviors of a single crystal superalloy DD6 at 1100 ℃ for R= -1 and 0. 05 were investigated. The results of LCF tests indicated that the cyclic hardening/softening behavior of the alloy not only has the re-lationship with the microstructure of the material,but also the loading status. The mean stress relaxation occurred under asymmetric straining. The rate of mean stress relaxation increased with the increasing of strain amplitude;when R= -1,the alloy shows tension-compression asymmetry behavior. All the LCF data obtain under various ratios were well correlated by three models for lifetime predic-tion,the precision rates predicted are fallen into the factor of ± 2 tim es scatter band.%研究了1100℃下镍基单晶高温合金DD6不同应变比(R=-1,0.05)下的低周疲劳行为.结果表明:材料的循环软化/硬化行为不仅与材料本身的微观结构有关,还与加载状态有关;平均应变为正时,非对称循环应变控制会产生平均应力松弛现象,且随着应变幅的增大,平均应力松弛速率增大;R=-1时,材料表现出拉压不对称性;采用三种不同的模型对不同应变比下的寿命进行表征,预测精度基本落在±2倍的分散带内.【期刊名称】《航空材料学报》【年(卷),期】2018(038)001【总页数】6页(P95-100)【关键词】单晶高温合金;低周疲劳;拉压不对称性;应力松弛【作者】张仕朝;李旭东;于慧臣;侯学勤【作者单位】中国航发北京航空材料研究院先进高温结构材料重点实验室,北京100095;航空材料检测与评价北京市重点实验室,北京100095;材料检测与评价航空科技重点实验室,北京100095;中国航发北京航空材料研究院先进高温结构材料重点实验室,北京100095;航空材料检测与评价北京市重点实验室,北京100095;材料检测与评价航空科技重点实验室,北京100095;中国航发北京航空材料研究院先进高温结构材料重点实验室,北京100095;航空材料检测与评价北京市重点实验室,北京100095;材料检测与评价航空科技重点实验室,北京100095;中国航发北京航空材料研究院先进高温结构材料重点实验室,北京100095;航空材料检测与评价北京市重点实验室,北京100095;材料检测与评价航空科技重点实验室,北京100095【正文语种】中文【中图分类】TG146.1+5镍基单晶高温合金因其优越的高温抗疲劳和抗蠕变性能,已成为制造航空涡轮发动机热端部件的重要材料。
小角度晶界对单晶高温合金DD6拉伸性能的影响

t nsl r pe t e ulsf o t tt e s r ng h o e ie p o ry r s t r m ha h t e t f LABsde r a e t e e a u e o io int ton c e s d wih t mp r t r r m s re a i i r a i g S h tt nc e sn O t a he LABs b c me a we k lnk e a a i .
At8 0 ̄ ,t l g ton o hea l t 5 C he eon a i ft loywih LABswa hehi s ,a d t c e sng t nd n y o l n~ s t ghe t n hede r a i e e c fe o
维普资讯
小 角度 晶界 对 单 晶 高 温合 金 D 6 对 单 晶高 温 合金 DD 6拉伸 性 能 的影 响
Efe t fLo A n eG r i un a ison Te sl o e te f f c so w gl an Bo d re n ie Pr p r iso
sl o e te f t e o d ge e a i n s n l r t ls pe a l y DD6 w e e i v s i a e ie pr p r is o he s c n n r to i g e c ys a u r lo r n e tg t d,a he t s nd t e t s c m e e epr p r d b s n w o s e s LA Bsha o e i fue e o hee o ga i n o hea l y pe i nsw r e a e y u i g t e d . d m r n l nc n t l n to ft lo .
从典型失效案例探讨单晶叶片的工程失效问题

