pwm的频率控制原理及应用

合集下载

PWM控制原理

PWM控制原理

PWM控制原理PWM(Pulse Width Modulation)即脉宽调制技术,是一种通过改变脉冲信号的高电平时间占比来实现对电压、电流等信号的模拟调节的技术方法。

PWM控制原理主要包括:PWM信号生成、PWM信号加载、PWM信号解调和PWM控制应用等几个方面。

本文将从每个方面进行详细介绍。

1.PWM信号生成PWM信号生成通常通过计数器和比较器实现。

计数器负责产生一个周期性的方波信号,而比较器则用来与一个可调节的占空比参数进行比较生成PWM信号。

计数器的周期取决于所需的PWM信号频率,而占空比参数则决定了高电平的时间。

2.PWM信号加载PWM信号加载是指将PWM信号加载到需要控制的设备或器件上,例如将PWM信号加载到电机驱动模块上,通过改变PWM信号的占空比来调节电机转速。

通常会使用MOSFET或IGBT等功率开关器件来实现PWM信号的加载。

这些功率开关器件的开关速度要足够快,以充分利用PWM信号的调节性能。

3.PWM信号解调PWM信号解调是指将PWM信号转换成模拟量信号,以便进行后续的处理或控制。

解调的过程通常使用低通滤波器来平滑PWM信号,滤除高频成分,从而得到一个平均值相对稳定的模拟量信号。

解调的输出值与PWM信号的占空比成正比,因此可以实现对信号的精确控制。

4.PWM控制应用PWM控制的应用非常广泛,常见的应用包括:电机控制、照明调光、直流-直流转换器、交流-直流转换器、无线通信、数字音频等。

在电机控制中,PWM信号的占空比可以决定电机的转速,同时也可以实现对电机的逆变控制,例如反转、制动等功能。

在照明调光中,PWM信号的占空比可以决定灯光的亮度,通过改变PWM信号的占空比,可以实现灯光的调光功能。

在直流-直流转换器中,PWM信号可以控制开关管的开关频率和占空比,通过改变占空比可以实现输出电压或电流的调节。

总结:PWM控制利用脉冲信号的高电平时间占比来实现对电压、电流等信号的模拟调节。

PWM基本原理及其实现方法

PWM基本原理及其实现方法

ICR1=0x00FF;
11
PWM实现程序
直流电机控制函数 void dc_moto_control(uint8 *point)
包含:
if(0x80 == *point)
M1_T; //MOTO1停止
else if(*point < 0x80)
{
OCR0 = 70 + (uint8)(((uint16)(0x7f - *point) * 145)/100);
2
电枢电压“占空比”与平均电 压关系图
3
电枢电压“占空比”与平均电 压关系
Vd = Vmax*D 式中,Vd——电机的平均速度; Vmax——电机全通电时的速度(最大); D = t1/T 当我们改变占空比 D = t1/T 时,就可以得到
不同的电机平均速度,从而达到调速的目的。 严格地讲,平均速度 n 与占空比 D 并不是严 格的线性关系,在一般的应用中,可以将其近 似地看成线性关系。
OCR2 = 70 + (uint8)(((uint16)(0x7f - *(point+1)) * 145)/100);
M2_L;
}
else
{
OCR2 = 70 + (uint8)(((uint16)(*(point+1) - 0x80) * 145)/100);
M2_R;
}
13
PWM实现程序
if(0x80 == *(point+2)) M3_T; //MOTO3停止
else if(*(point+2) < 0x80)
{
OCR1A = 70 + (((uint16)(0x7f - *(point+2)) * 145)/100);