从典型失效案例探讨单晶叶片的工程失效问题刘丽玉;杨宪锋;张兵;陶春虎;陈星【摘要】Two main failure modes of single crystal blades caused by stress concentration and metallurgical defects were discussed, and then the solution to these failures were put forward. It is assumed that the room-temperature fatigue failure of single crystal blades is sensitive to stress concentration, so the effect of stress concentration on vibration fatigue failure of single crystal blades should be emphasized in design;room-temperature vibration fatigue testing methods should be optimized and proper high-temperature vibration testing methods should be established for single crystal blades. Recrystallization and small angle grain boundaries have a significant influence on the failure and pass percentage of single crystal blades. Optimal process and reasonable acceptance standards should be applied in engineering application.%通过对目前单晶叶片工程应用中出现的由应力集中以及缺陷引起的两类典型失效问题进行讨论,提出了目前单晶叶片工程应用研究上解决这两类失效问题的途径。
《Pt元素扩散行为对DD5单晶高温合金组织和性能的影响》范文

《Pt元素扩散行为对DD5单晶高温合金组织和性能的影响》篇一一、引言随着航空航天领域对发动机高温性能的要求不断提高,单晶高温合金作为关键材料,其性能的优化显得尤为重要。
DD5单晶高温合金以其优异的综合性能在航空发动机中得到了广泛应用。
然而,合金中的元素扩散行为对其组织和性能有着重要影响。
本文着重探讨Pt元素在DD5单晶高温合金中的扩散行为及其对合金组织和性能的影响。
二、DD5单晶高温合金概述DD5单晶高温合金是一种镍基超合金,具有优异的高温强度、抗蠕变性能和良好的抗氧化性。
其晶体结构为单晶结构,能够提高合金的力学性能。
合金的组成元素中,Pt元素的加入对其组织和性能具有重要影响。
三、Pt元素的扩散行为Pt元素在DD5单晶高温合金中的扩散行为受多种因素影响,包括温度、时间、浓度梯度等。
在高温环境下,Pt原子通过晶格间隙或置换方式进行扩散,这一过程会改变合金的化学成分和微观结构。
四、Pt元素扩散对DD5单晶高温合金组织的影响1. 晶界结构:Pt元素的扩散会导致晶界处化学成分的变化,进而影响晶界的结构和稳定性。
适量的Pt元素可以细化晶界,提高晶界的强度和韧性。
2. 固溶强化:Pt元素作为固溶元素,能够有效地固溶于基体中,通过固溶强化提高合金的硬度。
然而,过量的Pt元素可能导致固溶度超标,形成第二相,对合金的力学性能产生不利影响。
3. 第二相分布:Pt元素的扩散会改变第二相的分布和形态,影响合金的塑性和抗蠕变性能。
适量的Pt元素可以促进第二相的均匀分布,提高合金的综合性能。
五、Pt元素扩散对DD5单晶高温合金性能的影响1. 高温强度:Pt元素的扩散可以提高合金的高温强度,尤其是在高温长时间工作条件下,能够保持较高的力学性能。
2. 抗蠕变性能:Pt元素的加入可以改善合金的抗蠕变性能,延长材料的使用寿命。
3. 抗氧化性:适量的Pt元素可以提高合金的抗氧化性,减少高温环境下的氧化损伤。
六、结论本文研究了Pt元素在DD5单晶高温合金中的扩散行为及其对组织和性能的影响。
镍基单晶合金力学特性及其在冷却涡轮叶片上的应用分析

镍基单晶合金力学特性及其在冷却涡轮叶片上的应用分析一、本文概述本文旨在深入研究和探讨镍基单晶合金的力学特性,以及其在冷却涡轮叶片上的具体应用。
镍基单晶合金,以其出色的高温性能、优良的抗氧化性和卓越的机械强度,在航空航天领域,特别是在高性能涡轮发动机的设计制造中占据了重要地位。
涡轮叶片作为发动机中的关键部件,其性能直接影响到发动机的整体效率和安全性。
因此,研究镍基单晶合金的力学特性,以及如何利用这些特性优化涡轮叶片的设计和制造,具有重要的理论和实践意义。
本文首先将对镍基单晶合金的基本力学特性进行详细的分析,包括其强度、韧性、蠕变行为等关键性能指标。
接着,将探讨这些特性在高温、高应力等复杂环境下的变化规律,以及影响这些变化的主要因素。
在此基础上,本文将进一步分析镍基单晶合金在冷却涡轮叶片上的应用,包括叶片的设计、制造、性能测试等方面。
本文将总结镍基单晶合金在涡轮叶片领域的应用现状和发展趋势,以期为相关领域的研究和实践提供有益的参考和启示。
二、镍基单晶合金的力学特性镍基单晶合金,作为一种高性能材料,具有许多独特的力学特性,这些特性使其在航空、航天等高科技领域,特别是在冷却涡轮叶片的制造中发挥了重要作用。
镍基单晶合金具有极高的高温强度。
在高温环境下,许多金属材料的强度会大幅度下降,而镍基单晶合金则能在高温下保持较高的强度,这对于需要承受高温环境的涡轮叶片来说是非常重要的。
镍基单晶合金具有优异的抗蠕变性能。
蠕变是指材料在长时间持续应力作用下发生的缓慢塑性变形。
镍基单晶合金的优异抗蠕变性能使其在高温和长期应力作用下能够保持较好的尺寸稳定性,这对于涡轮叶片等需要长期承受高温和应力的部件来说至关重要。
镍基单晶合金还具有较好的延展性和韧性。
这意味着在受到外力冲击时,镍基单晶合金能够吸收较多的能量,而不易断裂,从而提高了部件的安全性和可靠性。
镍基单晶合金还具有良好的抗氧化性能。
在高温环境下,金属材料容易发生氧化,导致性能下降。
DD419_镍基单晶高温合金980_℃下低周疲劳行为研究

第42卷第4期2023年8月沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报JournalofShenyangLigongUniversityVol 42No 4Aug 2023收稿日期:2022-12-27基金项目:国家自然科学基金项目(51871221)作者简介:祝祥(1997 )ꎬ男ꎬ硕士研究生ꎮ通信作者:杜晓明(1976 )ꎬ男ꎬ教授ꎬ博士ꎬ研究方向为先进铝合金的制备与加工成型ꎮ文章编号:1003-1251(2023)04-0069-06DD419镍基单晶高温合金980ħ下低周疲劳行为研究祝㊀祥1ꎬ杜晓明1ꎬ刘纪德2(1.沈阳理工大学材料科学与工程学院ꎬ沈阳110159ꎻ2.中国科学院金属研究所ꎬ沈阳110016)摘㊀要:对DD419镍基单晶高温合金在980ħ下的低周疲劳行为进行试验研究ꎬ并对疲劳数据进行分析ꎬ获得该温度下合金疲劳参数ꎮ结果表明:该合金低周疲劳变形过程中ꎬ弹性变形起主要作用ꎬ塑性变形较低ꎻ循环应力响应行为以先循环软化㊁再趋于稳定为主要方式ꎬ并且随着应力幅的增加ꎬ循环寿命不断降低ꎮ低应变幅下ꎬ合金的疲劳断裂表现为脆性断裂的特征ꎬ并呈现出明显的多源疲劳特征ꎬ微观断口形貌的主要特征是出现准解理台阶ꎬ可判断准解理断裂是主要的断裂机制ꎮ关㊀键㊀词:镍基单晶高温合金ꎻ低周疲劳ꎻ疲劳寿命ꎻ断裂机制中图分类号:TU973.2+54文献标志码:ADOI:10.3969/j.issn.1003-1251.2023.04.011StudyonLowCycleFatigueBehaviorofDD419NickelBaseSingleCrystalSuperalloyat980ħZHUXiang1ꎬDUXiaoming1ꎬLIUJide2(1.ShenyangLigongUniversityꎬShenyang110159ꎬChinaꎻ2.InstituteofMetalResearchꎬChineseAcademyofSciencesꎬShenyang110016ꎬChina)Abstract:Thelow ̄cyclefatiguebehaviorofDD419Nickel ̄basedsinglecrystalsuperalloyat980ħisexperimentallystudiedandthefatiguedataisanalyzedtoobtainthefatiguepa ̄rameters.Theresultsshowthatelasticdeformationplaysamajorroleintheprocessoflowcyclefatiguedeformationꎬwhileplasticdeformationisrelativelylow.Thecyclicstressre ̄sponsebehavioriscyclicsofteningfirstandthenstabilizingꎬandthecycliclifedecreaseswiththeincreaseofstressamplitude.Atlowstrainamplitudeꎬthefatiguefractureoftheal ̄loyshowsthecharacteristicsofbrittlefractureꎬandpresentsobviousmulti ̄sourcefatiguecharacteristics.Themainfeatureofthemicroscopicfracturemorphologyisthepresenceofquasi ̄dissociationfractureꎬbywhichitcanbejudgedthatthequasi ̄dissociationfractureisthemainfracturemechanism.Keywords:nickel ̄basedsinglecrystalsuperalloyꎻlowcyclefatigueꎻfatiguelifeꎻfracturemechanism㊀㊀DD419镍基单晶高温合金相较于其他高温合金ꎬ具有高温强度高㊁综合力学性能好㊁铸造工艺性能良好等优势ꎬ广泛应用在航空发动机的涡轮叶片中[1]ꎮ与国外的CMSX ̄4高温合金相比ꎬDD419合金在拉伸性能㊁蠕变性能㊁抗氧化性能㊁耐热和耐腐蚀等方面的表现基本相近[2-3]ꎬ且其含铼元素少㊁制备成本低㊁使用范围更广ꎮ疲劳是高温合金最主要的失效形式ꎬ低周疲劳损伤又是涡轮叶片材料的主要失效形式之一ꎮ为确保构件服役过程中的安全与稳定ꎬ很多学者研究了高温合金材料的疲劳性能ꎮFan等[4]研究了镍基单晶高温合金DD10分别在温度为760ħ和980ħ下不同应变幅的低周疲劳行为ꎬ结果表明:在高应变范围内ꎬ由于塑性变形ꎬ合金在760ħ时更容易萌生裂纹ꎻ在低应变范围内ꎬ980ħ时断口会出现明显的氧化损伤ꎬ加速了裂纹萌生ꎮCharles等[5]研究了CMSX ̄4合金低周疲劳过程中位错结构的变化ꎬ得出位错形态在低应力下类似于蠕变㊁高应力下与拉伸断裂类似的结论ꎮDD419合金常作为燃气轮机涡轮叶片材料ꎬ其工作温度通常能达到980ħꎮ因此ꎬ本文研究DD419合金在980ħ下的低周疲劳断裂行为ꎬ并从理论上分析应变-寿命关系㊁循环应力响应行为及疲劳裂纹的产生与扩展行为之间的关系ꎬ以期获得关于该合金低周疲劳行为较为完整的认识ꎮ1㊀试验部分1.1㊀试样的制备试验选用含Re第二代镍基单晶高温合金ꎬ其成分含量见表1ꎮ首先ꎬ用真空感应炉(VIDP ̄25型ꎬ沈阳真空技术研究所有限公司)冶炼试验合金的母合金ꎬ并在真空条件下浇铸形成母合金铸锭ꎬ采用螺旋选晶法ꎬ在工业用大型双区域加热真空高梯度单晶炉(ZGD ̄2型ꎬ锦州航星真空设备有限公司)中制备具有<001>取向的单晶棒材ꎻ然后ꎬ用热电偶温度计测量箱式热电阻炉(CWF型ꎬ德国CARBOLITEGERO公司)的温度ꎬ测温结果满足ʃ5ħ的误差范围内再对单晶棒材进行热处理操作ꎻ之后ꎬ进行固溶处理(温度1280~1300ħꎬ时间为9hꎬ空冷)ꎻ最后ꎬ进行两级时效处理(温度1110~1150ħꎬ时间4hꎬ空冷ꎻ温度870ħꎬ时间14hꎬ空冷)ꎮ经完全热处理之后ꎬ将单晶棒材试样加工成如图1所示的尺寸ꎮ图1㊀单晶棒材试样尺寸表1㊀DD419合金成分含量(质量分数)%CrCoWMoReAlTiTaHfNi6.809.306.501.003.005.801.106.500.09余量1.2㊀试验方法低周疲劳试验在电液伺服疲劳试验机(100kN ̄8型ꎬMTS系统公司)上进行ꎬ试验温度为980ħꎬ试验数据采集(按照对数采集)与处理全部在计算机上进行ꎮ具体试验条件见表2ꎮ表2㊀高温低周疲劳试验条件试验温度/ħ试验波形应变比应变速率/s-1加载频率/Hz介质控制方式980三角波0.050.0060.15~0.3空气恒定应变㊀㊀DD419合金试样在低周疲劳试验后ꎬ采用线切割切下约2~3mm的断口试样ꎬ切割时尽量避07沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷免破坏或污染切割部位ꎮ切割结束后将断口试样置于盛有丙酮溶液的烧杯中ꎬ并用超声波仪器清洗ꎬ冲洗完毕后烘干ꎬ得到清洁干净的断口试样ꎮ随后ꎬ采用扫描电子显微镜(S ̄3400N型ꎬ日立公司)观察断口的宏观和微观形貌ꎮ2㊀结果与讨论2.1㊀应变-寿命行为测得DD419高温合金在980ħ下的弹性应变幅(Δεe/2)㊁塑性应变幅(Δεp/2)和总应变幅(Δεt/2)与疲劳寿命(2Nf)之间的关系ꎬ在双对数坐标系下绘制关系曲线ꎬ如图2所示ꎮ图2㊀应变-疲劳寿命关系曲线㊀㊀塑性应变幅值和弹性应变幅值的交点称为过渡寿命ꎬ图2中两条曲线无交点ꎬ故DD419合金低周疲劳过程中不存在过渡寿命ꎮ由图2可见ꎬ弹性应变幅远远大于塑性应变幅ꎬ这一特点与多数高强度镍基高温合金相似ꎮ因此ꎬ在低周疲劳区间ꎬ弹性应变在变形中占主导地位ꎬ材料疲劳寿命的长短主要取决于强度ꎮ文献[6]指出ꎬ多数钴基合金由于塑性较好ꎬ在断裂过程中塑性往往起主要作用ꎮ对于恒定应变幅控制下的应变-寿命曲线ꎬ可用Manson ̄Coffin[7]寿命模型来表达ꎬ公式为Δεt2=Δεe2+Δεp2=σfᶄE(2Nf)b+εfᶄ(2Nf)c(1)式中:σfᶄ为疲劳强度系数ꎻb为疲劳强度指数ꎻεfᶄ为疲劳延性系数ꎻc为疲劳延性指数ꎻE为弹性模量ꎮ将应变比为0.05的DD419低周疲劳数据进行拟合ꎬ得到与疲劳相关的系数ꎬ代入式(1)可得Δεt2=0.0589(2Nf)-0.6173+0.0233(2Nf)-0.1784(2)根据式(2)并利用线性回归分析方法即可确定DD419镍基单晶高温合金在980ħ下的低周疲劳参数σfᶄ㊁εfᶄ㊁b㊁cꎬ如表3所示ꎮ表3㊀DD419合金疲劳参数试验温度/ħσfᶄ/MPaεfᶄbcKᶄ/MPanᶄE/GPa98020490.0589-0.1784-0.617339070.2691882.2㊀循环应力-应变关系材料的循环应力-应变曲线能较好地体现低周疲劳条件下材料的实际应力和应变特征ꎮDD419高温合金循环应力-应变关系曲线如图3所示ꎮ图3中曲线由半寿命附近的滞回曲线获得ꎬ详见文献[8]ꎬ可采用下式描述Δσ2=Kᶄ(Δεp2)nᶄ(3)式中:Δσ/2为应力幅ꎻKᶄ为循环强度系数ꎻnᶄ为循环应变硬化指数ꎮ通过对图3中的试验数据进行非线性拟合ꎬ即可确定Kᶄ与nᶄ值(见表3)ꎮ图3㊀循环应力-应变关系曲线2.3㊀循环应力响应行为循环应力响应行为主要包括循环硬化㊁循环17第4期㊀㊀㊀祝㊀祥等:DD419镍基单晶高温合金980ħ下低周疲劳行为研究稳定和循环软化三个阶段ꎮ在恒定应变控制的低周疲劳循环中ꎬ随着加载周次增加ꎬ应力逐渐上升是循环硬化ꎬ反之为循环软化ꎮ循环硬化和软化现象与材料的位错运动有关[9]ꎬ循环硬化可导致材料性能下降甚至失效ꎬ循环软化常伴随着循环应力水平的快速下降ꎬ通常出现在已经充满了位错缠结和阻碍的冷加工合金中ꎮ循环应力响应曲线反映了双对数坐标下应力幅与循环周次的关系ꎬDD419高温合金在980ħ下循环应力响应曲线如图4所示ꎮ图4㊀DD419在980ħ下循环应力响应曲线㊀㊀从图4中可看出ꎬDD419合金的循环应力响应行为与应变幅的大小密切相关ꎬ随着总应变幅值的不断增加ꎬ合金所受应力幅值亦逐渐增大ꎬ且疲劳寿命随循环周次减小而缩短ꎮ当应变幅为0.3%时ꎬ合金在循环过程中的应力响应行为呈现先循环软化㊁再过渡到循环稳定阶段ꎬ随后出现短暂硬化阶段ꎬ最后过渡到循环稳定阶段ꎬ直至突然断裂ꎻ当应变幅为0.4%时ꎬ合金循环应力响应行为的整体趋势与总应变幅为0.3%时相近ꎬ不同之处在于总应变幅为0.4%时ꎬ合金循环稳定阶段的疲劳周次要少ꎬ且循环软化行为更加明显ꎻ当总应变幅为0.5%时ꎬ合金首先显示出循环硬化ꎬ继而转入循环稳定过程ꎬ最后萌生出裂纹ꎬ并发生突然断裂ꎻ在总应变幅达到0.6%㊁0.7%时ꎬ由于循环周次不断上升ꎬ合金的循环应力响应行为也趋于稳定ꎬ但在疲劳过程的中期ꎬ合金的循环应力响应曲线由循环硬化过渡到循环软化ꎬ而疲劳过程后期ꎬ循环应力响应曲线又呈现了迅速下降的态势ꎬ随之在很短的疲劳周次中出现了突然断裂ꎮ2.4㊀断口形貌分析镍基高温合金疲劳断口的一个典型特征是有多个疲劳源区[10]ꎮ图5为总应变幅分别为0.3%㊁0.5%㊁0.6%下断口的宏观形貌ꎮ图5㊀不同应变幅下疲劳断口的宏观形貌㊀㊀宏观上看ꎬ高温合金的疲劳断口形貌一般都比较粗糙ꎬ断口颜色呈青蓝色ꎮ疲劳裂纹主要萌生于试样边缘及