PWM控制的基本原理

PWM控制的基本原理

PWM控制的基本原理PWM(Pulse Width Modulation,脉宽调制)是一种用来控制电子设备的技术,它通过调节信号的脉冲宽度来控制电压的比例。

PWM控制具有灵活性和高效性,被广泛应用于各种领域,如电机控制、电子变换器和通信系统等。

PWM控制的基本原理是通过改变信号的脉冲宽度来控制电平的高低。

信号的脉冲由高电平和低电平组成,高电平表示信号“开启”的状态,低电平表示信号“关闭”的状态。

通过改变高电平和低电平的时间比例,可以改变信号的平均电平,从而实现对电压等的控制。

PWM控制采用的是脉冲调制技术,即将需要控制的电压或电流信号转换成一系列的脉冲信号。

这些脉冲信号的频率是固定的,通常为几千赫兹或几十千赫兹。

脉冲的宽度决定了信号的“开启”时间,也就是所谓的占空比。

占空比定义为信号高电平的时间与周期的比值,用百分比表示。

1.确定目标:确定所需控制的电压或电流的范围和精度。

2.设计周期:根据目标确定信号的周期。

周期由脉冲的高电平和低电平时间加和得到。

3.设计占空比:确定占空比的范围和精度。

占空比决定了信号的平均电平。

4.产生PWM信号:使用控制器或专门的PWM发生器产生PWM信号。

PWM信号的高电平和低电平时间按照占空比确定。

5.过滤输出:PWM信号经过滤波器或滤波电路得到所需控制的电压或电流信号。

滤波器的目的是消除高频脉冲的干扰,得到平滑的输出信号。

6.控制输出:将滤波后的信号连接到被控制的设备或电路。

通过改变PWM信号的占空比,可以控制输出信号的电压或电流。

总之,PWM控制通过改变信号的脉冲宽度来控制电平的高低,从而实现电压或电流的精确调节。

它具有广泛的应用前景,并在许多领域中得到了应用,如电机控制、电力变换器和无线通信系统等。

PWM控制——精选推荐

PWM控制——精选推荐

本文详细阐述pwm的原理: PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。

1.PWM控制的基本原理理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

冲量指窄脉冲的面积。

效果基本相同,是指环节的输出响应波形基本相同。

低频段非常接近,仅在高频段略有差异。

图1形状不同而冲量相同的各种窄脉冲面积等效原理:分别将如图1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图2a 所示。

其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。

从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。

脉冲越窄,各i(t)响应波形的差异也越小。

如果周期性地施加上述脉冲,则响应i(t)也是周期性的。

用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

图2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。

图3 用PWM波代替正弦半波要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。

PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。

PWM波形可等效的各种波形:直流斩波电路:等效直流波形SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。

2. PWM相关概念占空比:就是输出的PWM中,高电平保持的时间与该PWM的时钟周期的时间之比如,一个PWM的频率是1000Hz,那么它的时钟周期就是1ms,就是1000us,如果高电平出现的时间是200us,那么低电平的时间肯定是800us,那么占空比就是200:1000,也就是说PWM的占空比就是1:5。