附近ꎬ且有多个疲劳源ꎮ从图5中可见ꎬ随着总应变幅的增加ꎬ断口边缘及表面出现的疲劳裂纹也逐渐变多ꎬ导致疲劳断裂拓展速率加快ꎬ疲劳寿命降低ꎮ另外ꎬ疲劳断口区域主要由疲劳源㊁疲劳扩展区和瞬断区三部分组成[11-12]ꎬ图中A㊁B㊁C分别代表疲劳源区㊁疲劳扩展区和瞬断区ꎬ三个区域具有明显的特征ꎮ随着总应变幅的增大ꎬ断口中三个部分的面积也发生27沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷了变化ꎬ其中瞬断区面积变化最大ꎬ在整个断口区域所占比重越来越大ꎻ随着低周疲劳测试过程中总应变幅的增加ꎬ合金在低周疲劳过程中承受的外加载荷逐渐增大ꎬ从而导致DD419合金低周疲劳断口中瞬断区的面积逐渐增大ꎮ图6为不同应变幅下疲劳断口的微观形貌ꎮ对于同一合金ꎬ在低周疲劳试验过程中ꎬ随着应变幅值的增大ꎬ疲劳源区域的光滑度降低ꎬ平坦的小平面也减少ꎬ使得疲劳源区域表面逐渐变得粗糙ꎻ这是由于伴随应变幅值的增加ꎬ微观中滑移带或位错结构与合金中的强化粒子γᶄ相的交互作用加剧ꎬ导致强化粒子γᶄ相失去其有序结构ꎬ降图6㊀不同应变幅下疲劳断口的微观形貌低了γᶄ相对合金基体γ相的强化作用ꎬ从而导致合金的抗疲劳变形能力下降ꎬ合金的循环疲劳周次逐渐减少[13]ꎮ因此ꎬ疲劳过程中疲劳源区的断面所经受的持续摩擦和挤压的次数也在减少ꎬ表面的光滑程度也逐渐降低ꎮ在低应变幅下ꎬ疲劳扩展区断口处存在明显的裂纹ꎬ并沿晶面拓展ꎬ如图6(a)所示ꎻ断口表面存在许多短小的裂纹ꎬ局部区域存在撕裂棱和准解理台阶的特征ꎬ扩展区还出现不明显的疲劳辉纹ꎬ可能是氧化腐蚀较严重导致ꎬ如图6(b)所示ꎻ部分区域还存在很多深浅不一的韧窝和孔洞ꎬ如图6(c)所示ꎮ瞬断区断口处有明显的金属滑移痕迹ꎬ并出现了准解理台阶ꎬ因此可判断合金的断裂机制为准解理断裂ꎮ文献[14-15]指出ꎬ随温度的上升ꎬ更容易发生位错的交滑移和攀移ꎬ在不动位错累积到一定水平时ꎬ就会出现准解理断裂ꎮ3㊀结论本文研究了DD419镍基单晶高温合金在980ħ下的低周疲劳行为ꎬ得到如下结论ꎮ1)根据Manson ̄Coffin寿命模型ꎬDD419疲劳断裂过程中弹性变形起主要作用ꎮ2)980ħ下ꎬ由于位错的往复运动和交互作用ꎬDD419镍基单晶高温合金的循环应力响应行为在0.3%㊁0.4%应变幅下表现为先循环软化ꎬ后由循环硬化过渡到循环稳定阶段ꎬ最后突然断裂ꎻ在0.5%应变幅下首先出现循环硬化ꎬ继而转入到循环稳定阶段ꎬ最后断裂ꎻ0.6%㊁0.7%应变幅下表现为先稳定阶段ꎬ后循环硬化又过渡到循环软化ꎬ最后逐渐稳定ꎬ直至突然断裂ꎮ3)DD419镍基单晶高温合金在980ħ低周疲劳断裂特征表现为明显的多裂纹源性ꎬ随着应变幅的降低ꎬ裂纹数目也逐渐减少ꎬ疲劳寿命随之增加ꎮ在0.3%㊁0.5%㊁0.6%应变幅下ꎬ裂纹萌生于试样表面位置ꎬ出现准解理台阶ꎬ因此判断合金的断裂机制为准解理断裂ꎮ参考文献:[1]史振学ꎬ胡颖涛ꎬ刘世忠.不同温度下镍基单晶高温合金的低周疲劳性能[J].机械工程材料ꎬ2021ꎬ4537第4期㊀㊀㊀祝㊀祥等:DD419镍基单晶高温合金980ħ下低周疲劳行为研究(3):16-20ꎬ28.[2]赵运兴ꎬ员莹莹ꎬ马德新ꎬ等.高温合金CMSX ̄4和DD419单晶铸件中共晶含量的试验研究[J].航空制造技术ꎬ2022ꎬ65(17):74-80.[3]李寒松ꎬ孙士江ꎬ刁爱民ꎬ等.热等静压对DD419单晶高温合金组织与持久性能的影响[J].铸造ꎬ2021ꎬ70(5):554-559.[4]FANZDꎬWANGDꎬLOULH.Corporateeffectsoftemperatureandstrainrangeonthelowcyclefatiguelifeofasingle ̄crystalsuperalloyDD10[J].ActaMet ̄allurgicaSinica(EnglishLetters)ꎬ2015ꎬ28(2):152-158.[5]CHARLESCMꎬDREWGAꎬBAGNALLSꎬetal.Dislocationdeformationmechanismsduringfatigueofthenickel ̄basedsuperalloyCMSX ̄4[J].MaterialsScienceForumꎬ2007ꎬ62:546-549.[6]储昭贶ꎬ于金江ꎬ孙晓峰ꎬ等.DZ951合金的持久性能与断裂行为[J].稀有金属材料与工程ꎬ2009ꎬ38(5):834-837.[7]张罡ꎬ龙占云ꎬ赵凯ꎬ等.WFG36Z钢焊接接头低周疲劳性能与寿命的试验研究[J].沈阳工业学院学报ꎬ1994(2):7-12.[8]刘雪莹ꎬ陈立佳ꎬ周舸ꎬ等.应变波形对Inconel625合金低周疲劳性能的影响[J].稀有金属材料与工程ꎬ2021ꎬ50(4):1263-1269.[9]水丽.应变幅对一种新型镍基单晶高温合金高温低周疲劳性能的影响[J].机械工程材料ꎬ2022ꎬ46(6):31-35ꎬ43.[10]刘柳.一种镍基单晶高温合金低周疲劳行为的研究[D].沈阳:东北大学ꎬ2016.[11]SHUILꎬLIUP.Low ̄cyclefatiguebehaviorofanickelbasesinglecrystalsuperalloyathightemperature[J].RareMetalMaterialsandEngineeringꎬ2015ꎬ44(2):288-292.[12]闫鹏ꎬ冯寅楠ꎬ乔双ꎬ等.镍基变形高温合金低周疲劳研究进展[J].稀有金属ꎬ2021ꎬ45(6):740-748. [13]张敏.一种镍基单晶高温合金蠕变损伤行为研究[D].沈阳:沈阳工业大学ꎬ2022.[14]朱强.GH4698镍基合金高温低周疲劳行为及断裂机理[D].哈尔滨:哈尔滨工业大学ꎬ2016.[15]孙超.N18合金低周疲劳行为研究[D].成都:西华大学ꎬ2006.(责任编辑:徐淑姣)(上接第68页)[26]刘铠铭ꎬ姜秀榕ꎬ林昕ꎬ等.羧甲基壳聚糖对Cr(Ⅵ)吸附性能及吸附热力学㊁动力学研究[J].离子交换与吸附ꎬ2021ꎬ37(3):234-243.[27]JUSGꎬXUEFꎬQIANJYꎬetal.SynthesisofGa3+dopedlithiummanganeseionsieveforLi+extractionanditsadsorptionthermodynamicbehavior[J].Separa ̄tionScienceandTechnologyꎬ2022ꎬ57(18):2923-2936. [28]KALAITZIDOUKꎬZOUBOULISAꎬMITRAKASM.Thermodynamicstudyofphosphateadsorptionandre ̄movalfromwaterusingironoxyhydroxides[J].Wa ̄terꎬ2022ꎬ14(7):1163.(责任编辑:宋颖韬)47沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷。
单晶高温合金弹性模量和泊松比测试方法的现状分析
单晶高温合金弹性模量和泊松比测试方法的现状分析赵澎涛;于慧臣;何玉怀【摘要】针对单晶高温合金等材料弹性常数表现出的各向异性特点,归纳了现有用于单晶高温合金弹性模量和泊松比的两种主要测试方法:静态法和动态法。
分析单晶高温合金弹性模量和泊松比的国内外研究现状,总结目前国内外研究中存在的主要问题及可行的解决途径,并指出:单晶高温合金弹性模量和泊松比测试缺乏专门的测试标准;相比国外,国内在测试与表征技术研究方面还存在明显的差距,工程应用中往往忽视晶体取向对弹性模量和泊松比的影响,因此有必要针对现有的测试标准和方法对测量单晶高温合金弹性常数的误差影响进行评估,制定适用于单晶高温合金的测试标准。
同时,详细阐述在考虑晶体取向的影响下,通过对晶体取向指数与弹性模量的线性回归分析,建立单晶高温合金DD6材料弹性模量和泊松比与晶体取向的定量关系的过程。
%In view of the anisotropic characteristics of elastic constants of single crystal superalloys and other materials, this paper summarizes two main existing testing methods for measuring elastic moduli and Poisson’s ratio of single crystal superalloys: static method and dynamic method, and analyses the research status of elastic moduli and Poisson’s ratio of single crystal superalloys both at home and aboard. Also, the main problems and feasible solutions in current research both at home and abroad are summarized. And it is pointed out that there is no special testing standard for the elastic moduli and Poisson's ratio of single crystal superalloys. Compared with foreign countries, there is still an obvious gap in the testing and characterization technology in China, and effect of crystal orientation on elastic moduli and Poisson's ratio is oftenneglected in engineering applications. So it is necessary to estimate the influence of errors in measuring elastic constants of single crystal alloys by exiting testing standards. Meanwhile, this paper describes how to establish the quantitative relationship between crystal elastic moduli and arbitrary crystal orientation for single crystal superalloy DD6 through linear regression analysis of crystal orientation index and elastic moduli.【期刊名称】《航空材料学报》【年(卷),期】2019(039)003【总页数】10页(P25-34)【关键词】单晶高温合金; 弹性模量和泊松比; 静态法; 动态法; 晶体取向;【作者】赵澎涛;于慧臣;何玉怀【作者单位】中国航发北京航空材料研究院航空材料检测与评价北京市重点实验室中国航空发动机集团材料检测与评价重点实验室材料检测与评价航空科技重点实验室,北京 100095;中国航发北京航空材料研究院航空材料检测与评价北京市重点实验室中国航空发动机集团材料检测与评价重点实验室材料检测与评价航空科技重点实验室,北京 100095;中国航发北京航空材料研究院航空材料检测与评价北京市重点实验室中国航空发动机集团材料检测与评价重点实验室材料检测与评价航空科技重点实验室,北京 100095【正文语种】中文【中图分类】V216.4材料在高温下的弹性模量(杨氏模量E和剪切模量G)及泊松比μ是材料结构设计和强度校核必不可少的参数,其准确与否直接影响结构中应力应变的计算精度,同时也会对高周疲劳、低周疲劳、蠕变以及疲劳蠕变交互作用的寿命预测的准确性产生重要影响[1-3]。