四种pwm控制技术的原理

四种pwm控制技术的原理

四种pwm控制技术的原理
PWM(Pulse Width Modulation,脉宽调制)是一种常用的数字控制技术,用于实现模拟信号的精确控制。

它通过改变信号的脉冲宽度来控制信号的平均电压或电流。

下面是四种常见的PWM控制技术及其原理:
1. 占空比控制:占空比是PWM信号高电平与周期之比。

通过改变占空比可以控制输出信号的平均电压或电流。

占空比越大,输出信号的平均电压或电流越大;占空比越小,输出信号的平均电压或电流越小。

这种方法简单易行,适用于许多应用场合。

2. 脉冲数改变:这种方法通过改变PWM信号每个周期中的脉冲数来控制输出信号的平均电压或电流。

脉冲数越多,输出信号的平均电压或电流越大;脉冲数越少,输出信号的平均电压或电流越小。

脉冲数改变时,周期保持不变。

这种方法常用于需要精确控制输出信号的平均电压或电流的应用。

3. 频率调制:这种方法通过改变PWM信号的频率来控制输出信号的平均电压或电流。

频率越高,输出信号的平均电压或电流越大;频率越低,输出信号的平均电压或电流越小。

输出的平均功率受频率的影响最小,可以实现高效的能量转换。

频率调制一般使用较高的固定占空比。

4. 相位移控制:这种方法通过改变PWM信号相位来控制输出信号的平均电压或电流。

相位移正比于输出信号的平均电压或电流。

相位移控制可以实现交流电源的电压或电流控制,广泛应用于电网有功功率控制和无功功率控制。

这四种PWM控制技术可以根据具体应用的需要选择合适的方式,以实现对输出信号的精确控制。

PWM控制原理(精编文档).doc

PWM控制原理(精编文档).doc

【最新整理,下载后即可编辑】PWM控制技术主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。

重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。

难点:PWM波形的生成方法,PWM逆变电路的谐波分析。

基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。

PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

第3、4章已涉及这方面内容:第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。

本章内容PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。

本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM 整流电路1 PWM控制的基本原理理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

冲量指窄脉冲的面积。

效果基本相同,是指环节的输出响应波形基本相同。

低频段非常接近,仅在高频段略有差异。

图6-1 形状不同而冲量相同的各种窄脉冲面积等效原理:分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。

其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。

从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。

脉冲越窄,各i(t)响应波形的差异也越小。

如果周期性地施加上述脉冲,则响应i(t)也是周期性的。

用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

图6-2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

PWM控制技术的原理和程序设计

PWM控制技术的原理和程序设计PWM(Pulse Width Modulation)控制技术是一种通过改变方波脉冲的宽度来控制电路或设备的技术。

它通常被用于控制电机的速度、电子设备的亮度调节、音频的合成以及电源的调整等应用中。

PWM控制技术的原理是基于调制的整个周期中,方波的高电平时间(即脉冲宽度)与频率的比例关系来实现对电路或设备的控制。

当脉冲宽度为周期的一定比例时,控制电路或设备会按照一定的方式响应,例如电机运动的速度或电子设备的亮度。

1.初始化控制器:首先需要初始化控制器,包括选择合适的计时器和设置计时器的频率,以及将相关引脚配置为PWM输出。

2.设置频率与分辨率:根据实际需求设置PWM的频率和分辨率。

频率决定了周期的长度,而分辨率决定了脉冲宽度的精度。

3.计算脉冲宽度:根据需要控制的电路或设备,计算脉冲宽度的值。

这可以通过设定一个数值来代表脉冲宽度的百分比,然后根据设定的分辨率计算出实际的脉冲宽度。

4.控制输出:通过设置计时器的比较匹配值来控制PWM输出。

比较匹配值决定了方波高电平的结束时间,从而决定了脉冲宽度。

5.循环运行:将上述步骤放入一个循环中,不断更新脉冲宽度并输出PWM信号。

这样可以实现对控制电路或设备的持续控制。

需要注意的是,在实际的 PWM 程序设计中,还需要考虑到不同平台和编程语言之间的差异。

例如,在 Arduino 平台上,可以使用`analogWrite(`函数来实现 PWM 输出;而在其他平台上,可能需要使用特定的库或编程接口来控制 PWM 输出。