单晶高温合金小角度晶界
单晶高温合金小角度晶界是指在单晶高温合金中,由于枝晶分枝生长后取向偏离后再汇聚时产生的晶界。
这些晶界的取向差较小,通常小于10°。
在单晶高温合金中,小角度晶界的存在会对材料的力学性能产生影响。
对于小角度晶界的研究,主要集中在以下几个方面:
1. 小角度晶界对单晶高温合金力学性能的影响:研究表明,小角度晶界的存在对单晶高温合金的强度、塑性和韧性等力学性能有显著影响。
2. 小角度晶界的形成机制:目前对于小角度晶界的形成机制还存在许多争议,需要进一步研究。
3. 小角度晶界的演化过程:在高温下,小角度晶界可能会发生演化,如晶界的迁移、晶界的旋转等,这些过程对材料的性能也有重要影响。
总之,单晶高温合金小角度晶界是一个复杂而重要的领域,需要进一步深入研究。
铸态DD5单晶在热处理过程中的组织转变规律
铸态DD5单晶在热处理过程中的组织转变规律曾曦; 黄永德; 简园园; 苗小峰; 张成聪【期刊名称】《《精密成形工程》》【年(卷),期】2019(011)005【总页数】7页(P166-172)【关键词】热处理; DD5单晶; 高温合金; 微观组织【作者】曾曦; 黄永德; 简园园; 苗小峰; 张成聪【作者单位】南昌航空大学江西省航空构件成形与连接重点实验室南昌330036; 中国航发南方工业有限公司湖南株洲412002; 上海航天设备制造总厂上海200245【正文语种】中文【中图分类】TG156航空发动机涡轮叶片工作环境极其恶劣,需承受高温、复杂应力和燃气的腐蚀,因此要求采用具有优异力学性能且耐腐蚀、抗氧化的高温结构材料来制造涡轮叶片。
先进航空发动机[1—2]的发展趋势是高推重比和低比耗油率,通过采用更可靠、更先进的材料和工艺,可以提高压缩比和流量比,特别是提高涡轮进口温度。
根据高压缩比为10︰1的航空燃气涡轮发动机的研制要求,燃气涡轮导向叶片原采用的铸造等轴高温合金R125已不能满足要求,镍基单晶高温合金的性能最优越,是大推重比航空发动机涡轮导向叶片的首选材料,国外大都采用美国GE公司Rene'N5铸造单晶高温合金,国内仿制的牌号为DD5[3]。
相比较而言,镍基合金是航空发动机涡轮叶片的主要材料,在研制航空发动机的初期,其涡轮叶片主要材料是变形高温合金,随着铸造高温合金的发展以及工艺技术的不断进步,涡轮叶片的材料“以铸代锻”[4—6]。
然而由于铸件凝固过程中合金以树枝晶的方式生长,在凝固过程中出现了枝晶偏析,使得合金在微观上成分不均匀,影响着合金的使用性能,所以高温合金在铸态的组织中存在γ/γ'共晶相,γ/γ'共晶分布于枝晶间且熔点较低,作为航空发动机涡轮叶片的主要材料,在长时间承受高温的环境下是非常危险的,所以需要尽可能地将合金中的共晶组织减少甚至消除。
对于铸态组织中的共晶相,可以通过热处理工艺达到共晶减少甚至消除的目的,另外,高温合金的使用决定了其要具有较高的强度,所以在航空领域中的高温合金材料不仅需要固溶强化,在铸态组织中的强化相分布也需要通过热处理使得强化相在基体上均匀、弥散的分布,使得合金的性能得到提高[7]。
铸态DD5单晶在热处理过程中的组织转变规律
精 密 成 形 工 程第11卷 第5期 166 JOURNAL OF NETSHAPE FORMING ENGINEERING2019年9月收稿日期:2019-07-21基金项目:江西省优势科技创新团队重点项目(20181BCB19002);上海航天科技创新基金(SAST201806);江西省科技厅重点研发计划(20171BBE50010)作者简介:曾曦(1993—),男,硕士研究生,主要研究方向为DD5燃导单晶叶片钎焊等热工艺基础。
铸态DD5单晶在热处理过程中的组织转变规律曾曦1,黄永德1,简园园2,苗小峰2,张成聪3(1. 南昌航空大学 江西省航空构件成形与连接重点实验室,南昌 330036;2. 中国航发南方工业有限公司,湖南 株洲 412002;3. 上海航天设备制造总厂,上海 200245)摘要:目的 对DD5单晶组织进行热处理制度,分析在热处理各阶段下DD5单晶组织尺寸及转变的规律。
方法 采用热处理制度,对铸态DD5镍基单晶高温合金分别进行固溶(1300 ℃,保温2 h ,空冷)、一次时效(1120 ℃,保温4 h ,空冷)、二次时效(1080 ℃,保温4 h ,空冷)热处理工艺,对比分析各热处理工艺下DD5单晶的组织特征,研究热处理制度下DD5单晶组织转变的规律。
结果 在固溶和时效处理下,DD5单晶显微组织呈十字形枝晶样貌,组织中的γ′相有一定程度的长大,枝干和枝间的形态、尺寸逐步接近,最后γ′相形貌演变为规则立方状。
结论 随着各个阶段热处理制度的逐步完成,γ′相的有序性和立方度逐步提高,并与基体相γ保持高度共格关系,γ+γ′共晶组织和枝晶间析出的粗大γ′相逐渐扩散溶解。
关键词:热处理;DD5单晶;高温合金;微观组织DOI :10.3969/j.issn.1674-6457.2019.05.026中图分类号:TG156 文献标识码:A 文章编号:1674-6457(2019)05-0166-07Microstructure Transformation Rule of As-cast DD5 Single Crystalduring Heat TreatmentZENG Xi 1, HUANG Yong-de 1, JIAN Yuan-yuan 2, MIAO Xiao-feng 2, ZHANG Cheng-cong 3(1. Key Laboratory of Aviation Component Formation and Connection,Nanchang Hangkong University, Nanchang 330036, China; 2. AECC South Industry Co., Ltd., Zhuzhou 412002, China;3. Shanghai Aerospace Equipment Manufacturing General Factory, Shanghai 200245, China)ABSTRACT: The paper aims to study the heat treatment system of DD5 single crystal structure, and to analyze the size and transformation rule of DD5 single crystal structure in different stages of heat treatment. The heat treatment system was applied to make as-cast DD5 nickel base single crystal superalloy go through solid solution (1300 ℃, 2 h insulation, air cooling), primary aging (1120 ℃, heat preservation, 4 h, air cooling) and secondary aging (1080 ℃, heat preservation, 4 h, air cooling), to compare and analyze the characteristics of the DD5 single crystal under different heat treatment pro-cesses and the transformation rules of DD5 single crystal structure in the heat treatment system. Under the solid solution and aging treatment, the microstructures of DD5 single crystal showed the appearance of cruciform dendrites, the γ′ phase in the tissue grew up to a certain extent, the morphology and size of branches and inter-branches were gradually close, and the morphology of γ′ phase evolved into regular cubic shape. With the gradual completion of various stages of heat treat-第11卷第5期曾曦等:铸态DD5单晶在热处理过程中的组织转变规律167ment system, the sequence and cubic degree ofγ′ phase are gradually increased in a high coherency relation with matrix phase γ and γ+γ′ eutectic tissue and the coarse γ′ phase precipitated between dendrites are gradually diffused and dissolved.KEY WORDS: heat treatment; DD5 single crystal; superalloy; microstructure航空发动机涡轮叶片工作环境极其恶劣,需承受高温、复杂应力和燃气的腐蚀,因此要求采用具有优异力学性能且耐腐蚀、抗氧化的高温结构材料来制造涡轮叶片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单晶高温合金dd6高温显微组织演化规律研究
单晶高温合金DD6是一种具有优异高温力学性能和耐蠕变性
的材料,被广泛应用于航空、航天等领域。
DD6高温合金的显微组织演化规律主要涉及相变、析出和晶
粒长大等过程。
下面将对这些过程进行详细说明:
1. 相变:DD6高温合金在高温条件下经历固溶和析出相变过程。
固溶是指合金中的元素在固态溶解于基体中,形成固溶体。
在高温条件下,固溶体会发生析出相变,即固溶体中的溶质元素会形成析出相。
相变过程中的原子重排和位错运动是影响显微组织演化的重要因素。
2. 析出:DD6高温合金中的析出相主要包括γ'相和γ"相。
γ'相
是由镍、铝和钛等元素组成的强化相,γ"相是由硼、铌和钛等
元素组成的强化相。
在高温合金的固溶体中,这些硬质相会从固溶体中析出出来。
析出过程中的相间相互作用、成核和生长是影响析出相形貌和尺寸的关键因素。
3. 晶粒长大:在高温合金中,晶粒长大是显微组织演化的一个重要过程。
晶粒长大是指晶粒之间的相互吞噬和扩张,使得晶粒尺寸增大。
晶界能的降低和晶粒边界的运动是晶粒长大的驱动力。
通过对DD6高温合金显微组织演化规律的研究,可以进一步
优化合金的热处理工艺和合金设计,提高其高温力学性能和耐蠕变性能。