总结起来,PWM控制技术的原理是通过改变方波脉冲的宽度来控制电路或设备。

程序设计中,需要初始化控制器、设置频率和分辨率、计算脉冲宽度、控制输出,并将这些步骤放入一个循环中。

这样就可以实现对电路或设备的持续控制。

简述pwm控制技术原理

简述pwm控制技术原理
脉宽调制(PWM)是一种常用的电子控制技术,通过调节信号的占空比来控制输出信号的平均功率。

PWM控制技术常用于电力电子、自动控制、通信等领域。

PWM控制技术的原理如下:
1. 基本原理:PWM控制技术基于周期性的高电平(ON)和低电平(OFF)信号。

在一个固定的时间周期内,通过改变高电平和低电平信号的持续时间比例(即占空比),可以实现对输出信号的平均功率的调节。

2. 信号生成:PWM控制技术需要产生一个周期性的方波信号作为控制信号。

可以使用定时器或计数器来生成这个周期性的信号,根据设定的频率来确定每个周期的时间长度。

3. 调节占空比:在每个周期内,通过改变高电平信号的持续时间来调节占空比。

占空比定义为高电平信号的持续时间与一个周期的总时间之比。

例如,一个占空比为50%的PWM信号表示高电平和低电平信号的时间相等。

4. 输出控制:PWM信号经过一个滤波器,将高频的方波信号转换为模拟信号。

根据PWM 信号的占空比,滤波器输出的模拟信号的平均值相应地调节。

通过控制占空比,可以实现对输出信号的电压、电流或功率进行精确的控制。

PWM控制技术的优点包括高效性、精确性和可靠性。

由于输出信号是由开关器件的开关状态决定的,因此可以快速响应和调节输出信号。

PWM技术广泛应用于电机控制、LED调光、电源变换器等领域,以实现精确的控制和节能的效果。

pwm的工作原理

pwm的工作原理PWM的全称是Pulse Width Modulation,中文意思是脉宽调制。

它是一种通过改变脉冲信号的宽度来传输信息的调制方式。

在现代电子技术中,PWM被广泛应用于电力电子、通信、自动控制等领域。

本文将介绍PWM的工作原理及其在实际应用中的特点和优势。

PWM的工作原理。

PWM的工作原理可以简单描述为通过改变脉冲信号的占空比来控制电路的输出。

在一个完整的PWM周期内,包括一个固定频率的周期性脉冲信号和一个可变的占空比。

占空比是指脉冲信号中高电平时间占整个周期的比例,通常用百分比表示。

在PWM信号中,当占空比为50%时,表示高电平和低电平的时间相等,这时电路的输出为中间值。

当占空比小于50%时,高电平时间减少,电路的输出信号会相应减小;反之,当占空比大于50%时,高电平时间增加,电路的输出信号会相应增大。

通过调整占空比,可以实现对电路输出的精确控制。

PWM的实现方式。

PWM信号的生成可以通过硬件电路或者软件算法来实现。

在硬件电路中,常用的方法是利用定时器来生成固定频率的脉冲信号,然后通过比较器来调整占空比。

而在软件算法中,可以通过程序控制IO口的高低电平来实现PWM信号的输出。

在实际应用中,PWM信号通常用来控制电机的转速、调节LED 的亮度、调节电源的输出等。

例如,通过改变电机驱动器输入的PWM信号占空比,可以实现电机的精确转速调节;通过改变LED驱动电路输入的PWM信号占空比,可以实现LED灯的亮度调节。

PWM的特点和优势。

与传统的模拟调制方式相比,PWM具有以下几点特点和优势:1. 精确控制,通过改变占空比,可以实现对电路输出信号的精确控制,具有较高的分辨率和稳定性。

2. 能效高,PWM信号的平均功率较高,能够提高电路的能效,减小能量损耗。

3. 抗干扰能力强,PWM信号的数字特性使其具有较强的抗干扰能力,能够适应复杂的工作环境。

4. 适应性强,PWM信号可以适用于不同类型的电路和设备,具有较强的通用性和灵活性。

PWM控制的基本原理

PWM控制的基本原理PWM(Pulse Width Modulation)即脉宽调制,是一种根据不同的脉冲宽度来控制电子设备的方法。

它被广泛应用于电力电子领域,特别是在电机控制、功率变换和光电器件中。

PWM的基本原理是通过改变脉冲的高电平时间(也称为脉冲宽度)来控制电子设备的输出。

脉冲宽度决定了设备的输出功率或电流大小。

通常情况下,PWM信号具有固定的频率和可变的占空比。

占空比(Duty Cycle)定义了脉冲高电平时间所占的比例。

PWM的基本用途是实现对电子信号的模拟控制。

通过调整脉冲的占空比,可以实现对设备输出的精确控制。

以电机控制为例,PWM信号通过调整电机的开关周期和占空比来改变电机的转速和扭矩。

在功率变换中,PWM信号可以通过切换器来将电能从一个电源传输到另一个电源。

在实现PWM控制时,首先设置定时器的计数周期和脉冲宽度。

计数周期通常由一个固定的时间基准确定,例如晶体振荡器或时钟信号。

脉冲宽度通常由控制系统在每个周期内动态地计算,并根据需要进行调整。

一旦定时器的计数周期和脉冲宽度设置好,定时器将开始计数。

在每个计数周期结束时,定时器将自动触发一个比较器,比较当前计数值与设置的脉冲宽度。

如果计数值小于脉冲宽度,输出信号将保持高电平,否则将变为低电平。

通过不断地重复以上的计数过程,PWM信号可以以固定的频率周期性地产生。

脉冲宽度的变化通过改变比较器的阈值来实现,从而实现对输出的精确控制。

PWM控制具有很多优点。

首先,它提供了精确的输出控制,可以实现高精度的电子设备控制。

其次,PWM信号具有较高的能量传输效率,能够显着减少能量的损耗。

此外,PWM控制还可以通过调整脉冲宽度来实现对设备的过载保护。

总之,PWM控制是一种通过改变脉冲宽度来控制电子设备输出的方法。

它通过定时器和比较器的配合,实现对脉冲信号的周期性产生和精确调节。

通过PWM控制,可以实现高精度、高效率和稳定的电子设备控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PWM的频率控制原理及应用
什么是PWM
PWM(Pulse Width Modulation)中文名为脉宽调制,是一种电子信号的调制
技术。

它通过控制信号的高电平时间和低电平时间的比例来调整信号的平均电压,从而实现对电压、电流或功率的精确控制。

PWM的原理
在PWM技术中,通过调整信号的脉宽和周期来控制电路的输出。

具体来说,
当脉冲的高电平时间占整个周期的一定比例时,电路的输出会产生相应的效果,比如改变电流的大小、控制电机的转速等。

具体实现PWM技术的方法有很多种,其中常见的方法是使用计数器和比较器。

计数器用来生成固定频率的计时信号,而比较器则用来将计数器的值与一个可调节的阈值进行比较,从而确定输出信号的脉宽。

PWM的应用
PWM技术在各个领域都有广泛的应用。

下面列举几种常见的应用场景:
1.电机控制:PWM技术被广泛应用于电机控制中,可以通过调整脉宽
比例来控制电机的转速和扭矩。

例如,在机器人控制中,通过调整PWM信号的频率和占空比,可以实现精确的电机控制,从而使机器人实现各种运动。

2.LED灯控制:PWM技术也常用于LED灯的亮度控制。

通过控制
PWM信号的占空比,可以精确地调节LED灯的亮度。

这种亮度调节方式具有高效、稳定的特点,被广泛应用于照明系统和显示屏中。

3.电源调节:PWM技术还可以用于电源调节。

通过调整PWM信号的
占空比,可以控制开关电源输出电压的大小。

这种电源调节方式具有高效、可调性强的特点,常用于电子设备中。

4.音频放大:PWM技术还常用于音频放大电路中。

通过将音频信号转
换为PWM信号,并通过模拟滤波器将其恢复为模拟信号,可以实现高效的音频放大。

5.电磁阀控制:PWM技术也可以应用于电磁阀控制中。

通过调整
PWM信号的频率和占空比,可以精确地控制电磁阀的工作状态,从而控制流体的流量。

PWM的优势
使用PWM技术有以下几个优势:
1.高效性:PWM技术可以减小功率损耗,提高能量的利用率。

通过调
整脉冲的占空比,可以控制输出电压或电流的大小,从而实现高效的能量转换。

2.精确性:PWM技术可以实现精确的控制。

通过调整脉冲的高电平时
间和低电平时间的比例,可以精确地控制输出信号的平均值。

3.可调性:PWM技术具有可调性强的特点。

通过调整脉冲的高电平时
间和低电平时间的比例,可以实现对输出信号的精确控制,满足不同应用的需求。

4.易于实现:PWM技术相对简单,易于实现。

使用计数器和比较器等
基本电子元件即可实现PWM功能,不需要复杂的电路设计。

总结
PWM技术作为一种电子信号调制技术,在各个领域都有广泛的应用。

它通过
调整信号的脉宽和周期来实现对电路输出的精确控制。

通过PWM技术,可以实现
电机控制、LED灯控制、电源调节、音频放大等各种应用。

同时,PWM技术具有
高效性、精确性、可调性和易于实现的优势,是一种非常实用的控制技术。

相关文档
最新文档